arXiv:0710.5780v1 [astro-ph] 31 Oct 2007

JC
B

Fermilab FERMILAB-PUB-08-004-A-CD

Submitted for publication in the Astronomical Journal

The SEGUE Stellar Parameter Pipeline. III. Comparison with
High-Resolution Spectroscopy of SDSS/SEGUE Field Stars!

Carlos Allende Prieto

McDonald Observatory and Department of Astronomy, University of Texas, Austin, TX
78712

callende@astro.as.utexas.edu

Thirupathi Sivarani, Timothy C. Beers, Young Sun Lee

Department of Physics & Astronomy, CSCE: Center for the Study of Cosmic Evolution,
and JINA: Joint Institute for Nuclear Astrophysics, Michigan State University, East
Lansing, MI 4882/, USA

thirupathi, beers, lee@pa.msu.edu
Lars Koesterke, Matthew Shetrone, Christopher Sneden, David L. Lambert

McDonald Observatory and Department of Astronomy, University of Texas, Austin, TX
78712

lars, shetrone , chris , dll@astro.as.utexas.edu
Ronald Wilhelm
Department of Physics, Texas Tech University, Lubbock, TX 79409
ron.wilhelm@ttu.edu
Constance M. Rockosi, David K. Lai
UCO/Lick Observatory, 1156 High Street, Santa Cruz, CA 9506}
crockosi, david@ucolick.org
Brian Yanny
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510

yanny@fnal.gov


http://arxiv.org/abs/0710.5780v1

-2 -

Inese 1. Ivans

The Observatories of the Carnegie Institution of Washington, Pasadena, CA; and
Princeton University Observatory, Princeton, NJ

1ii@ociw.edu
Jennifer A. Johnson
Department of Astronomy, Ohio State University, Columbus, OH
jaj@astronomy.ohio-state.edu
Wako Aoki
National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan
aoki.wako@nao.ac. jp
Coryn A. L. Bailer-Jones, Paola Re Fiorentin

Maz-Planck-Institute for Astronomy, Koénigstuhl 17, D-69117, Heidelberg, Germany
ABSTRACT

We report high-resolution spectroscopy of 125 field stars previously observed
as part of the Sloan Digital Sky Survey and its program for Galactic studies, the
Sloan Extension for Galactic Understanding and Exploration (SEGUE). These
spectra are used to measure radial velocities and to derive atmospheric param-
eters, which we compare with those reported by the SEGUE Stellar Parame-
ter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on
SDSS wugriz photometry and low-resolution (R ~ 2000) spectroscopy. For F-
and G-type stars observed with high signal-to-noise ratios (S/N), we empirically
determine the typical random uncertainties in the radial velocities, effective tem-
peratures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km
s, 130 K (2.2 %), 0.21 dex, and 0.11 dex, respectively, with systematic uncer-
tainties of a similar magnitude in the effective temperatures and metallicities. We
estimate random errors for lower S/N spectra based on numerical simulations.

Subject headings: methods: data analysis — stars: abundances, fundamental
parameters — surveys — techniques: spectroscopic
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1. Introduction

Starting from the sixth public data release (DR-6; Adelman-McCarthy et al. 2007), the
Sloan Digital Sky Survey (SDSS) provides estimates of the atmospheric parameters for a sub-
set of the stars observed spectroscopically in the survey (those in the approximate range of
temperature 4500 < Tog < 7500 K). Following completion of the main survey (SDSS-I), the
SDSS instrumentation has been devoted to several programs, including SEGUE: Sloan Ex-
tension for Galactic Understanding and Exploration, a massive survey of the stellar content
of the Milky Way. Collectively, the suite of computer programs employed to determine at-
mospheric parameters from SEGUE data is known as the SEGUE Stellar Parameter Pipeline
(SSPP). Because each of the public data releases of the SDSS includes and supersedes pre-
vious releases, DR-6 also includes atmospheric parameters for archival stellar observations
in SDSS-I. These stellar parameters are derived by a series of methods, some of which con-
sider purely spectroscopic information (continuum-normalized spectra), solely photometry
(available in the survey’s ugriz system for all targets), or a combination of photometry and
spectroscopy. Paper I in this series describes the SSPP in detail (Lee et al. 2007a). Paper
IT compares the predictions of the SSPP radial velocities and atmospheric parameters with
likely members of Galactic globular and open clusters (Lee et al. 2007b).

The SDSS uses a CCD camera (Gunn et al. 1998) on a dedicated 2.5m telescope
(Gunn et al. 2006) at Apache Point Observatory, New Mexico, to obtain images in five
broad optical bands (ugriz; Fukugita et al. 1996) over approximately 10,000 deg? of the
high Galactic latitude sky. The survey data-processing software measures the properties of
each detected object in the imaging data in all five bands, and determines and applies both
astrometric and photometric calibrations (Lupton et al. 2001; Pier et al. 2003; Ivezi¢ et
al. 2004). Photometric calibration is provided by simultaneous observations with a 20-inch
telescope at the same site (Hogg et al. 2001; Smith et al. 2002; Stoughton et al. 2002; Tucker
et al. 2006). A technical summary is provided by York et al. (2000).

