
CRAB: an Application for Distributed Scientific
Analysis in Grid Projects

D. Spiga1-3-6, S. Lacaprara2, M.Cinquilli3, G. Codispoti4, M. Corvo5, A. Fanfani4, A.
Fanzago5-6, F. Farina6-7, C. Kavka8, V. Miccio6, and E. Vaandering9

1University of Perugia, Perugia, Italy
2INFN Legnaro, Padova, Italy
3INFN Perugia, Perugia, Italy

4INFN and University of Bologna, Bologna, Italy
5CNAF, Bologna, Italy

6CERN, Geneva, Switzerland
7INFN Milano-Bicocca, Milan, Italy

8INFN Trieste, Trieste, Italy
9FNAL, Batavia, Illinois, USA

FERMILAB-CONF-08-616-CD

Abstract - Starting from 2008 the CMS experiment will produce several Petabytes of data each year, to be
distributed over many computing centers located in many different countries. The CMS computing model defines
how the data has to be distributed in a way that CMS physicists can efficiently run their analysis over the data.
CRAB (CMS Remote Analysis Builder) is the tool, designed and developed by the CMS collaboration, that
facilitates the access to the distributed data in a totally transparent way. The tool's main feature is the possibility to
distribute and and to parallelize the local CMS batch data analysis processes over different Grid environments
without any specific knowledge of the underlying computational infrastructures. More specifically CRAB interacts
with both the local user environment, with CMS Data Management services and with the Grid middleware.

Keywords: Grid Computing, Distributed Computing, Grid Application, High Energy Physics Computing.

Introduction

 The Compact Muon Solenoid (CMS)[1] is one of two large general-purpose particle physics
detectors integrated in to the proton-proton Large Hadron Collider (LHC)[2] at CERN
(European Organization for Nuclear Research) in Switzerland. The CMS detector has 15
millions of channels; through them data will be taken at a rate of TB/s and then selected by an
on-line selection system (trigger) that will reduce the frequency of data taken from 40 MHz
(LHC frequency) to 100 Hz (writing data frequency), that means 100 MB/s and 2 PB data per
year. This challenging experiment is a collaboration constituted by about 2600 physicist from
180 scientific institutes all over the world. The big quantity of data to analyze (but also to
simulate) needs a plenty of resources to satisfy the computational experiment requirements, as
the large disk space needed to store the data and many cpus where to run physicist's algorithms.
It is also needed a way to make all data and shared resources accessible from all the people in
the collaboration. This environment has encouraged distributed resources from a facility
infrastructure point of view and to satisfy these problematics, CMS has defined an ad-hoc
computing model. This leans on the use of Grid
computing resources, services and toolkits as
basic building blocks, making realistic
requirements on grid services. In particular CMS
decided to use a combination of generic Grid
tools, provided by the LCG (LHC Computing
Grid)[3] and OSG (Open Science Grid)[4]
projects, as well as specialized CMS tools are
used together. In this environment, the computing
system has been arranged in tiers (Figure 1)
where the majority of computing resources are
located away from the host lab. The system is
geographically distributed, consistent with the

Figure 1. Multi-tier architecture based on distributed
resources and Grid services.

nature of the CMS collaboration itself:
 • The Tier-0 computing centre is located at CERN and is directly connected to the

experiment for the initial processing, reconstruction and data archiving.
 • A set of large Tier-1 centers where the Tier-0 distributes data (processed and not); these

centers provide also considerable services for different kind of data reprocessing.
 • A typical Tier-1 site distributes the processed data to smaller Tier-2 centers which have

powerful cpu resources to run analysis tasks and Monte Carlo simulations.

