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Abstract. We consider the example of neutrino decays to illustrate the profound relation
between laboratory neutrino physics and cosmology. Two case studies are presented: In the
first one, we show how the high precision cosmic microwave background spectral data collected
by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly
changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the
consequence for neutrino physics of the cosmological detection of neutrino masses even as small
as ∼0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that
a detection at that level would improve by many orders of magnitude the existing limits on
neutrino lifetime, and as a consequence on some models of neutrino secret interactions.
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1. Introduction

Historically, there has been a deep relation between neutrino physics and cosmology: the bounds
on the number of generations from primordial nucleosynthesis, the neutrinos as dark matter
candidates (and their effect on structure formation), or their masses as related to the origin of
baryon asymmetry represent well known examples of this link. Here we take the example of
neutrino decays to illustrate the interplay of the Lab and Cosmology in the neutrino sector with
two case studies: In the first case, we show how the high precision cosmic microwave background
spectral data collected by the FIRAS instrument on board of COBE, when combined with
data from neutrino oscillation experiments and direct bounds on absolute masses, have greatly
improved the bounds on the radiative neutrino lifetime. The relevant formalism is summarized
in Sec. 2, while in Sec. 3 we present the bounds obtained. In the second case, presented in Sec. 4,
we speculate on the consequence for neutrino physics of the cosmological detection of neutrino
masses even as small as ∼0.06 eV, the lower limit guaranteed by neutrino oscillation experiments.
We show that a detection at that level would improve by many orders of magnitude the existing
limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-
)massless particles as in majoron models. In Sec. 5 we present our conclusions. For details on
the two cases see respectively [1] and [2], on which this article is mostly based.

2. Radiative neutrino decays

Traditionally, constraints on neutrino radiative lifetime coming from cosmology were based on
the diffuse Cosmic Infrared Background (CIB) and assumed strongly hierarchical masses in the
eV range [3, 4]. These constraints are now outdated and strictly speaking inapplicable. The
neutrino mass splittings squared provided by oscillation experiments and present upper bounds
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on the neutrino mass scale constrain neutrino mass differences to fall in the microwave energy
range (E ∼ 10−3 eV), in most of the allowed parameter space. This implies that current bounds
can take advantage of the high precision cosmic microwave background (CMB) data collected by
the FIRAS instrument on board of COBE, which tested the blackbody nature of the spectrum
at better than 1 part in 104 [5, 6].

Let us denote by νi the neutrino fields respectively of masses mi, where i = 1, 2, 3. The
radiative decay νi → νj +γ can be thought of as arising from an effective interaction Lagrangian
of the form

Lint =
1

2
ν̄iσαβ(µij + ǫijγ5)ν

jFαβ + h.c. (1)

where Fαβ is the electromagnetic field tensor, σαβ = [γα, γβ ] where γµ are the Dirac-matrices
and [. , .] is the commutator and µij and ǫij are the magnetic and electric transition moments
usually expressed in units of the Bohr magneton µB. The convention to sum over repeated
indices is used. In general, µij and ǫij are functions of the transferred momentum squared q2,
so that constraints obtained at a different q2 are independent. The radiative decay rate for a
transition i → j is written
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In the following, we shall assume that the radiative decay rate is very low compared with
the expansion rate of the universe; neither the cosmological evolution or the primordial neutrino
spectrum is affected by the additional coupling we are going to introduce. A posteriori, this is
known to be an excellent approximation. For the same reason, we shall also neglect “multiple
decays”. We shall take our input data for neutrino mass eigenstate densities from the calculation
performed in [7] without any extra parameter, as non-vanishing chemical potentials. With
present data, the latter are anyway constrained to be well below O(1) [8], so dropping this
assumption would not change much our conclusions.

From simple kinematical considerations it follows that in a decay νi → νj + γ from a state
of mass mi into one of mass mj < mi, the photon in the rest frame of the decaying neutrinos is
thus monochromatic (two-body decay), with an energy

εij =
m2

i − m2
j

2mi
. (2)

At present, the neutrino mass spectrum is constrained by the well-known values of the two
squared mass splittings for the atmospheric (∆m2

H) and the solar (∆m2
L) neutrino problems.