SDSS-I and the ongoing SEGUE survey have already built the largest-ever catalog
of stars in the Milky Way. To date, this includes photometry in five bands for over 200
million stars and spectroscopy for nearly 300,000 stars (Adelman-McCarthy et al. 2007).
The SDSS spectrographs deliver a resolving power A/FWHM ~ 2000 over the wavelength

!Based on observations obtained with the Hobby-Eberly Telescope (a joint project of the University of
Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitét
Miinchen, and Georg-August-Universitidt Gottingen), the W. M. Keck Observatory (operated as a scientific
partnership among the California Institute of Technology, the University of California and the National
Aeronautics and Space Administration), and the Subaru Telescope (operated by the National Astronomical
Observatory of Japan).
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range 380-900 nm. Data reduction is fully automated, and the SSPP employs the final
products from the SDSS pipeline as input to produce atmospheric parameters (effective
temperature, surface gravity, and metallicity) for stars with spectral types A, F, G, and K.
The best results are obtained for F- and G-type stars spanning the effective temperature
range 5000 < Tog < 7000 K.

The quality of the SSPP atmospheric parameters is evaluated using different approaches,
as already described in Paper I: comparing with previously published spectral libraries,
well-studied open and globular clusters, and with high-resolution observations of field stars.
Existing spectral libraries are useful in order to evaluate and calibrate the SSPP methods
that rely on spectroscopy alone. Allende Prieto et al. (2006) employed the low-resolution
Indo-US library (Valdes et al. 2004), and high-resolution spectra from the Elodie library
(Prugniel & Soubiran 2001) and the S*N archive (Allende Prieto et al. 2004). Because the
ugriz system was introduced with the SDSS, the stars included in existing spectral libraries
lack photometry in this system. In addition, these are relatively bright stars, typically with
V < 14 mag, brighter than the bright magnitude limit of the SDSS imaging. The bright
magnitude limit for the SDSS is set by the saturation threshold of the detectors at the
sidereal driftscan rate of the survey. Obtaining data for these brighter stars would require
special-purpose observations with a very different instrument configuration, which would call
into question their value as calibration observations for the otherwise homogeneous imaging
survey.

Star clusters provide stringent tests of the SSPP, as the same metallicity should be
derived for stars that explore wide ranges of masses and luminosities. Paper II in this series
examines SSPP results for likely members of clusters included in DR-6. One cannot choose
clusters with any given metallicity, but has to take what is provided by nature and accessible
from Apache Point. Furthermore, the effective temperatures and surface gravities for the
members of any given cluster are very strongly correlated, depending on age and chemical
composition. This leads to a patchy coverage of the parameter space. Field stars, on the
other hand, can be chosen to provide better coverage and, therefore, naturally complement
the clusters. Among the stars spectroscopically observed with SDSS, those in the range
14 < V < 16.5 mag can be observed at high spectral resolution with large-aperture telescopes
and modest integration times. Due to the vast size of the SDSS stellar sample, these stars
can be selected to more uniformly cover the parameter space of stellar properties, and have
the additional benefit that photometry is already available for them in the SDSS native
system.

This paper, the third in the SSPP series, is devoted to the analysis of 125 SDSS stars
newly observed at high-resolution with the Hobby-Eberly, Keck, and Subaru telescopes.
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Section 2 describes the sample selection and the observations. The determination of radial
velocities and atmospheric parameters, based on these observations, are discussed in §3
and §4, respectively. Section 5 describes the results for several well-known standard stars
observed with the Hobby-Eberly Telescope. Section 6 compares the parameters derived
from high-resolution spectroscopy with those from the SSPP. Section 7 describes numerical
experiments that explore how the parameters degrade at lower signal-to-noise ratios. Our
conclusions are summarized in §8.

2. Observations

The majority of the data presented in this paper were obtained with the Hobby-Eberly
Telescope (HET; Ramsey et al. 1998), located in West Texas, making use of its High
Resolution Spectrograph (HRS; Tull 1998). Additional spectra were obtained with the Keck
Observatory, using both the High Resolution Echelle Spectrometer (HIRES; Vogt et al. 1994)
and the Echelle Spectrograph and Imager (ESI; Sheinis et al. 2002), and with the Subaru
telescope and the High Dispersion Spectrograph (HDS; Noguchi et al. 2002), both located on
Mauna Kea, Hawaii. Table [Ilsummarizes the basic information concerning the spectroscopic
observations; more details are provided below.

2.1. Sample selection

Field stars with previous spectroscopic observations from SDSS-I or SEGUE were se-
lected for follow-up spectroscopy at higher resolution. Based on preliminary SSPP atmo-
spheric parameters, targets were initially chosen to span the range 5200 < T.g < 7000 K,
1.5 < logg < 5.5, and —2.5 < [Fe/H|< (].5@. Our targets are relatively bright; most satisfy
g < 15.5 mag. In addition, a number of cooler red giants were also included in the sample,
expanding the initial range of temperatures.

Figure [ illustrates the coverage of parameter space occupied by our targets. Some 300
stars were placed in the HET queue between November 2005 and October 2006, despite the
fact that time was only allocated for observations of about 100 of them. This over-booking
strategy allows for very efficient use of the HET queue schedule (Shetrone et al. 2007). The
time on Keck and Subaru was used mainly to increase the target density at low metallicities

2Here and throughout the paper we equate metallicity with iron abundance, and use the notation [Fe/H]=

log (NN((%G))) — (1;((?)) ) o’ where N represents the number density of atoms.




and cooler temperatures.