Distributed analysis model in CMS
 For the CMS experiment in the Grid computing environment there are many problematic
points due to the wide amount of dislocated resources (intended as data and hardware). The
CMS Workflow Management System (CMS WM) manages the large scale data processing and
reduction process which is the principal focus of experimental HEP computing. Just for this the
CMS WM has to be considered the main flow to manage and access the data, interacting with
the Grid middleware and giving to the user an unique interface that allows to interact with the
generic Grid services and with the specific experiment services as an unique common
environment. The Grid services are mainly constituted by the Grid WMS which takes jobs into
account, performs match-making operations and distributes the jobs toward the Computing
Element (CE); the CE manages local queues that point to a set of resources located to a specific
site as the Worker Nodes where the jobs run; finally there are Storage Elements (SE) that are
logic entities that warranty an uniform access to a storage area where the data is stored. As part
of its computing model, CMS has chosen a baseline in which the bulk experiment-wide data is
pre-located at sites and thus the Workload Management (WM) system submit the jobs to the
correct CE. The Dataset Bookkeeping System (DBS) allows to discover, access and transfer
various forms of event data in a distributed computing environment.
The analysis model[5] is batch-like and consists of main steps: the user runs interactively on
small samples of the data somewhere in order to develop his code and test it; once the code is the
desired one, the user selects a large data and submit the very same code to analyze the chosen
data. The results is made available to the user to be analyzed interactively. The analysis can be
done in step, saving the intermediate ones and iterating over the latest ones. The distributed
analysis workflow over the Grid backs on the Workflow Management System, which is not
directly user oriented. In fact the analysis flow in the above specified distributed environment is
a more complex computing task because it assume to know which data are available, where data
are stored and how to access them, which resources are available and are able to comply with
analysis requirements, also at the above specified Grid and CMS infrastructure details.

The CMS Remote Analysis Builder

 The users do not want to deal with the previously described issues and they want to analyze
data in a simple way. The CMS Remote Analysis
Builder (CRAB)[6] is the application designed and
deployed by the CMS collaboration that, following
the CMS WM, allows a transparent access to
distributed resources over the Grid to end physicists.
CRAB perform three main operations:
 • Interaction with the CMS analysis framework

(CMSSW) used by the users to develop their
applications that runs over the data;

 • The Data Discovery step, interacting with the
CMS data management infrastructure, when
required data is found and located;

 • The Grid specific steps: from submission to
output retrieval are fully handled.

The typical workflow (Figure 2) involve the concept
of task and job. The task corresponds to the high-level
objective of an user (run an analysis over a defined data). The job is the traditional queue system
concept, corresponding to a single instance of an application started on a worker node with a
specific configuration and output. A task is generally composed by many jobs. A typical analysis
workflow in this contest consists of:
 • the data discovery to determine the Storage Elements (SE) of sites storing data,

interacting with DBS;
 • the preparation of the input sand-box: a package containing the user application, with

the relative libraries and data files;
 • the job preparation, which creates a wrapper over the user executable; it prepares the

environment where the user application has to run (WN level) and at the end of this
handles the output produced;

 • the job splitting which takes in to account the specific data information, the data
distribution and the coarseness requested by the user;

 • the Grid job configuration that consists of a file filled using the Job Description
Language (JDL) which is interpreted by the WMS and which contains the job
requirements;

 • the task (jobs) submission to the Grid;
 • the monitoring of the submitted jobs which involves the WMS and that allows to check

the status of a job and its progress;

Figure 2. CRAB in to the CMS WM

 • when a job is finished from the Grid point of view, the last operation is the output
retrieval which allows to handle the job output (which can also include the copy of the
job output to a Storage Element) through the output-sandbox.

CRAB is used by the user on the User Interface (UI), which is the access point to the Grid and
where is available the client of the middleware. The user interacts with CRAB via a simple
configuration file divided into main sections and then by CLI. In the configuration file there are
all the specific parameters of the task and the jobs; after the user has developed and tested
locally his own analysis code, he specifies which application he wishes to run, the dataset to
analyze and the general requirements on the input dataset as the job splitting parameter, the
information related to how threat the output that can be retrieved back to the UI or can be
directly copied to an existing Storage Element. There are also post-output retrieval operations
that can be executed by the users, which include the data publication that allows to register user
data into a local DBS instance, to consent an easy access on the user-registered data.

