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1. The Context

High performance computing favors optimized algorithms that are then processed by a com-
puter as quickly as possible. C++ has been a great success for that, enabling large collaborations
to collect a large code base without too much overhead. Even more important is the fact that C++
allows code to be highly optimized: not all code needs to run with as few CPU instructions as pos-
sible, but where performance matters C++ can be brought up to FORTRAN’s or C’s performance.
Highly efficient (presumably expert) code and less efficient code can thus coexist.

Interpreters have always been used to steer the high performance processes: To submit them
to batch systems, to determine parameters, or to prepare input files. There has thus been a clear
separation of the high performance analysis and the low performance preparation. Such an inter-
preter used to be called a shell; typical examples being bash or tcsh. With the advent of Python as
a "glue" language, much of the old shell code has been migrated to interpreted languages.

Interpreted algorithms are slower than compiled ones, because of the extra runtime cost in-
curred by generating most CPU instructions at runtime.[1] Nevertheless it is faster to write and test
algorithms in interpreted languages. This is probably a major reason of the success of interpreted
languages also in the context of high performance computing: many of the LHC experiments’
algorithms are both designed and used in interpreters.

2. Algorithmic Configuration and Interpreters

Configurations are non-compiled input to algorithms, e.g. statements in a text file that is read
by a program. Many formats exist; simple key / value maps like show in listing 1, or XML like
<jetAlgo name="Cone08"/>. They facilitate the change of input parameters by allowing to
edit a text file instead of rebuilding the whole program.

These configurations are often going beyond defining simple numerical values anymore; in-
stead parts of the algorithms themselves are defined by configuration settings. This simply ac-
knowledges the physicists’ reality: algorithms often need to be changed several times until the
optimal one has been found, and algorithms are used in several derivations (e.g. signal versus
background). But rebuilding software embedded in experiments’ frameworks can take as much as
half an hour for a single line of changed source code, simply due to an overwhelming amount of
dependencies. Instead, physicists prefer to change a text file and leave the binary untouched.

An actual example of an algorithmic configuration can be seen in listing 2. Here, a simple
syntax needs to be extended to allow for more complexity, e.g. to connect subroutines and to
define data flow. This syntax can in fact be seen as its own interpreted language; after all, it
defines algorithmic behavior, just like interpreted languages do. Extending a simple configuration
syntax to a more complex one, i.e. creating a custom interpreted language, requires also a parser
(or interpreter). It needs to be written, tested and maintained; it needs to handle errors, allow

m i n J e t E t : 12
j e t A l g o : Cone08

Figure 1: Example for a simple key / value map based configuration.
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+ p o s t Z e r o J e t s . Run : N J e t sC u t ( p o s t z e r o j e t s ) \
V J e t s P l o t s ( p o s t Z e r o J e t P l o t s )

p o s t z e r o j e t s . J e t B r a n c h : %{V J e t s . GoodJe t_Branch }

Figure 2: Example for an algorithmic configuration.

for debugging — just like any real interpreted language. It forces users to learn a language with
an extremely specialized area of application; a language that will be seen as useless to learn by
many users. The custom language will also force users to learn and deal with new tools e.g. for
debugging, if these tools exist at all.

We believe that this should instead be done by one of the existing interpreted languages. This
allows users to learn a more useful language, it allows the reuse of existing parsers and interpreters,
and basically all existing interpreter languages can cover any possible scenario even for algorithmic
configurations. Some interpreters offer libraries that allow access to compiled code, e.g. to call
compiled C++ functions. This in turn allows extremely powerful algorithmic configurations, where
the configuration can immediately interact with compiled code. Interpreted languages thus boost
the user’s agility by being more expressive, and by reducing the threshold for recompilation of
binaries.

3. Interpreters in Software Frameworks

Usually, several source files of an experiment’s software framework need to be changed to
implement a new reconstruction algorithm, or to set up a physics analysis. This is done by regular
physicists; it thus needs to be as easy and fail safe as possible. Interpreters can help considerably
with this. They allow to localize changes: instead of changes in files scattered across the frame-
work’s many directories only a small source file (script) needs to be maintained. It gives a modular
test bed that increases the developer’s confidence of control of the software, simply because the
code changes are clearly arranged and have less side effects. Changes are also easier to track, e.g.
through code versioning systems that can be checked into by regular physicists: after all, they do
not overwrite the experiment’s code but implement their own scripts instead. Probably most im-
portantly, these modular pieces of code are much easier to communicate, which in turn helps in the
validation of algorithms.

4. Interpreters and Interpreted Languages

Traditionally, interpreters came with special interpreted languages that have a simplified syn-
tax. They were easier to learn and allowed simplified data handling: C++ code as shown in listing 3
becomes a lot shorter if written in interpreted languages, as shown in listing 4.