2.2. HET spectra

On the HET, a 316 grooves mm ! cross-dispersing grating, and a 2”-wide slit collecting
80% of the light from the 3”-diameter science fibers, were chosen to provide nearly full
spectral coverage between 400 and 800 nm at a resolving power R = A\/FWHM ~ 15000.
Some 280 spectra of 115 stars were obtained. The observations were scheduled at low priority
on the HET queue, and most were obtained during bright time. Below we discuss only the
81 stars that appeared single-lined, did not exhibit the characteristics broad lines, and had
at least one spectrum with no obvious signs of background light (since no sky fibers were
used), and a S/N per pixel at 520 nm in excess of 20/1.

Data reduction was performed independently at the University of Texas and at Michi-
gan State University (MSU). The reduction at Texas was done automatically, with a pipeline
based on IRAF scripts, while a more interactive procedure, also based on IRAF packages,
was employed at MSU. Both reductions included bias removal and flatfield correction, but
the former corrected for scattered light with the task apscatter, while the latter removed
the background for each order from neighboring areas. The results are generally in excellent
agreement. Multiple observations were typically obtained for each object. With the excep-
tion of nine stars with the lowest S/N, individual exposures were analyzed independently,
and the derived atmospheric parameters averaged.

2.3. Keck-HIRES spectra

Fourteen objects were observed with the red configuration of the Keck I High Resolution
Echelle Spectrometer (HIRES) and new 3-chip CCD mosaic, with an on-chip binning of 1 x 2.
The C1 decker, which has a 7.0 x 0.861” slit, was used. This setting yields a resolving power
of R ~ 40000. The spectra cover a wavelength range of 414-849 nm. Most of the objects
had more than two exposures, and exposure times of 300-1500 sec. The data were reduced
at Carnegie Observatories, using version 4.0.1. of the MAuna Kea Echelle Extraction data

3IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Associ-
ation of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science
Foundation.
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reduction package (MAKEE@) The final S/N per pixel was approximately 80/1 at 520 nm.

2.4. Keck-ESI spectra

The Keck II ESI spectrograph was used in the echellete mode. Twenty seven objects
were observed with exposure times ranging from 300 to 1200 sec. The resolving power is
approximately 7000, using a slit width of 0.74”. The wavelength coverage is 390-1100 nm.
Data reduction was performed at Santa Cruz using IRAF scripts (see Lai et al. 2004). The
S/N per pixel was in the range 30/1-60/1 at 520 nm.

2.5. Subaru spectra

The Subaru HDS was used to observe nine of our program objects with a resolving power
of R ~ 45000, covering 300-580 nm. The blue cross disperser was chosen for the observations,
with 400 grooves mm~! and blaze angle of 4.76°. Most of the objects had only one exposure.
Standard data reduction procedures (bias subtraction, flat-fielding, background subtraction,
extraction, and wavelength calibration) were carried out with the IRAF echelle package.
Suspected cosmic-ray hits are removed using the technique described by Aoki et al. (2005).
The S/N per pixel was roughly 80/1 at 520 nm.

3. Radial Velocities

Following the same strategy as for the data reduction, the radial velocities for HET
spectra were measured independently at Texas and MSU by three different methods. There
were 10 observations of four radial velocity standards, which are discussed in Section [0l

For the Keck-ESI and the MSU reductions of the HET spectra, radial velocities were
derived from cross correlations with the solar spectrum between 480 and 530 nm (Wallace,
Hinkle, & Livingston 1998). After the spectra were analyzed and the atmospheric parameters
determined, as explained below (§4.2)), the cross-correlation was repeated using the best-
fitting models as templates. Heliocentric corrections were estimated using the IRAF task
rvcor. The radial velocities for the Keck-HIRES data were estimated by cross correlation

‘MAKEE was developed by T. A. Barlow for the reduction of Keck I HIRES data taken with the new
3-chip CCD mosaic. It is freely available from the Keck Observatory
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using the positions of about 100 Fe I and 10 Fe II lines. Heliocentric corrections were already
applied during data reduction by the MAKEE package.

Radial velocities were derived for the Texas-reduced HET spectra by measuring the
central wavelengths of several hundred Fe I lines and comparing to laboratory values (Nave
et al. 1994). The distribution was then fit by a Gaussian plus a background parabola,
in order to determine the mean, the sigma, and the error of the mean. The heliocentric
correction was estimated with the IRAF task rvcor, then applied in order to obtain the final
radial velocity.

The Texas-reduced HET spectra were also cross-correlated with a library of synthetic
spectra smoothed to the appropriate resolution, in order to measure the Doppler shifts. The
library covers a region of 4 nm around Hf, and samples uniformly in T, the spectral types F
to mid-K (4500 to 7500 K), with surface gravities 1.0 < log g < 5.0, and metallicities —2.5 <
[Fe/H] < 0.5. Each synthetic spectrum was cross-correlated with each HET spectrum, and
the peak of the cross-correlation was fit with a Gaussian using the IDL routine zc¢ (Allende
Prieto 2007). The Doppler shift is estimated as the mean value for the 10% of the synthetic
spectra that best fit the observed spectrum. The heliocentric correction was computed with
the routine baryvel (see Stumpff 1980) from the IDL astro libraryH, and applied. We note
that heliocentric corrections derived in this manner differed by those from IRAF’s rvcor task
by no more than 0.2 km s™!.

