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Abstract

The CDF and D0 collaborations have analyzed 2.2 fb−1 and 0.9 fb−1, respec-
tively, of Run II data to search for electroweak single top quark production at
the Tevatron. We employ several different analysis techniques to search for a
single top signal: boosted decision trees, multivariate likelihood functions, neu-
ral networks, and matrix element discriminants. Both experiments see evidence
of single top production. D0 measures a combined cross section of 4.7± 1.3 pb
while CDF measures 2.2+0.8

−0.7 pb. D0 sets a limit at a 95% confidence level of
|Vtb| > 0.68 and measures |Vtb| = 1.3 ± 0.2, while CDF calculates |Vtb| > 0.6
and measures |Vtb| = 0.88+0.16

−0.14(stat + sys) ± 0.07(theory).
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1 Introduction

In 1.96 TeV proton anti-proton collisions at the Tevatron, top quarks are pre-
dominantly produced in pairs via the strong force. In addition, the Standard
Model predicts that single top quarks can be produced through an electroweak
s- and t-channel exchange of a virtual W boson (Figure 1). The production
cross sections have been calculated at next-to-leading order (NLO). For a top
quark mass of 175 GeV/c2, the results are 1.98 ± 0.25 pb and 0.88 ± 0.11 pb

for the t-channel and s-channel processes, respectively 1). The combined cross
section is about 40% of the top pair production cross section.
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Figure 1: Leading order Feynman diagrams for s-channel (left) and t-channel
(right) single top quark production.

The precise measurement of the production cross section allows the direct
extraction of the Cabibbo-Kobayashi-Maskawa matrix element |Vtb| and offers

a source of almost completely polarized top quarks 2). Moreover, the search
for single top also probes exotic models beyond the Standard Model. New
physics, like flavor-changing neutral currents or heavy W ′ bosons, could alter

the observed production rate 3). Finally, single-top processes result in the same
final state as the Standard Model Higgs boson process WH → Wbb̄, which is

one of the most promising low-mass Higgs search channels at the Tevatron 4).
Nearly all analysis tools developed for the single top search can be used for this
Higgs search.

A measurement of this cross section was performed at D0 with 0.9 fb−1

of data and at CDF with 2.2 fb−1 of data. Each experiment has three analysis
techniques that share a common event selection, background estimate, and
statistical treatment.

2 Event Selection

The single top event selection exploits the kinematic features of the signal
final state, which contains a real W boson, one or two bottom quarks, and
possibly additional jets. To reduce multi-jet backgrounds, the W originating
from the top quark decay is required to have decayed leptonically. This leads to



a requirement of a high-energy electron or muon and large missing transverse
energy (6ET ) from the undetected neutrino. CDF requires the electron and
muon to have pT > 20 GeV and |η| < 1.6; D0 requires pT > 15 GeV and
|η| < 1.1 for electrons and pT > 18 GeV and |η| < 2.0 for muons. CDF
requires 6ET < 25 GeV, while D0 requires 15 <6ET < 200 GeV.

CDF requires two or three jets with ET > 20 GeV and |η| < 2.8, while
D0 requires from two to four jets with |η| < 3.4. The first jet must have
ET > 25 GeV, the second jet must have ET > 20 GeV, and any additional jets
must have ET > 15 GeV.

A large fraction of the background is removed by demanding that at least
one of these two jets be tagged as a b-quark jet using displaced vertex infor-
mation from the silicon detector. CDF’s secondary vertex tagging algorithm
identifies tracks associated with the jet originating from a vertex displaced
from the primary vertex indicative of decay particles from relatively long-lived
B mesons. D0 uses a neural network which includes seven input variables to
distinguish tracks resulting from b quarks, increasing their acceptance for the
same rate of mistags compared to a simple secondary-vertex tagger.

The backgrounds surviving these selections are tt̄, W + heavy-flavor jets,
i.e. W + bb̄, W + cc̄, W + c, Z + heavy-flavor jets, and the diboson processes
WW , WZ, and ZZ. Instrumental backgrounds originate from mis-tagged W
+ jets events (W events with light-flavor jets, i.e. with u, d, or s-quark and
gluon content, misidentified as heavy-flavor jets) and from non-W + jets events
(multi-jet events in which one jet is erroneously identified as a lepton).