We take their best-fit values and 2σ ranges from [9], ∆m2
L = 7.92 (1 ± 0.09) × 10−5 eV2,

∆m2
H = 2.6 (1+0.14

−0.15) × 10−3 eV2 . The remaining unknowns in the neutrino spectrum
are the absolute mass scale (equivalently, the mass of the lightest eigenstate m1) and the
mass hierarchy. Namely, in normal hierarchy (NH) the mass pattern would be {m1 ,m2 =
√

m2
1 + ∆m2

L ,m3 =
√

m2
1 + ∆m2

L + ∆m2
H } while in inverted hierarchy (IH) one would have

{m1,m2 =
√

m2
1 + ∆m2

H ,m3 =
√

m2
1 + ∆m2

L + ∆m2
H} .

In the limiting case of normal hierarchy and m1 = 0, the lightest neutrino for which a
decay is possible has a mass m2 ≃ 9 × 10−3 eV and is non-relativistic for most of the universe
lifetime, namely in the redshift range z <∼ 50. We can thus safely work in the approximation
of all neutrinos decaying effectively at rest. In this limit, we can also neglect the momentum
distribution of the neutrino spectra. We shall vary the mass scale in 0 <∼ m1 <∼ 2 eV as allowed
by the Mainz experiment on the 3H beta decay endpoint [10].



Figure 1. Unredshifted photon energy ε from decaying neutrinos [Eq. (2)] as a function of the
lightest neutrino mass eigenstate m1, for the two neutrino mass splittings (L,H) in normal and
inverted hierarchy (see text for details). The horizontal band represents the energy range of the
CMB spectrum measured by FIRAS [5]. The CIB energy range is also shown.

Let FE be the present energy flux of photons with present energy E produced in the decay.
The differential energy flux ϕE (energy flux FE per unit energy and solid angle) is related to the
differential number flux ϕn (the particle flux Fn per unit energy and solid angle) at present by

ϕE ≡
d2FE

dE dΩ
= E

d2Fn

dE dΩ
≡ E ϕn, (3)

and it can be shown that, if the lifetime τi of the neutrino of mass mi is much greater than the
universe lifetime it holds [11]

ϕE =
Γγ

32
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where ni ≃ 113 cm−3 is the present number density of the i−th neutrino in absence of decay, the
Hubble function is (assuming, for simplicity, a flat cosmology) H(z) = H0

√

ΩM (1 + z)3 + ΩΛ,
H0 ≃ 73 km s−1 Mpc−1 being the present Hubble expansion rate, and ΩM ≃ 0.26 and ΩΛ ≃ 0.74
respectively the matter and the cosmological constant energy density relative to the critical one.
The dependence on energy enters implicitly via the quantities 0 ≤ zij = εij/E − 1.

In practice, to a very good approximation one can write a general equation of the kind

ϕE =
Γγ

H

4π

nH
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+

Γγ
L

4π

nL

H(zL)
, (5)

where the meaning of the factors however depends on the hierarchy. In NH, in the first two
terms of the sum in Eq. (4) it holds z32 ≃ z31 ≡ zH , and one can identify zL = z21, Γγ

L = Γγ
21,

Γγ
H = Γγ

31 +Γγ
32. In IH, it is the last two terms of the sum in Eq. (4) which have z31 ≃ z21 ≡ zH ,

and using n2 ≃ n3 one can identify zL = z32, Γγ
L = Γγ

32, Γγ
H ≡ Γγ

31 + Γγ
21.

In Fig. 1 we represent the unredshifted photon energy εij from decaying neutrinos [Eq. (2)]
as a function of the lightest neutrino mass eigenstate m1 in the case of normal and inverted
hierarchy, where the meaning of εL,H is clear from the previous discussion. We also indicate by
an horizontal band the energy range of the CMB spectrum (2.84×10−4 eV ≤ E ≤ 2.65×10−3 eV)
measured by FIRAS [5]. We also show the CIB range in the energy band above the FIRAS range
up to (conventionally) 0.15 eV [12]. For m1 <∼ 0.5 eV, εH falls in the CIB range.