The lack of syntactical precision is often paid for by reduced runtime performance. The code
is interpreted on demand which allows it to use constructs defined by context: e.g. variables can
be declared without a type; their type is determined by whatever is assigned to them. Compiled
languages, on the other hand, usually require variables to be defined already at compile time. While
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v e c t o r < E l e c t r o n >∗ ve = 0 ;
t r e e −>S e t B r a n c h A d d r e s s ( " E l e c t r o n s " , &ve ) ;
t r e e −>GetBranch ( " E l e c t r o n s " )−> G e t E n t r y ( 0 ) ;
f o r ( i n t i =0 ; i <ve−> s i z e ( ) ; ++ i ) {

E l e c t r o n ∗ e l e c t r o n = ve [ i ] ;
. . .

Figure 3: Example loop in C++.

f o r e a c h e l e c t r o n in t r e e . E l e c t r o n s :
. . .

Figure 4: Example loop in a hypothetical interpreted language.

this makes code easier to write and to reuse, the validity of code can often only be checked at
runtime, when a variable’s type is defined.

The use of specialized interpreted languages also means that a new language has to be learned.
Their loose syntactic precision and the lack of focus on performance is often seen as a language’s
advantage: once users of interpreters have written enough code in an interpreted language it takes a
conscious effort to move to compiled languages — it is just too easy to write code in a syntactically
imprecise (i.e. runtime-defined) way. Specialized interpreted languages thus cause a problem that
can already be seen in some LHC code: there is a push towards interpreting algorithms[2], ignoring
the CPU time cost this incurs.

5. Interaction Of Interpreters With Compiled Code

As we have shown, the interaction of interpreted code with compiled code is a fundamental
property of interpreters in high performance computing. Unfortunately it is also one of the most
neglected aspects. The interaction can be seen as a communication process: interpreters must be
able to make use of compiled code, and compiled code must be able to interpret code by means
of the interpreter’s API. Another aspect of the interpreter-compiled code interaction is reflection
which we will cover in section 6.1

5.1 From Interpreted To Compiled Code

Interpreters need to be able to call compiled code to be a useful tool for rapid prototyping in
a complex code environment, e.g. within the LHC experiments’ software frameworks. There are
several attempts to ease the calling of compiled code from interpreters: python offers PyROOT for
the C++ data analysis framework ROOT[3] and the LHC experiments’ frameworks (a project exists
to give access to ROOT from any of Microsoft’s Common Language Runtime (CLR) languages[4],
e.g. IronPython) bindings to ROOT’s classes exist for Ruby, Perl and others can be used with the
help of SWIG[5].

This can justify the use of languages different from the software framework’s language in
restricted amounts. What we see, though, is that it is a one way street with a dead end: it is much
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gROOT−>P r o c e s s L i n e ( " K l a s s : : Gimme ( ) " ) ;

Figure 5: Invoking CINT from compiled code.

/ / l o a d s l i b K l a s s . so / l i b K l a s s . d l l / . . . :
r o o t [ 0 ] gSystem−>Load ( " l i b K l a s s " )
r o o t [ 1 ] K l a s s ∗ k = K l a s s : : Gimme ( )
r o o t [ 2 ] k−>Say ( )

Figure 6: CINT and user code: Klass::Gimme() becomes a function call in Klass.so.

more difficult to migrate code written in any of these languages into compiled code, simply because
their languages do not offer compilers.1 Where they do (like for C#) the resulting binaries are
incompatible with the experiment’s software framework. We believe that for software frameworks
based on C++ this can only be solved by being able to interpret C++.

5.2 From Compiled Code To Interpreters

It has proved to be a key feature for interpreters to be called from compiled code. ROOT
implements the signal slot mechanism, components of the I/O subsystem that are not time critical,
and most importantly its plugin-system based on the C++ API of its C++ interpreter CINT[7].
CINT allows to interpret C++ from compiled code as shown in listing 5 and to call any functions
in instrumented user libraries as shown in listing 6. This instrumentation is combined with the one
needed to retrieve reflection information as presented in section 6.1.

5.3 Migration of Interpreted To Compiled Code

Another aspect of the transition from interpreted to compiled code is the migration of inter-
preted code into libraries. This can be useful for performance critical algorithms, but also to use the
compiler to check the code’s correctness with “standard” compiler error messages. The transition
to compiled code can be simplified when using an interpreter, as most of the information needed
by build systems is already available: include paths to find header files, library dependencies, the
name of the compiler and linker can all be accessed from an enhanced interpreter.

ROOT and CINT implement this feature in an online compiler called ACLiC. While .L

myCode.C loads a source file into CINT for interpretation, .L myCode.C+ compiles and links
that source file as a shared library before loading it into CINT. This replaces platform dependent
build systems including dependency tracking; it also enhances the user code to provide reflection
data and to make the user code accessible from the interpreter.

6. C++ Interpreters

The idea of CINT was to provide a minimum amount of C++ necessary to interact with a

1What is commonly referred to as Python’s compiler is in fact a bytecode compiler; its output still needs to be
interpreted to be run. A dedicated Python compiler exists[6] but it introduces many restrictions to Python and is to our
knowledge not widely used in High Energy Physics.
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C++ system. Offering a C++ interpreter has proved to be so successful that this basic set of C++
was soon seen as insufficient. We are addressing this issue with a new interpreter project, see
section 6.3. C++ interpreters are very rare; we know of only two actively developed interpreters. As
we have already pointed out, the major advantage of C++ interpreters compared to other languages
(in a C++ environment) is the seamless integration in the compiled software context. If their parsers
are powerful enough they can also be used to gather reflection data which can then be used for
interpreters and serialization.