In summary, three different procedures for radial velocity estimation were applied to the
HET spectra: (1) cross-correlation with the solar spectrum in the 480-530 nm region, (2)
direct measurement of the wavelength shifts of atomic iron lines, and (3) cross-correlation
with a library of synthetic spectra in the vicinity of HS. Cross-correlation with the solar
spectrum was the only method applied to the Subaru and Keck spectra. This method and the
Fe I method agree with one another slightly better than with the third technique (for HET
stars): excluding the spectra of SDSS J033530.56-010038 and SDSS J074151.214-275319, we
find an rms scatter of 1.6 km s~!. Thus, we adopt the average of these two methods for all
HET stars and exclude these two stars in the comparison with the radial velocities from the
SSPP. The radial velocities for the HET stars are listed in Table [3} those for the rest of the
sample are listed in Table [l

5See http: //idlastro.gsfc.nasa.gov/
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4. Analysis

The majority of our program stars were observed with HET-HRS using a single setting,
but the rest of the spectra from Keck and Subaru fill important gaps in the parameter space.
The HET data were analyzed by an automated spectral fitting technique at the University
of Texas. The rest of the spectra were analyzed by a second method for automated spectral
fitting (Keck-ESI), or by more traditional methods, using line equivalent widths (Subaru-
HDS and Keck-HIRES) at MSU. In order to take advantage of both the homogeneity of
the HET spectra, and the expanded coverage of the rest of the observations, we separately
consider these two data sets, designated below as “HET” and “OTHERS”. One star, SDSS
J180922.45+223712, was observed both with HET and Subaru.

4.1. HET analysis

The determination of atmospheric parameters for HET spectra at Texas was based on
fitting the spectroscopic observations in the range 500-521 nm. This region includes many
individual lines, but it is dominated by transitions of neutral iron, calcium and magnesium.
The spectra were continuum-normalized. The search for the optimal solution is based on
the Nelder-Mead algorithm (Nelder & Mead 1965), with model spectra interpolated using a
third-order Bezier scheme, but otherwise the same code and strategy described by Allende
Prieto et al. (2006) is used. The code is also the same used by the SSPP for the methods
described in §4.1 of Paper I. The main difference between the ki13 grid used in the SSPP
and the one employed here is the spectral resolution, which is now R = 7700, instead of
R = 1000. With only three fitting parameters (effective temperature, surface gravity and
overall metal abundance), a scaled solar composition is implicit in the analysis, considering
an enhancement of the « elements for [Fe/H]< 0. Note that the same Nelder-Mead algorithm,
but a different implementation, is used for the analysis of the Keck-ESI data at MSU, as
described below.

It should be emphasized that although the HET-HRS spectra have a resolving power of
R = 15000, the analysis is performed at a lower resolution. By smoothing both the observed
and the synthetic spectra to R = 7700, we effectively eliminate the effects of stellar rotation,
and potential variations with time in the PSF of the spectrograph, increasing the original
signal-to-noise ratio per pixel and speeding up the calculations. The sacrifice in resolution has
a negligible impact on the final accuracy of the derived atmospheric parameters, as checked
from the analysis of several hundred spectra from the Elodie library at both R = 15,000
and R = 7700. Figure 2] illustrates the fits for three program stars and for the metal-
poor standard HD 84937, all observed on the HET. The internal consistency of the derived
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atmospheric parameters for different observations of the same target is excellent, typically
o = 32 K, 0.05 dex, and 0.02 dex for T,g, log g, and [Fe/H], respectively.

The analysis is simplified by assuming a relationship between the abundance ratio of
the alpha elements to iron and the iron abundance (Beers et al. 1999; Eq. 2 in Allende
Prieto et al. 2006), but it is well known that such a relationship does not apply to all
stars in the Galaxy. For example, Reddy et al. (2006) find different slopes for the change
in [o/Fe] with [Fe/H] for stars in the thin- and thick-disk populations. The halo values
are most likely similar to those for the thick disk. Using the average of [Mg/Fe|, [Si/Fe],
[Ca/Fe], and [Ti/Fe|, Reddy et al. find that approximately linear trends apply, although
they differ somewhat from the relationship adopted in our calculations. Inspection of their
fits suggest slopes of —0.14 dex/dex and —0.07 dex/dex, and intercepts at [Fe/H]= 0 of
+0.00 and +0.17, for the thin- and thick-disk populations, respectively. Oxygen may not
follow the same behavior (Ramirez et al. 2007), as it appears to exhibit a more pronounced
slope for thin-disk stars, but Mg and Ca are the relevant elements for the spectral window
we are using. In any case, the use of a single relationship for all of the alpha elements is only
an approximation.