2.1 Background Estimate

Estimating the background contribution after applying the event selection to
the single top candidate sample is an elaborate process. NLO cross section cal-
culations exist for diboson and tt̄ production, thereby making the estimation
of their contribution relatively straightforward. The main background contri-
butions are from W + bb̄, W + cc̄ and W + c + jets, as well as mis-tagged
W+ light quark jets. We determine the W+ jets normalization from the data
and estimate the fraction of the candidate events with heavy-flavor jets us-

ing ALPGEN Monte Carlo samples 5), which were calibrated with multi-jet

data 6). The probability that a W+ light-flavor jet is mis-tagged is parame-
terized using a large, generic multi-jet data set. The instrumental background
contribution from non-W events is estimated using data in a control region
with low 6ET , containing very little signal, and we subsequently extrapolate the
contribution into the signal region with large 6ET . The expected signal and
background yield in the signal sample is shown in Figures 2 and 3 for D0 and
CDF, respectively.

The background estimate demonstrates that the expected number of sin-



Process 2 jets 3 jets 4 jets
s-channel 16± 3 8 ± 2 2 ± 1
t-channel 20± 4 12 ± 3 4 ± 1
W + bb̄ 261± 55 120± 24 35± 7
W + cc̄ 151± 31 85 ± 17 23± 5
W+ light quarks 119± 25 43 ± 9 12± 2
non-W 95 ± 19 77 ± 15 29± 6
tt̄ 59 ± 14 135± 32 154± 36
Total prediction 686± 131 460± 75 29± 6

Observed in data 697 455 246

Figure 2: Top: Expected signal and background yield for D0’s signal samples.
Bottom: Graphical depiction of the expected amount of single-top signal as a
function of the W + jets multiplicity and the presence of a b-tagged jet.



Process 2 jets 3 jets
s-channel 41.2± 5.9 13.5± 1.9
t-channel 62.1± 9.1 18.3± 2.7
W + b 461.6± 139.1 141.1± 42.6
W + c 395.0± 121.8 108.8± 33.5
W+ light quarks 339.8± 56.1 101.8± 16.9
non-W 59.5± 23.8 21.3± 8.5
Diboson 63.2± 6.3 21.5± 2.2
Z + jets 26.7± 3.9 11.0± 1.6
tt̄ 146.0± 20.9 338.7± 48.2
Total prediction 1595.1± 269.0 776.6± 91.4

Observed in data 1535 712
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Figure 3: Top: Expected signal and background yield in CDF’s signal sam-
ples. Bottom: Graphical depiction of sample composition as a function of jet
multiplicity.



gle top events is much less than the large amount of expected backgrounds.
In fact, the systematic uncertainty on the background estimate is larger than
the expected signal, which renders a simple counting experiment impossible.
The search for single top quark production requires the best possible discrim-
ination between signal and background processes, thus motivating the use of
multivariate analysis tools.

2.2 Neural Network Jet-Flavor Separation

Mistags and W +c events are a large class of background where no real b-quark
is present and amount to about 50% of the W + 2 jets data sample even after
imposing the requirement that one jet is identified by a secondary vertex b-
tagger. CDF uses a neural network tool which uses secondary vertex tracking
information to distinguish jets from b quarks from jets from c and light quarks.
Figure 4 shows the distribution of this jet-flavor-separating neural network in
Monte Carlo events. All CDF single-top analyses use this tool to improve their
sensitivity.

Figure 4: Distribution of the jet-flavor separator used by CDF in W+ jets
events. Jets likely to come from b quarks are given a high probability, while
light-quark jets are assigned a low probability.

3 Analysis Techniques

No single kinematic distribution encodes all conceivable information that can
separate signal from background. Sophisticated analysis techniques are needed



to combine information from different variables into a single discriminant dis-
tribution which is used to extract the single top rate from the data.

3.1 Boosted Decision Trees (D0)

A decision tree is a machine-learning technique that applies cuts iteratively
to classify events. The discrimination power is further improved by averaging
over many decision trees constructed using the adaptive boosting algorithm

AdaBoost 7). This average is called a boosted decision tree. One character-
istic of decision trees is that because they optimize a cut at each level, their
sensitivity is not reduced by the inclusion of unnecessary variables.

D0’s boosted decision tree is trained on 49 input variables, the most im-
portant of which are the invariant mass of all jets in the event, the invariant
mass of the reconstructed W boson and the highest-pT b-tagged jet, the angle
between the highest-pT b-tagged jet and the lepton in the rest frame of the

reconstructed top quark (cos θ∗`j)
8), and the lepton charge times the pseudo-

rapidity of the untagged jet (Q × η) 9).