Figure 2. Bounds on τH and τL vs. m1, for the two cases of NH and IH. The regions below
the solid curves are excluded at 95 % C.L. The NH and IH curves for τH coincide, although the
definition of τH is different (see text). The dot-dashed line is the limit obtained from the CIB.

For photons emitted at z = 0 in the FIRAS range, the effect of radiative decays is most
prominent and results in a feature on the CMB spectrum. Actually even if photons are emitted
at higher energy the effect is still strong, since photons emitted at a redshift of a few enter the
FIRAS spectrum because of cosmological redshift; it is easy to check that one has thus some
sensitivity to κH in the whole range for m1. On the other hand, for m1 >∼ 0.14 eV the photons
corresponding to the smaller splitting are falling in the radio band, below the frequency range
probed by COBE, where measurements are more uncertain and thus one has no sensitivity to
κL and the corresponding bound disappears.

3. The radiative decay bound

To constrain the neutrino electromagnetic decay we use the COBE/FIRAS data for the
experimentally measured CMB spectrum, corrected for foregrounds [5, 6]. The N = 43 data
points Φexp

i at different energies Ei are obtained by summing the best-fit blackbody spectrum
to the residuals reported in Ref. [5]. The experimental errors σi and the correlation indices
ρij between different energies are also available. In the presence of neutrino decay, the original
radiance of the “theoretical blackbody” at temperature T

Φ0(E,T ) =
E3

4π3
[ exp(E/T ) − 1]−1 (6)

would gain an additional term so that the intensity becomes

Φ0(E,T ) → Φ(E,T, κ2
L,H ,m1) = Φ0(E,T ) + ϕE(κ2

L,H ,m1).

The bound are derived via a χ2 technique, taking into account the covariance matrix of the
data points and leaving the parameter T entering initially in Φ0(E,T ) free. Indeed, it needs not
to be fixed at the standard value T0 = 2.725±0.002 K [6], which is the best fit of the “distorted”
spectrum eventually observed now, but is left to be determined in the minimization procedure.



In Fig. 2 we report the exclusion plot in the plane τL,H ≡ (Γγ
H,L)−1 vs. m1, where the regions

below the solid curves are excluded at 95 % C.L. For small values of m1 the most stringent limit
is τL >∼ 4 × 1020 s in IH (slightly better than in NH case), while the bound on τH is about an
order of magnitude smaller, say τH >∼ 2× 1019 s, since for low m1 only photons produced by H
decays at a redshift of few are in FIRAS range. On the contrary, for m1 >∼ 0.14 eV, the bound
on τL disappears, while the bound on τH becomes more stringent, being τH >∼ 5 × 1020 s. The
“fuzzy” behaviour of the bounds is due to the sharp edge of the photon spectrum at E = εH,L:
when the photon energy embeds a new FIRAS bin, the χ2 function has a sharp discontinuity.
If one translates the bounds of Fig. 2 into bounds on κL,H , the factor (δm2

ij/mi)
3 plays a

significant role. For the NH case, κL <∼ 3× 10−8 µB, while in the IH case, κL <∼ 3× 10−7 µB . In
agreement with our previous considerations, the bound on κL disappears for m1 >∼ 0.14 eV. On
the contrary, the bound for κH is always present, and it corresponds to κH <∼ 8× 10−9 µB apart
for the degenerate region, where it degrades down to 10−7 µB or even more.

It is worth noting that an improved bound on τH for low m1 can be obtained from observations
of the CIB, which differently from the CMB does not origin in the early universe, being rather
the relic emission of all the galaxies at wavelengths larger than a few microns. Recently, a new
estimate of the CIB flux has been established using the Spitzer Observatory data [12]. Using
this determination one can obtain a rough bound on τH simply requiring that the total energy
flux of the photons coming from ν decay does not exceed the CIB flux:

∫ εH

Emin

ϕE dE < ΦCIB ∼ 24 nW m−2 sr−1 , (7)

where we consider as lower limit of the CIB range the upper value of the FIRAS range, i.e.
Emin = 2.65×10−3 eV. The bounds on τH from Eq. (7) is shown in Fig. 2 by the dot-dashed line.
Although this bound is stronger than those obtained by the FIRAS data in the same range of
m1, we emphasize that it should be considered only as indicative, due to the larger uncertainties
in the CIB normalization and spectral shape. Interestingly, if it turns out that m1 <∼ 0.1 eV, an
improvement on the bound on τH will clearly take advantage of a better measurement of the
CIB flux and a more detailed knowledge of the astrophysical sources contributing to it.