CRAB Architecture and Implementation

 The programming language used to develop CRAB is Python[7]. It allows a reduced
development time and an improved maintenance, included the fact that does not need to be
compiled. CRAB can perform three main kinds of job submission where each one is totally
transparent to the user:
 • the direct submission to the Grid interacting directly with the middleware;
 • the direct submission to local resources and relative queues, using the batch system, in a

LFS (Load Sharing Facilities) environment;
 • the submission to the Grid using the CRAB server as a layer where to delegate the

interaction with the middleware and the task/job management.
Actually the major effort of the development activity is devoted to the client-server
implementation. The client is on the User Interface, while the server could be located somewhere
over the Grid. The CRAB client is directly used by the users and it enables to perform the
operations involved in the task/job preparation and creation, as: the data discovery, the input-
sandbox preparation, the job preparation (included the job splitting) and the requirement
definition. Then the client makes a request, completely transparent to the user, to the CRAB
server. This one fulfills each request, handling the task and performing the related flow, in any
kind of Grid interaction:
 • job submission to the Grid;
 • automatic job monitoring;
 • automatic job output retrieval;
 • re-submission of failed jobs, following particular rules for different kinds of job failures;
 • every specific command requested by the user as the job killing;

 • notify the user by e-mail when the task reach a specified level and when it is fully ended
(the output results of each jobs are ready).

This operation partitioning between the client and the server allows to automatize as much as
possible the interaction with the Grid reducing the unnecessary human load, having all possible
actions into the server side (at minimum those on client side), centralizing the Grid interaction
and then allowing to handle every kind of trouble on a unique place. This also permits to
improve the scalability of the whole system.
The communication between the client and the server is on SOAP[8]. Selecting it has some
obvious reasons: it is a de facto standard in the Grid service development community, it uses
HTTP protocol, provides interoperability across institutional and application language. The client
has to assume nothing about the implementation details of the server and vice versa. In this case
the SOAP based communication is developed by using gSOAP[9]. gSOAP provides a cross-
platform development toolkit for developing server and client applications, allowing to not
maintain any custom protocol. It does not require any pre-installed runtime environment, but
using the WSDL (Web Services Description Language) it generates code in ANSI C/C++.

The internal CRAB server architecture
(Figure 3) is based on components
implemented as independent agents
c o m m u n i c a t i n g t h r o u g h a n
asynchronous and persistent message
service (as a publish and subscribe
model)[9] based on a MySQL[10]
database. Each agent takes charge of
specific operations, allowing a modular
approach from a logical point of view.
The actual server implementation
provides the following components:
 • CommandManager: endpoint of
SOAP service that handles commands
sent by the client;
 • CrabWorker: component that performs direct job submission to the Grid;
 • TaskTracking: updates information about tasks under execution polling the database;
 • Notification: notifies the user by e-mail when his task is ended and the output has been

already retrieved; it also notify the server administrator for special warning situation;
 • TaskLifeManager: manages the task life on the server, cleaning ended tasks;
 • JobTracking: tracks the status of every job;
 • GetOutput: retrieves the output of ended jobs;