Our adopted relationship predicts [oa/Fe]= +0.27, +0.13, and +0.00 at [Fe/H]= —1.0,
—0.5, and 0.0, respectively, while the results of Reddy et al. indicate [a/Fe]= +0.14, +-0.07,
and 0.00 for the thin-disk population, and [o/Fe|= 40.24, +0.21, and +0.17 for the thick-
disk population, respectively, at the same metallicities. Halo stars exhibit similar [a/Fe]
ratios as thick-disk stars with [Fe/H]< —0.7. These differences have only a small impact
on our results. The parameters for thin-disk stars with [Fe/H]~ —1 (provided they exist),
or for thick-disk stars with solar metallicity (provided they exist), would have a maximum
systematic error of 0.2 dex in surface gravity and metallicity, and 100 K in T.g. At the
intermediate metallicities where the two populations overlap, errors would amount to about
half of the maximum values.

The analysis procedure was tested and calibrated using two spectral libraries from the
literature: S*N (Allende Prieto et al. 2004), and the Elodie.3 library (Prugniel & Soubiran
2001). Our comparison is limited to stars in these libraries with effective temperatures
between 4500 < Ty < 7000 K, and, in the case of the Elodie library, with reliable parameters
(Qrefsr > 2, Quogg > 1, and Qre/u) > 3, where @ represents reliability as defined by the
Elodie team). We estimate random and systematic uncertainties by fitting Gaussian models
to the differences between the parameters derived for the spectra in these libraries, and their
associated catalogs. Our results are systematically different from the S*N catalog parameters
by +5% in Teg, +0.20 dex in log g, and —0.23 dex in [Fe/H]. After correcting for these zero-
point offsets, the differences between our parameters and those in the libraries’ catalogs are
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illustrated in Figure B} statistics are presented in Table 2] where the o, is derived from
Gaussian fittings.

The larger scatter found for the Elodie library is expected, since the corresponding cat-
alog values do not have a homogeneous source, but are mostly compiled from the literature.
In addition, the quality of the original spectra in this library is lower than those in the S*N
library. The 1o uncertainties derived from the comparison with the S*N library are adopted
as external errors, and added in quadrature to the internal estimates.

The empirically determined corrections from the SN library for surface gravity and
metallicity work as well for the Elodie library. While the first library is dominated by spectra
of thin-disk stars, the second balances thin-disk, thick-disk, and halo populations, spanning
metallicities between —3.0 and +0.5. With the zero points determined from the comparison
with the S*N library, our effective temperatures are roughly 2% lower than those in the
Elodie library. This difference is expected, since the temperatures in the S*N catalog were
obtained from the infrared flux method (IRFM) calibrations of Alonso et al. (1996, 1999),
while most of the values reported in the Elodie catalog are from spectroscopic analyses. It
is well known that the spectroscopic (excitation balance of neutral iron lines, as described
in §4.2) temperature scale is about 150 K warmer than the IRFM scale for these spectral
types (see, e.g., Heiter & Luck 2003, Yong et al. 2004). For consistency with the results for
the OTHERS sample, described below, the warmer (Elodie) temperature scale is adopted.

4.2. OTHERS analysis

The atmospheric parameters for the Keck-ESI spectra were derived at MSU, using a
grid of synthetic spectra and the IDL optimization routine AMOEBA (see Press et al. 1986),
which also employs the Nelder-Mead algorithm.

A total of 13662 synthetic spectra were generated with a sampling step of 6\ =5 x 10~*
nm, covering the wavelength range 480-530 nm. The parameter space spans the range 3500
to 9750 K in T.g, 0.0 to 5.0 in logg, and —2.5 to 0.0 in [Fe/H], for £ = 1, 2, 3 km s
The stellar model atmospheres used for the synthetic spectra are the NEWODEF models by
Castelli & Kurucz (2003), which include updated opacities for TiO (Schwenke 1998) and H,O
(Partridge & Schwenke 1997). The NEWODF models use solar abundances by Grevesse &
Sauval (1998) and no convective overshooting (Castelli et al. 1997). The synthetic spectra are
generated using the turbospectrum synthesis code (Alvarez & Plez 1998), and employ recent
calculations of the broadening of Balmer lines (Barklem et al. 2000), and strong metallic lines
(Barklem & Aspelund-Johansson 2005 and references therein) by collisions with hydrogen
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atoms. The linelists employed come from a variety of sources. Atomic line data are taken
mainly from the VALD compilation (Kupka et al. 1999) as of 2002, and in some cases updated
from the literature. The atomic linelist also includes hyperfine splitting for interesting lines.
Linelists for the molecular species CH, CN, TiO, CaH and OH were provided by B. Plez
(see Plez 1998; Plez & Cohen 2005), while the data for the NH, Cy and MgH molecules
are from Kurucz (see http: //kurucz.harvard.edu/LINELISTS/LINESMOL/). The solar
abundances compiled by Asplund, Grevesse & Sauval (2005) were adopted. Finally, the
synthetic spectra were reduced to a resolution of R = 7000 by convolving with a Gaussian.
The SSPP parameters were supplied as initial guesses.