4. Invisible decays and secret neutrino interactions

Recent years have seen an impressive improvement on the cosmological constraints to the sum
of neutrino masses Σ =

∑

mi (for reviews see [13, 14]), with current limit from CMB only at
the level of 1.3 eV [15], while combinations of different datasets produce bounds below 1 eV,
with the most aggressive bounds (but also the most fragile ones with respect to unaccounted
systematics) already at Σ <∼ 0.2 eV, 95% C.L. [16, 17]. Several forecast analyses suggest that
cosmological probes will reach in the future an incredible sensitivity to the effects of even a tiny
mass of the cosmic background neutrinos. In particular, cosmic microwave background (CMB)
lensing extraction may be sensitive to Σ ≃ 0.035 eV [18]; CMB plus weak galaxy lensing with
tomography may also push the sensitivity to Σ below the level of ∼ 0.05 eV [19, 20], with an
error as low as ∼ 0.013 eV [19]. Also galaxy cluster surveys may probe Σ down to ∼ 0.03 eV
[21], and a sensitivity down to 0.05 ± 0.015 eV may be reached combining CMB with the data
from the Square Kilometre Array survey of large scale structures [22]. These forecasts show that
cosmology has a potential sensitivity to neutrino masses well below the 0.1 eV level. Of course,
the ultimate level of the systematics to beat has yet to be reliably established. On the other
hand, the synergy between different strategies and probes may help to identify the systematics,
and also to improve over the above-mentioned figures of merit.

The interest of these expectations relies on the fact that neutrino oscillation data imply
Σ >∼ 0.06 eV, where the minimum Σ ≃ 0.061 ± 0.004 eV is attained for a normal hierarchy (NH;
values quoted at 2 σ, see [17]). For the case of an inverted mass hierarchy (IH), the oscillation



data imply Σ ≃ 0.1 eV. The following arguments assume that neutrinos have a hierarchical
spectrum of either inverted or normal sign, as favored by many theoretical models, including
the simplest seesaw ones. We argue that, if a positive cosmological mass detection is achieved as
expected, one will be able to put a remarkably strong constraint on the neutrino lifetime. Note
that previous attention has been paid to the cosmological signatures of decaying neutrinos [23].
Yet the mass range explored in those papers is very large compared to present bounds, and the
main signature considered was the impact on the integrated Sachs-Wolfe effect on the CMB.
In our considerations, the bound comes from the impact that massive neutrinos have in the
background evolution of the universe, in a range of masses where they are relativistic well after
the CMB decoupling.

Bounds on neutrino lifetimes are usually quoted in terms of the rest-frame lifetime to mass
ratio τ/m. Given a measurement in the time interval t using neutrinos with Lab energy E, the
naive bound which one can put is τ/m >∼ t/E. Using then the longest timescale available, the

universe lifetime t0 ≃ H−1
0 (where H0 is the Hubble constant), and the lowest energy neutrinos,

the ones of the cosmic background which are at least partially non-relativistic, a bound of the
order of (m50 ≡ m/50meV)

τ

m
>∼

1

m H0

≃ 1019 m−1
50 s/eV , (8)

is the strongest constraint attainable in principle. This is to be compared with the strongest
direct bound available at present given by the observation of solar MeV neutrinos, of the order
of ∼ 10−4 s/eV [24]. A bound of the order of τ/m >∼ 4 × 1011m2

50 s/eV, has been claimed to
follow already from the requirement that the neutrinos are free-streaming at the time of the
photon decoupling, as deduced by precise measurements of the CMB acoustic peaks [25]. Yet,
the robustness of this conclusion has been questioned in [26]. We shall see that the proposed
bound based on cosmological neutrino mass detection would be much closer to the maximal
theoretical bound of Eq. (8), thus superseding by several orders of magnitude the previous
ones. More importantly, it is not based on a model for secret neutrino interactions, but on the
“observation” of neutrino survival, and it applies whatever the final state light particles are.