Figure 3. CRAB Server Architecture

 • JobKiller: when asked kills single or multiple jobs;
 • ErrorHandler: performs a basic error handling that allows to resubmit jobs;
 • RSSFeeder: provides RSS channels to forward information about the server status;
 • AdminComponent: executes specific server maintenance operations.
Many of the above listed components are implemented following a multithreading approach,
using safe connection to the database. This allows to manage many tasks at the same time
shortening and often totally removing the delay time for an single operation that has to be
accomplished on many tasks. The use of threaded components is very important when interacting
with the Grid middleware, where some operation (e.g.: on a bulk of jobs at the same moment)
requires a not unimportant time.
Two important entities in the CRAB server architecture are the WS-Delegation and a specific
area on an existing Storage Element. The WS-Delegation is a compliant service for the user
proxy delegation from the client to the server; this allows to the server to perform each Grid
operation for a given task with the corresponding user proxy. The SE allows to transfer the input/
output-sandboxes between the User Interface and the Grid, working as a sort of drop-box area.
The server has a specific interface made up by a set of API and a core with hierarchical classes
which implement different protocols, allowing to interact transparently with the associated
remote area, independently from the transfer protocol. The ability of the server to potentially
interact with any associated storage server, independently from the protocol, allows to have a
portable and scalable object, where the Storage Element that hosts the job sand-boxes is
completely independent from the server. Then the CRAB server is then really adaptable to
different environments and configurations. It is also complained to have a local disk area
mounted on the local CRAB server instance, with a GridFTP server associated with, to be used
for the sandbox transfers (instead of a remote Storage Element).
The interaction with the Grid is performed using the BossLite framework included in the server
core. This framework can be considered a thin layer between the CRAB server and the Grid,
used to interact with the middleware and to maintain specific information about tasks/jobs.
BossLite is constituted by a set of API that works as an interface to the core. The core of
BossLite maps the database objects (e.g.: task, job) and allows to execute specific Grid
operations over database-loaded objects.

Conclusions

 CRAB is in production since about three years and
is the only computing tool in CMS used by generic
physicist. As it shown in Figure 4 it is widely used inside
the collaboration with more then 600 distinct users from
February 2007 till January 2008 over about 50 distinct Figure 4. Cumulative plot

with distinct CRAB users.

Tier-2 sites involved in the Grid analysis activities. When real data will be available the expected
daily rate of submitted jobs will be of about 100000 jobs per day. The CRAB tool is being
continuously evolving and the actual architecture allows to simply add new components to the
structure to follow the analysis requirements and to support new use cases that will come up.

References
1. The CMS experiment http://cmsdoc.cern.ch

2. The Large Hadron Collider Conceptual Design Report CERN/AC/95-05

3. LCG Project: LCG Technical Design Report,CERN TDR-01 CERN-LHCC-2005-024, June 2005

4. The Open Science Grid project http://www.opensciencegrid.org

5. The CMS Technical Design Report http://cmsdoc.cern.ch/cms/cpt/tdr

6. D.Spiga, S.Lacaprara, W.Bacchi, M.Cinquilli, G.Codispoti, M.Corvo, A.Dorigo, A.Fanfani, F.Fanzago, F.Farina,
M.Merlo, O.Gutsche, L.Servoli, C.Kavka (2007). "The CMS Remote Analysis Builder (CRAB)". LECTURE
NOTES IN COMPUTER SCIENCE. High Performance Computing -HiPC 2007 14th International Conference.
Goa, India. 18-21 Dicembre 2007. vol. 4873, pp. 580-586

7. D.Spiga, S.Lacaprara, W.Bacchi, M.Cinquilli, G.Codispoti, M.Corvo, A.Dorigo, F.Fanzago, F.Farina, O.Gutsche,
C.Kavka, M.Merlo, L.Servoli, A.Fanfani. (2007). "CRAB: the CMS distributed analysis tool development and
design". NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS. Hadron Collider Physics Symposium 07. La
Biodola, Isola d'Elba, Italy. 20-26 Maggio 2007. vol.177-178C, pp. 267-268

8. Python Programming Language http://www.python.org

9. SOAP Messagging Framework http://www.w3.org/TR/soap12-part1

10. The gSOAP Project http://www.cs.fsu.edu/~engelen/soap.html

11. F.Farina, S.Lacaprara, W.Bacchi, M.Cinquilli, G.Codispoti, M.Corvo, A.Dorigo, A.Fanfani, F.Fanzago,
O.Gutsche, C.Kavka, M.Merlo, L.Servoli, D.Spiga (2007). "Status and evolution of CRAB". POS PROCEEDINGS
OF SCIENCE. XI International Workshopon Advanced Computing and Analysis Techniques in Physics Research
07. Amsterdam. 23-27 Aprile 2007. vol. ACAT20, pp. ACAT020

12. MySQL Open Source Database http://www.mysql.com