Most importantly, C++ is a prerequisite for most experiments’ software frameworks anyway;
it does not add the requirement of learning a new language, and all knowledge gained with the in-
terpreter can be applied unchanged to the framework. The interpreted code can be easily migrated
to the software frameworks once development is finished; it integrates seamlessly with the frame-
work and e.g. ROOT. And still: thanks to the interpreter, during C++ development the turn-around
of editing and running code is as quick as with any other interpreter.

6.1 Interpreters And Reflection

Information about available types and members (data as well as function) is called reflection
data. It is paramount for serialization of C++ objects and for interpreter access to compiled code.
Another contribution discusses many of its details[8]; here we only introduce the properties most
relevant for interpreters.

A key ingredient of an interpreter is its parser. It defines its ability to understand a language,
both for interpreted code and to read header files. The latter is needed to extract the available types
and members so they can be used e.g. from an interpreter. CINT can do just that; its limitations
with understanding C++ provoked a second path for gathering reflection data to be used with CINT.
This alternative approach uses GCCXML[9] (based on GCC’s parser) to extract reflection data
and a python script (genreflex) to convert it to a format that is compatible with CINT. It adds a
considerable compile time overhead due to the creation of a temporary XML file which is then
parsed by a python script.

6.2 Enabling Library Calls From Interpreters

To enable function calls into libraries, the interpreter needs to know about the available func-
tions and their parameter types. It also need to be able to do a C++ call (i.e. respecting the operating
system’s ABI) into the library. This is highly platform dependent; the most transparent way to to
generate a function stub which is called to forward the call. This stub is typically a C function
taking a vector of void* as parameters; the parameters are then converted to the types expected
by the actual function to be called.

For both CINT and GCCXML / genreflex, reflection data and the function stubs are compiled
and linked C++ code, either integrated into the original library to build an instrumented library, or
as a separate library to be loaded when the interpreter needs to access the library. Upon loading the
reflection code initializes memory data structures from data stored in the C++ file. This means a
duplication of strings in memory: they are part of the library and are again copied into heap for the
memory data structures. Both CINT alone and GCCXML / genreflex increase the size of a library
because by approximately a factor 2, they also come with a non negligible memory usage.
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There are ways to reduce the cost of the library instrumentation to generate and store the
reflection data needed for interpreters. All of them applied, the cost in library size can be reduced
to about 10% of the original library’s size; the build time overhead is approximately comparable to
compiling two source files.

6.3 Cling: An LLVM-Based Interpreter

Instead of optimizing existing concepts we decided to develop a new C++ interpreter called
cling. It will provide a remedy to the issues of increased memory usage, library size increase,
the inflation of compile time, the lack of support for C++, and that will improve the link between
compiled and interpreted code. The fundamentally new feature compared to CINT is that it is based
on a compiler infrastructure instead of providing all of an interpreter’s ingredients itself.

The compiler infrastructure we have chosen is LLVM[10] with its C++ front-end clang. They
feature a C++ API, very modular design, an already existing bytecode interpreter; they are designed
to work on a wide range of platforms, and most importantly they are open source projects with
production quality. It is a strong competitor to GCC both in performance of the compilation and of
the generated binaries. They are hosted at the University of Chicago, supported by Apple, Adobe,
and many others.

One of the most important features of LLVM is its just-in-time (JIT) compiler: on selected
platforms (Linux, MacOS and Windows being the most relevant ones) code can be compiled in
memory, incorporating all optimization steps available through LLVM. It will allow us to replace
stubs for function calls by JIT-based in-memory-linking, which in turn reduces the size of the
instrumentation libraries.

The clang C++ front-end will allow us to access parsed code, to analyze it, to append to it, and
even to modify it. We will use the precompiled header feature of clang/LLVM to store reflection
data. This speeds up the instrumentation of libraries considerably as there is no need to compile or
link, let alone generate and parse XML with python. The memory foot print will also be reduced
because the precompiled headers are loaded as heap data structures which can be freed once the
reflection data has been extracted.

7. Conclusion

We believe interpreters play an important role in high performance computing, despite the
fact that they waste CPU cycles for data processing compared to compiled code. Especially in the
context of gluing applications together, setting – even algorithmic – configuration parameters, and
code development, interpreters can be an ideal ingredient.

While it is intriguingly easy to write code with dedicated interpreter languages, we have shown
that these languages have a very limited area of application. They are often used outside these
limited areas, costing experiments a large fraction of CPU time. We believe that the interpreter
must match the compiled software framework to be a viable addition, to allow performance critical
code to be seamlessly migrated to the framework. Only then will the experiments be able to analyze
their data within the planned amount of CPU power, still offering agile development enabled by
interpreters.
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