Let us define the fraction of matter energy density in neutrinos as fν ≡ ρν/(ρm + ρν), where
ρm is the average cold dark matter (CDM) plus baryon density, and ρν is the neutrino energy
density. Keeping e.g. ρm + ρν constant, a non-vanishing fν today would change the redshift of
matter radiation equality zeq with respect to the massless neutrino case, as well as attenuate the
growth of structures. The combined effect of the shift in the time of equality and of the reduced
CDM fluctuation growth during matter domination produces an attenuation of perturbations for
modes k > knr, where knr is the minimum of the comoving free-streaming wavenumber attained
when neutrinos turn non-relativistic, and given by [13]

knr ≃ 1.5 × 10−3m
1/2
50 Mpc−1. (9)

An instantaneous decay of the massive neutrinos at a redshift zd in the matter era can be thought
as replacing the neutrino fluid with one having the same energy content at zd, but whose energy
density scales from that moment on as (1+ z)4, since the daughter particles are relativistic. Let
us estimate how large a value of zd, or equivalently of the proper time td(= τ if the neutrino
is non-relativistic), can be probed cosmologically. Quickly after the neutrino decay one has
formally fν → 0, provided that td ≪ t0 ≃ H−1

0 ; from that moment on, the cosmological effects
of the decaying neutrino scenario are analogous to the ones of a massless neutrino universe.
The condition td ≪ t0 is required by the fact that when td → t0, the radiation content of the
relativistic daughters of the massive neutrino has no time to decline to zero with respect to
the matter density. This condition is necessary to change appreciably the energy budget of the
universe, thus affecting the predicted growth of the structures and the time of equality with



respect to a massive neutrino scenario. Clearly, for a given sensitivity to the effect of neutrino
masses there is a maximum value tmax

d which would result in a detectable change of cosmological
observables. A precise estimate of this parameter would imply a detailed forecast analysis,
which goes beyond the purpose of this paper. Yet, a simple argument shows that, relying on
the existing forecasts, a conservative lower limit is tmax

d
>∼ tnr, where tnr is the epoch at which

the heavier neutrinos become non-relativistic, whose redshift is defined by m = 3Tν,0(1 + znr),
Tν,0 being the present temperature of the neutrino gas. Indeed, when the decay epoch satisfies
td <∼ tnr, the energy content of the products is the same of a relativistic neutrino fluid, and it
redshifts the same way. So, all physical effects of this scenario are basically the same of the case
where neutrinos are massless. In Fig. 3, from top to bottom as seen from the left side of the
plot, we show fν(z) for the following cases: (i) a massive neutrino cosmology, where we assume
an IH neutrino mass pattern and the lightest neutrino is massless; (ii) as in (i), but for NH; (iii)
a decaying neutrino cosmology, where massive neutrinos have IH; (iv) as in (iii), but for NH; (v)
a massless neutrino cosmology. For the decaying cases, we assume that all massive neutrinos
decay at td = tnr, where tnr is the time of non-relativistic transition of the heaviest neutrino
state (m ≃ 0.05 eV) . For simplicity we have assumed a matter-dominated cosmology with the
matter density parameter Ωm = 0.24 and the reduced Hubble constant h = 0.73 [27].

Clearly, the cases (iii), (iv), and (v) are very similar (exactly degenerate if td ≪ tnr) and, as
long as td <∼ tnr, if the massless neutrino case can be disproved, the decaying neutrino bound
immediately follows. The improvement in the bound on the neutrino lifetime is tremendous. In
particular, neutrinos turn non-relativistic at znr ≃ m/3Tν,0 ≃ 100m50, i.e. when the universe

has about (100m50)
−3/2 ∼ 10−3m

−3/2
50 of its present age, and the bound is about 10−3m

−3/2
50 of

the maximum attainable limit reported in Eq. (8),

τ

m
>∼ 1016 m

−5/2
50 s/eV . (10)

