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We report on recent Z (+jets) measurements from the Fermilab Tevatron proton anti-proton collider. A new D0

measurement of the transverse momentum of Z bosons yields the best measurement to date of the non-perturbative

form factor, g2. The production of Z+jets is an major background to many rare signals, and is a vital testing ground

for theoretical predictions. Measurements from CDF and D0 of differential cross sections in Z+jet production test

NLO pQCD, and in the case of D0, the latest tree-level matrix element with matched parton shower calculations.

Improving modelling of this signal will impact results from the Fermilab Tevatron and CERN LHC.

1. INTRODUCTION

The production of massive gauge bosons, like the W and Z, are important signals at hadron colliders such as

the Fermilab Tevatron and CERN Large Hadron Collider. The electron and muon decay modes provide distinct

experimental signatures, and can be identified with low backgrounds. Such events can be used as probes of the

underlying QCD, to study the production mechanism of heavy bosons, and the production of additional hard partons

in association with those bosons.

The large samples of the W boson available at the Tevatron are also yielding the most accurate W boson mass

measurements. The majority of W (and Z) bosons are produced with little momentum transverse to the beam

direction (pT ), mostly recoiling against soft gluon emission. Understanding this pT spectrum is important to precision

measurements such as the W boson mass, where there is some ambiguity between the boson pT and the missing

pT due to the unreconstructed neutrino from the W boson decay. This pT distribution is best studied in Z boson

production, where the Z boson (decaying to electron or muon pairs) is fully reconstructed. Theoretically, the low

boson pT region is modelled by gluon re-summation, such as in the BNLY [1] parameterization, which involves three

form factors which must be measured experimentally. One of these factors, g2, can be extracted from the shape of

the Z boson pT distribution. The D0 experiment present a new measurement of g2.

Production of hard partons in association with W and Z bosons results in a complex final state, and one that

is common to many rare signals, such as top decay, associated production of the Higgs boson, and the production

of some super-symmetric particles. In order to search for and study these rare signals under the huge Standard

Model W or Z+jet background, an accurate model of this background is needed. The current theoretical predictions

have reached next-to-leading (NLO) in perturbative QCD (pQCD) for boson + ≤ 2 parton production [2]. For event

generators, the current best approach is to use tree-level matrix element calculations, with matched parton showering

(ME+PS) [3, 4]. As these are leading order matrix element calculations, they suffer significant scale uncertainties

and must be tuned to reproduce real data. Both the CDF and D0 experiments present measurements of differential

cross sections in Z/γ∗+jet(s) production and test NLO pQCD, and in the case of D0, also test the ME+PS event

generators.

2. TRANSVERSE MOMENTUM OF THE Z BOSON AND g2

Previously, D0 measured the cross section for Z/γ∗ production, differential in Z/γ∗ pT [5]. The measurement

was made using approximately 1.0 fb−1 of integrated luminosity, looking at the Z → ee mode by selecting events

containing two electron candidates reconstructed in either the central calorimeter (|η| < 1.1, where η = −ln(tan(θ/2)),

and θ is the polar angle measured with respect to the proton beam direction), or the forward calorimeters (1.5 <

|η| < 3.2). Electrons are required to have pT > 25 GeV, and the di-electron mass lie between 70 – 110 GeV, consistent

with the Z boson.
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Figure 1: Comparing the corrected Z/γ∗ pT distribution (left), and aT at detector level (right) with theory.

NNLO predictions [6] are compared to measured differential cross section at high Z/γ∗ pT , and found to describe

the shape well, but need a scale factor of 1.25 to match the normalization (see figure 1). The prediction of resbos [7],

which contains the gluon re-summation parameterization, describes the data well at low Z/γ∗ pT , with an optimal

value of g2 = 0.77 ± 0.06, limited by experimental resolution. Bosons produced at high rapidities (y) are expected

to be sensitive to the “small-x broadening” effect [8]. Studying the pT distribution of Z bosons with |y| > 2 shows a

slight preference for the prediction without small-x broadening, but the measurement is limited again by experimental

resolution.