The analysis of the Keck-HIRES and Subaru-HDS data was performed at MSU using
the equivalent widths of Fe I and Fe II lines to constrain Teg, log g, [Fe/H], and the micro-
turbulence. The Teg is determined from the excitation equilibrium of Fe I lines, by forcing
a null trend in the excitation potential versus Fe I abundance. The logg is determined
from the ionization equilibrium of Fe I and Fe II lines. The microturbulence is estimated
by forcing a null trend in the equivalent width versus abundance relation. In our analysis
we used only lines with equivalent widths < 120mA |, so as to avoid the non-linear part
of the curve of growth. The atomic data for the Fe I and Fe II lines are from the VALD
compilation, and from fits to the solar spectrum. We also checked our estimations by fitting
the Balmer line profiles. We have removed three objects from the Keck-HIRES sample; two
of them exhibited very broad lines, apparently due to rapid rotation, while one object was
a double-lined spectroscopic binary. For one star, SDSS J205025.83-011103.8, the SSPP did
not return measurements.

5. Standard Stars

The HET sample contains four well-known radial velocity standard stars that have mul-
tiple and recent high-resolution analyses in the literature. The stars HD 8648 and HD 84737
have been reported by Nidever et al. (2002) as constant in radial velocity to better than
0.1 km s~! over several years; their heliocentric radial velocities are 0.92 and 4.90 km s7!,
respectively. Nordstrom et al. (2004) provide values consistent with these measurements.
The radial velocity of HD 71148 has been measured by Nordstrom et al. as —32.6 + 0.1 km
s~ !, with consistent measurements reported by Barnes, Moffett & Slovak (1986). Nordstrom
et al. also included HD 84937 in their sample, with a radial velocity of —14.5 £ 0.2 km s},

in good agreement with previous data from Carney et al. (2001).

The average velocities measured from the HET spectra of HD 8648 (5 observations),
HD 84737 (1 observation), HD 71148 (2 observations), and HD 84937 (2 observations) are
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0.34, 4.03, —33.39, and —12.31 km s~!, respectively. This indicates that a negligible offset
exists between the HET values and those adopted from the literature: —0.01 +0.74 km s~ !,

with an rms scatter of 1.47 km s !.

HD 8648 has been spectroscopically studied by Mishenina et al. (2004) and Valenti &
Fisher (2005). HD 71148 has been analyzed by Fuhrmann (2004), Lambert & Reddy (2004),
Mishenina et al. (2004), and Valenti & Fisher (2005). HD 84737 was observed by Chen et
al. (2002), Luck & Heiter (2006), and Valenti & Fisher (2005). Finally, the spectrum of the
halo subdwarf HD 84937 has been analyzed, among others, by Korn, Shi, & Gehren (2003),
Nissen et al. (2007), and Ryde & Lambert (2004). The agreement among these studies on
the atmospheric parameters for each star is excellent — the rms scatter is less than 80 K for
Tesr, 0.1 dex for log g, and 0.05 dex for [Fe/H]. We adopt average values of these parameters
for our analysis.

A comparison between our adopted literature parameters and those derived from our
own analysis of high-resolution HET spectra is provided in Table Bl The effective temper-
atures of these stars span a limited range, as do their surface gravities, but these objects
provide one way to assess the adopted zero points for our atmospheric parameters. On
average, our temperatures are 18 K warmer, our gravities —0.05 dex lower, and our metal-
licities —0.02 dex lower than the average literature values. These tiny differences indicate
no detectable offsets in our derived atmospheric parameters. The rms scatter between our
parameters and the literature values are 96 K (2 %), 0.15 dex, and 0.04 dex, in T, logg,
and [Fe/H], respectively. These estimates are also in excellent agreement with the results
based on comparison with the S*N library shown in Table Most of our standard stars
have near solar metallicity; the same applies to the stars in the S*N library. However, the
agreement with the literature values for HD 84937, at [Fe/H] ~ —2.1, for T.¢ and [Fe/H],
does not seem to degrade significantly. The surface gravity, on the other hand, does exhibit
a larger difference, of about 0.2 dex, which suggests a lower precision for this parameter at
low metallicity, at least for the HET spectra.

6. Comparison With SSPP Estimates
6.1. Radial velocities

Our two preferred radial velocity determinations for the HET spectra agree with one
another with an rms scatter of 1.6 km s~ (average difference of 0.9 km s!). This value is
consistent with the scatter inferred for the four radial velocity standards, as described in §5l
The radial velocities measured in the SDSS spectra we compare to in this section are not
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derived directly by the SSPP but, in most cases, they come from matching templates from
the Elodie library as part of the spectro-1d pipeline. Nonetheless, the SSPP makes some
choices regarding the adopted radial velocity, as explained in Paper I and II, and therefore
we refer to the finally adopted radial velocity for the SDSS spectra as the SSPP values below.

The mean S/N per pixel of the SDSS/SEGUE spectra in this set is typically higher than
50/1. The SSPP radial velocities exhibit an rms scatter of 5.1 km s™* relative to the average
of our two preferred methods. Nevertheless, this value is not representative for most stars,
but it is inflated by three outliers (SDSS J233852.54+140945.7, SDSS J013627.14+231453.6,
and SDSS J012106.89+263648.0). A more reliable indication of the typical scatter is derived
by least-squares fitting of a Normal curve to the differences, which, as Figure [ illustrates,
yields o = 2.9 km s~!. This indicates a typical uncertainty of about 2.4 km s~ for the SSPP
radial velocities. This level of accuracy is better than in earlier public data releases because
of improvements to the DR6 version of the spectro-1d pipeline, primarily to the wavelength
solutions, and is consistent with the estimated the plate-to-plate scatter in the radial velocity
zero point (Adelman-McCarthy et al. 2007).