Obviously, the previous argument does not exclude that an accurate forecast analysis may reveal
a sensitivity to a somewhat larger tmax

d . Note also that we do not require that cosmological data
need to distinguish between NH and IH: if future observations will suggest e.g. Σ = 0.08 eV
with a 1σ error of 0.02 eV, the two neutrino mass patterns would be both consistent within 1 σ
with the best fit, yet a complete decay of neutrinos into relativistic particles with lifetime lower
than the value reported in Eq. (10) could be excluded at 4σ. Of course, for a given cosmological
sensitivity, the significance of the above bound increases if the inverted hierarchy is realized in
nature: in that case Σ ≃ 0.1 eV holds, and the cosmological effects of neutrino masses are larger.
Note that accelerator neutrino experiments, magnetized detectors of atmospheric neutrinos,
direct mass searches, and the serendipitous observation of neutrinos from a galactic supernova
may all be used to determine the mass hierarchy. It is thus possible that by the time cosmology
will be sensitive to Σ <∼ 0.1 eV, the hierarchy information may be available independently.

To appreciate how strong the bound of Eq. (10) would be, let us consider a model of a “secret”
neutrino interaction with a (quasi-)massless majoron field φ of the kind L = g ν̄iνjφ+ h.c, i, j
labeling different mass eigenstates. The total decay rate for a hierarchical neutrino mass pattern
and summing over neutrino and antineutrino final state channels is [24, 25]

Γd = t−1
d =

g2

16π
m . (11)

This holds in the neutrino rest frame, but in our case this is also the Lab decay width, give or
take a factor O(1), since the neutrino is just turning non-relativistic. The constraint of Eq. (10)
leads to the stringent bound

g <∼ 4 × 10−14 m
1/4
50 . (12)



Figure 3. The function fν(z) for the relevant cosmological cases considered in the text.

This has to be compared with traditional bounds found in the literature in the range
g <∼ 10−4 ÷ 10−5 (see e.g. [28]). Even the extremely stringent bound reported in [25] is more
than two orders of magnitude weaker. Note that the tiny couplings which may induce the decay
are not sufficient to thermalize extra degrees of freedom in the early universe. So, this model
does not predict departure from the standard expectation for the effective number of neutrinos
Neff which can be consistently fixed in deriving the bound.

5. Discussion and Conclusions

In this paper, we have revisited the bound on the neutrino radiative lifetime coming from
cosmology, deriving updated constraints from the high precision CMB spectrum data collected
by the FIRAS instrument on board of COBE, within the presently allowed range of mass
parameters suggested by neutrino oscillation physics and tritium endpoint experiments. The
updated bounds are reported in Fig. 2. The improvement over pre-existing bounds depends
both on narrowing the uncertainty on the neutrino mass spectrum and on the observational test
of the blackbody nature of the spectrum at better than 1 part in 104 [5, 6]. This provides and
explicit example of the continuing interplay of Lab neutrino experiments and cosmology.

Looking at the future, it is very interesting that current forecast analyses suggest that fu-
ture cosmological surveys may attain the sensitivity to detect the effects of a sum of neutrino
masses as small as ∼0.06 eV, the lower limit predicted by oscillation data. Provided that the
systematics can be controlled to that level, we have discussed in this paper how such a detec-
tion would have profound consequences for the particle physics of the neutrino sector, besides
providing a way to measure the absolute neutrino mass scale. In particular, when taking into
account the expectations from the Lab, excluding the Σ = 0 case would improve by many or-
ders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino
secret interactions with (quasi-)massless particles as in majoron models. Strictly speaking these
bounds apply to the heaviest (or the two heaviest, in IH) mass eigenstate, but naturaleness and
phase-space considerations suggest that the lifetime of the lightest state(s) is longer, and its
coupling with a majoron field weaker, than for the heavier one(s). It also applies to any possible
invisible decay channel, provided that the total mass of the final state particles is much smaller



than Σ. In particular, this bound applies to 3-ν final state decays νi → ν̄jνjνk, as well as to
decays νi → νj + φ in majoron-like models. We think that this idea summarized here provides
another beautiful example of interplay between particle physics and cosmological arguments and
motivates further the efforts to fully exploit the potential of future cosmological surveys.
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