To improve these results, D0 have adopted a new variable. After reconstructing the leptons from the Z/γ∗ decay,

the thrust axis is calculated, and the Z/γ∗ pT decomposed into a component parallel to the thrust axis (aL), and a

component perpendicular (aT ). The variable aT is largely insensitive to detector resolution, and is used to extract

a more precise measurement of g2. The measurement uses approximately 2.0 fb−1 of integrated luminosity, and

combines both electron and muon channels, with muons required to have |η| < 2 and pT > 15 GeV. The preliminary

result presented is not fully corrected for experimental resolution and acceptance, so cannot be directly compared

to resbos to extract g2. Instead, resbos samples are generated in with various g2 values, then samples of pythia

with full detector simulation are re-weighted to match the resbos predictions. These pythia samples are fitted to

the data (see Figure 1 for one such fit), and extrapolating between them yields the best fit of g2 = 0.63± 0.02± 0.04,

where the first uncertainty is experimental and statistics dominated, and the second uncertainty come from the PDF

(cteq6.6 [9]). This is of comparable accuracy to the current world average, g2 = 0.68+0.02
−0.01, and will improve with

increased statistics.

3. Z+JET PRODUCTION

Both CDF and D0 have studied the production of Z/γ∗ in association with jets. CDF study the electron Z/γ∗ decay

mode, selecting two electrons with ET < 25, one electron with |η| < 1.0, the other with |η| < 1.0 or 1.2 < |η| < 2.8, and

a di-electron mass between 66 and 116 GeV. To reduce backgrounds from jets mis-reconstructed as electrons and from

semi-leptonic decays, electrons are required to be isolated from any hadronic activity in the form of charged tracks

or energy in calorimeter cells. D0 look at the muon mode, selecting two muons with opposite charge, pT > 15 GeV,

|η| < 1.7, again with isolation requirements to reduce backgrounds to negligible levels. Both experiments use a seeded

mid-point cone jet reconstruction algorithm, though with some technical differences [10, 11]. CDF use a cone size of
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Figure 2: Jet yields (left) and pT distributions (right) in Z/γ∗ events from CDF.

0.7 to reconstruct jets, requiring those jets to have |η| < 2.1 and pT > 30 GeV. D0 use 0.5 for the cone size, requiring

jets to have pT > 20 GeV, and |y| < 2.8.

The main challenge in extracting differential cross sections from Z/γ∗+jet distributions is the understanding of the

experimental resolution, particularly for jets. Both experiments have put a great deal of effort into understanding

the jet energy scale and resolution, but these still dominate the systematic uncertainties on these measurements. The

experiments use different techniques to correct for the effects of resolution on the distributions, but in both cases the

resulting method systematics are small.

CDF present an updated result using more integrated luminosity (2.5 fb−1) than an earlier publication [12], and

have measured the yields for one, two and three jets in Z/γ∗ events, and cross sections differential in inclusive jet pT

and inclusive jet rapidity, for events containing at least one and at least two jets. The jet yields and the pT results are

shown in Figure 2. Leading order (LO) and NLO pQCD predictions from mcfm are compared to the measurements,

after applying non-perturbative corrections derived from an event sample generated with pythia [13], which take

the parton-level NLO pQCD prediction to the particle level. The resulting distributions agree with the data.

D0 have measured the cross section for Z/γ∗+jet+X production, differential in the leading jet pT and rapidity,

and the Z/γ∗ pT and rapidity [14]. Again, NLO pQCD predictions with non-perturbative corrections applied are

compared to the measured cross sections and show good agreement, except at low Z/γ∗ pT where non-perturbative

processes dominate and the prediction is not shown. Additionally, the predictions from three event generators are

compared: i) alpgen, a ME+PS generator, using pythia for the showering; ii) sherpa, also a ME+PS generator;

iii) pythia, with all jets coming from the parton shower. All generators show significant normalization differences

to the data, and the shapes are best described by alpgen. However, the low Z/γ∗ pT region, which is particularly

sensitive to the description of jets coming from the underlying event, is not well described, and the jet rapidity

distribution predicted by alpgen appears too narrow. These distributions can be seen in figure 3

With more luminosity these results can be extended, placing tighter constraints on the high pT tails, and on higher
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Figure 3: Z/γ∗ pT in events with at least one jet (left), and jet rapidity in Z/γ∗ events (right) from D0.

jet multiplicities. These are important measurements, testing NLO pQCD, and the modelling of these complex final

states by event generators. Understanding these processes is vital to the sensitivity to new physics at the Tevatron

and LHC.
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