3.2 Multivariate Likelihood Function (CDF)

A projective likelihood technique 10) is used to combine information from seven
input variables to optimize the separation of the single top signal from the
backgrounds in the two-jet case. The input variables xi, i = 1...7 are measured
for each event and the quantities

L2n({xi}) =

∏7

i=1
pi,k=1∑5

k=1

∏7

i=1
pik

, where pik =
fini,k∑5

m=1
finim

(1)

are computed, where m and k index the five samples (t-channel signal, Wbb̄,
Wcc̄+Wc, Wjj and tt̄) and finim is the normalized probability distribution in
bin ni for variable i of a template histogram constructed from a Monte Carlo
(or data) model of sample m. Seven to ten input variables are chosen, including
the jet-flavor separator neural network output, the mass of the reconstructed
top quark, Q × η, total scalar sum of transverse energy in the event HT, the
invariant mass of all jets in the event, and cos θ∗`j .

3.3 Matrix Element Discriminant (CDF, D0)

The matrix element method relies on the evaluation of event probability den-
sities for signal and background processes based on calculations of the Stan-

dard Model fully differential cross sections 12). These probability densities are
calculated for signal and background hypotheses for each event and quantify



how likely the event is to originate either from signal or background. Given
a set of observables, x, and underlying partonic quantities, y, the signal and
background probability densities are constructed by integrating over the appro-
priate parton-level differential cross section, dσ(y)/dy, convolved with parton
distribution functions (PDFs) and detector resolution effects:

P (x) =
∑

perm.

∫
dσ(y)

dy
f(q1)f(q2)dq1dq2W (x, y)dy. (2)

The PDFs (f(q1) and f(q2)) take into account the flavors of colliding quark and

anti-quark and are given by the CTEQ collaboration 13). The detector reso-
lution effects are described by a transfer function W (x, y) relating x to y. The
momenta of electrons, muons and the angles of jets are assumed to be measured
exactly. W (x, y) maps parton energies to measured jet energies after correction
for instrumental detector effects. This mapping is obtained by parameterizing
the jet response in fully simulated Monte Carlo events, which includes effects
of radiation, hadronization, measurement resolution, and energy omitted from
the jet cone by the jet-reconstruction algorithm. The definition of the proba-
bility densities includes possible permutations of matching jets with partons.
The integration is performed over the energy of the partons and pν

z . Event
probability densities are computed for the s-channel and t-channel signal, as
well as Wbb̄, Wcc̄, Wcj, Wgg, and tt̄ background hypotheses. In the specific
case of the tt̄ matrix element, additional integrations must be performed over
the momenta of particles not detected.

The event probability densities are combined into an event probability
discriminant, i.e. a distribution which separates signal from background which
is used to fit the data: Psignal/(Psignal +Pbackground). To better classify signal
events which contain b-jets, CDF incorporates the output of the neural network
jet-flavor separator, b, into the discriminant defined as:

b · Pst

b · Pst + b(Ptt̄ + PWbb) + (1 − b)(PWcc + PWcj)
(3)

3.4 Neural Network (CDF)

The third multivariate approach employs neural networks, which have the gen-
eral advantage that correlations between the discriminating input variables are
actively identified and utilized to optimize the separation power between signal
and background. The networks are developed using the neurobayes analysis

package 11), which combines a three-layer feed-forward neural network with a
complex and robust preprocessing of the input variables. Bayesian regulariza-
tion techniques are utilized to avoid over-training.



Separate networks are trained to identify different signals in distinct sam-
ples. The networks use 11 to 18 input variables, the most important ones being
the reconstructed top quark mass, the neural-network jet-flavor separator, the
dijet mass, Q×η, the cosine of the angle between the lepton and the light quark
jet, the transverse mass of the W boson, and HT. The input variables are se-
lected from a large list of investigated variables using an automated evaluation
during the preprocessing step before the network training. In an iterative pro-
cess, we determine how much the total correlation of the ensemble of variables
to the target is reduced by the removal of each single variable. For the networks
used in this analysis we kept those variables for which the correlation reduction
was significant.