The SDSS radial velocities involved in our comparison have been systematically cor-
rected by +7.3 km s™!, based on preliminary results from this program, as described by
Adelman-McCarthy et al. (2007), and therefore we limit our discussion to the variance. The
unusually large errors for a few stars are likely related to some issue with the SSPP or the
SDSS spectra rather than on the HET side. There are a few more examples among the stars
observed with KeckI-ESI. The (internal) error bars delivered by the SSPP for the stars in
the HET sample range between 0.7 and 2.0 km s~!, with a mean value of about 1.3 km s~ !,

or about half our empirical external estimate.

6.2. Atmospheric parameters

The SSPP parameters derived for SDSS spectra discussed in this section are the average
values provided as part of SDSS DR-6 in the public data base (Adelman-McCarthy et al.
2007). In Paper I, we compare the high-resolution parameters against the individual methods
integrated into the SSPP, in order to estimate their associated systematic and random errors.
These will be used in future updates of the SSPP to weight the results from individual
methods appropriately.

Figure Bl shows the main result of this paper, the comparison between the estimated
stellar atmospheric parameters obtained from the high-resolution spectra with those from
the SSPP based on SDSS data. Table [6l summarizes the mean and standard deviation of the
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differences between the high-resolution results (HI) and those from the SSPP.

There is better agreement between the zero points of the SSPP parameters and the
high-resolution results for the OTHERS sample than for the HET results. However, the rms
scatter is significant smaller for the HET sample than for the OTHERS sample. Despite the
fact that we have chosen the high (spectroscopic) Tes scale for calibrating the HET results,
we find that the SSPP indicates even higher temperatures, by about 170 K; this value is
comparable to the scatter found for this parameter. For SDSS J180922.45+223712, the star
observed both with HET and Subaru, the HET and OTHERS analyses yielded disparate
effective temperatures of 5906 K and 6380 K, surface gravities of 4.40 dex and 5.00 dex, and
metallicities of —2.33 and —2.20, respectively. The SSPP T.g estimate is intermediate to the
two values, 6252 K. We note that this is one of the stars with the lowest S/N among the
HET sample.

The larger scatter for the OTHERS sample is not attributable to the more extended
coverage of the parameter space; if we restrict the OTHERS sample to the same range
covered by the HET observations, the results do not vary significantly. It is probably related
to the different analysis techniques. For example, the Keck-HIRES and Subaru analysis
employs Fe I and Fe II lines, which are mainly in the region around 390-450 nm, were the
S/N is lower than in the redder region where the HET analysis is performed. The traditional
analysis of Fe I and Fe II lines uses weak lines, while the HET analysis also includes stronger
features, which may be more reliable at low S/N. In addition, the effect of microturbulence
is explicitly considered in the traditional analysis, while the HET (and also ESI), as well as
the SSPP techniques, consider a fixed microturbulence value, and therefore are likely to be
on the same scale. In addition, the residuals for the OTHERS sample appear markedly non-
Gaussian, and the scatter determined from Gaussian fittings enhances the estimated width
of the distributions. In particular, the o,y for log g is 0.35 dex, while the value estimated
from a Gaussian model is 0.41 dex (Table [@).

As previously explained, the uncertainties for the HET spectra are determined by adding
in quadrature the uncertainties inferred from the comparison with the S*N library, as shown
in Table 2l and the 1o scatter among the values derived from the analysis of individual
exposures of each star. The latter contribution is, for most stars, negligible. The SSPP
uncertainties correspond to the standard error of the mean (o/v/N) for the results from the
different methods assembled in the pipeline.

Figure [6] shows histograms of the distribution of uncertainty estimates in the HET
sample for both the SSPP (solid lines) and the high-resolution HET data (dashed lines). It
is unlikely that the parameters obtained from our analysis of high-resolution spectra are more
uncertain than those reported by the SSPP. The vertical lines indicate the empirical estimates
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derived for the SSPP parameters from the comparison with the HET values (see Table [0]).
The conclusion from this comparison is that the (internal) SSPP error bars significantly
underestimate the actual uncertainties, at least for the SDSS/SEGUE spectra with relatively
high signal-to-noise ratio (> 50/1). Typically, the quoted SSPP uncertainties in the effective
temperature (~ 50 K) are about 2 — 3 times too small, while those in surface gravity (~ 0.12
dex) and metallicity (~ 0.08 dex) are about half of their actual external errors.

7. Uncertainties as a function of S/N

The comparison in Figure [fl and Table [@ involves a set of SDSS/SEGUE spectra with
quite high S/N. Nevertheless, most of the stellar spectra acquired in these projects have a
significantly lower S/N ratio, typically with a wavelength-averaged value of 10/1——-30/1. To
estimate the effect of lower S/N on the derived atmospheric parameters, we have introduced
noise into the original observations.

We followed the same recipe described by Allende Prieto (2007) to create new sets of
spectra degraded to a S/N at 500 nm (S/Nsq) of 5/1, 10/1, 20/1, and 40/1. All sets
were analyzed using only one of the methods included in the SSPP: spectral fitting with
the ki13 grid, which is described in Paper I (see also Allende Prieto et al. 2006). We
found that the derived effective temperatures agree with those determined from HET spectra
with an rms scatter of 13%, 5%, 4 %, and 3.2 % at S/Nsq of 5/1, 10/1, 20/1, and 40/1,
respectively. The derived surface gravities agreed with the high-resolution values with an rms
scatter of 0.70, 0.55, 0.42, and 0.30 dex, while the metallicities agreed with an rms scatter
of 0.71 dex, 0.29 dex, 0.15 dex, and 0.13 dex for a S/Nsq of 5/1, 10/1, 20/1, and 40/1,
respectively. Because the ki13 method and the HET analysis share a number of elements
(search algorithm and code, and spectral synthesis data and code), and the spectral windows
they exploit overlap, uncertainties could be slightly underestimated at high S/N, but the
figures derived at S/N = 40/1 are in line with those for the original SDSS spectra analyzed
with the SSPP (Table [6]).

8. Conclusions

We report on an analysis of high-resolution spectroscopic observations of a sample of
stars previously observed with the SDSS instrumentation as part of SDSS-I or SEGUE. These
new data are used to derive radial velocities and atmospheric parameters, and to scrutinize
the performance of the SSPP Pipeline described in Paper I in this series. The sample we have
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examined includes 81 stars observed with the HET-HRS, 25 stars obtained with Keck-ESI,
11 stars observed with Keck-HIRES, and 9 stars from Subaru-HDS.

Through a comparison with external spectroscopic libraries, and by employing multiple
methods of analysis for the HET sample, we estimate that our reference radial velocities

are accurate to 1.6 km s~

Our values for the stellar atmospheric parameters, effective
temperature, surface gravity, and metallicity, are accurate to 1.5 % (~ 90 K), 0.13 dex and
0.05 dex, respectively. These figures are derived from the comparison with the parameters for
nearby stars in the S*N catalog, but we find they are still valid for the moderately high S/N of
the HET spectra. Using the HET sample to benchmark the SSPP, subtracting in quadrature
the uncertainties in the results for the former, we conclude that the SDSS/SEGUE radial
velocities are typically accurate to 2.4 km s~ for high signal-to-noise SDSS spectra (S/N >
50/1). A similar comparison of the atmospheric parameters returned by the SSPP with those
obtained from HET spectra leads to the conclusion that the SSPP effective temperatures,
surface gravities, and metallicities for bright targets show random errors of 2.2% (~ 130 K),
0.21 dex, and 0.11 dex, respectively. Systematic offsets of a similar size are detected for the
effective temperatures and metallicities. We evaluate the expected random uncertainties as
a function of S/N by repeating the analysis after introducing noise in the SDSS spectra.
More extended tests are underway and will be reported elsewhere.

Our study also finds that the internal uncertainties delivered by the SSPP for both
radial velocities and atmospheric parameters need to be systematically increased by a factor
of 2 — 3 in order to be consistent with our derived external errors. The uncertainties in the
average SSPP atmospheric parameters are simply derived as the standard error of the mean
for a Normal distribution from the multiple techniques applied to any particular target.
The fact that many methods share the same spectroscopic indicators (e.g. Balmer lines or
SDSS color indices to gauge To), and models (e.g. Kurucz’s model atmospheres) may cause
unaccounted correlations that result in underestimated uncertainties.

The validation and calibration of the SSPP is an ongoing project. Several additional
open and globular clusters have recently had data obtained with SDSS instrumentation, and
will be considered in future papers. A sample of up to several hundred very low-metallicity
stars from SDSS/SEGUE is presently being observed with the HET, which we will add to our
calibration sample. Additional stars of intermediate metallicity, and with hotter and cooler
temperatures than considered in the present work, will be added to our calibration sample
based on observations with a number of large-aperture telescopes. Our goal is to produce an
SSPP validation catalog for on the order of 500 stars, which will be used to refine and adjust
the individual parameter estimation techniques employed by the SSPP, and thus establish a
definitive atmospheric parameter estimation scale for application to the large (and growing)
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SDSS/SEGUE stellar samples, as well as to other future surveys.
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Table 2. Average and 1o Scatter Between Derived Parameters (FIT) and the Library
Catalogs (LIB)

Parameter/Library < FIT —LIB > o¢(FIT —LIB) N

Tq-S*N (K) ~0.10% 1.67% 55
log g-S*N (dex) 0.008 0.129
[Fe/H]-S'N (dex) —0.001 0.049
Tor-Elodie (K) —2.23% 2.66% 282
log g-Elodie (dex) 0.017 0.271
[Fe/H]-Elodie (dex) —0.020 0.100
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Table 5. Parameters for the Standard Stars
Literature HET
Star Ter logg [Fe/H] Tew logg [Fe/H]
HD 8648 5790 4.28 0.13 5833 4.36 0.09
HD 71148 5775 4.35 —0.03 5892 441 —-0.04
HD 84737 5906 4.22 0.12 5929 4.12 0.07
HD 84937 6334 4.01 -—-2.11 6221 3.76 —=2.07
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