3.5 Bayesian Neural Network (D0)

CDF uses a traditional neural network. D0 uses a Bayesian neural network,
which is a weighted sum over one hundred different neural networks sampled
from the posterior probability density function of the space of network param-
eters. This protects the network from overtraining and gives the best average
neural network for the analysis. The input variables to the Bayesian neural
network are similar to those used in the boosted decision tree analysis.

4 Measurement Technique and Results

The cross section is extracted by a Bayesian method in which a posterior prob-
ability density function is constructed by integrating the systematic nuisance
parameters for a fixed value of the single-top cross section. The maximum value
of this density function is the most probable value of the cross section, and the
region that contains 68% of the area marks out the uncertainty. All sources
of systematic uncertainty are included in this statistical treatment, including
the correlation between normalization and discriminant shape changes due to
sources of systematic uncertainty (e.g. the jet-energy-scale uncertainty).

The distribution of each of D0’s discriminants are shown in Figure 5.
Examining 0.9 fb−1 of data, D0 measures values of 4.8+1.6

−1.4 pb for the matrix

element analysis, 4.4+1.6
−1.4 pb for the Bayesian neural network analysis, and

4.9+1.4
−1.4 pb for the boosted decision tree analysis 14). The distribution of each

of CDF’s discriminants are shown in Figure 6. CDF uses 2.2 fb−1 of data to
measure values of 1.8+0.9

−0.8 pb for the likeihood function analysis, 2.2+0.8
−0.7 pb for

the matrix element analysis, and 2.0+0.9
−0.8 pb for the neural network analysis.

D0 combines its results using a best linear unbiased estimator. This takes
advantage of the fact that the different analyses, while they use the same data,
use different information and are thus not fully correlated. The combination



Figure 5: Discriminant distribution in Monte Carlo and data for D0’s boosted
decision tree analysis (left), Bayesian neural network analysis (center), and
matrix element analysis (right).
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Figure 6: Discriminant distribution in Monte Carlo and data for CDF’s mul-
tivariate likelihood function analysis (left), matrix element analysis (center),
and neural network analysis (right).

thus has a better sensitivity than any of the three analyses. D0’s combination
measures a cross section of 4.7 ± 1.3 pb.

To quantify the signal significance of a result, pseudo-experiments are gen-
erated from events without a single top contribution. The probability (p-value)
of the background-only pseudo-experiments to fluctuate to the observed result
in data is the signficance of the result. D0 uses the measured cross section as a
test statistic. The expected sensitivity the fraction of events which have a cross
section higher than the Standard-Model expectation. The expected p-value of
D0’s combination is 0.011, which corresponds to a 2.3σ signal significance. The
observed p-value is 0.00014, which corresponds to a 3.6σ excess (Figure 7).



Figure 7: Distribution of cross sections for pseudo-experiments made with no
signal included, showing the resulting p-value of 0.011.

5 Measurement of |Vtb|

The quantity |Vtb| can be calculated from the single top cross section, which is

directly proportional to |Vtb|
2
. Assuming, based on branching ratio measure-

ments on top quarks 15), that |Vtd|
2

+ |Vts|
2

<< |Vtb|
2
, and integrating a flat

prior in |Vtb|
2
, requiring |Vtb| to be between 0 and 1, D0 obtains |Vtb| > 0.68 at

a 95% confidence level. Using the same method on its matrix element analysis,
CDF calculates |Vtb| > 0.6 at a 95% confidence level (Figure 8). The most
probable value of |Vtb| is the square root of the cross section divided by the
Standard Model prediction. D0 measures |Vtb| = 1.3± 0.2 and CDF measures
|Vtb| = 0.88+0.16

−0.14(stat + sys) ± 0.07(theory).

6 Conclusions

We have performed searches for electroweak single top quark production at the
Tevatron using 0.9 fb−1 of data collected with the D0 detector and 2.2 fb−1 of
data collected with the CDF detector. Both experiments see evidence of single
top production. D0 measures a combined cross section of 4.7±1.3 pb while CDF
measures cross sections between 1.8+0.9

−0.8 pb and 2.2+0.8
−0.7 pb. D0 sets a limit at a

95% confidence level of |Vtb| > 0.68 and measures |Vtb| = 1.3± 0.2, while CDF
calculates |Vtb| > 0.6 and measures |Vtb| = 0.88+0.16

−0.14(stat + sys)±0.07(theory).
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Figure 8: Likelihood curve for |Vtb|
2, in D0’s combined analysis (left) and CDF’s

matrix element analysis (right), showing the limit on its value.
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