
P
o
S
(
A
C
A
T
)
0
4
2

New Developments of ROOT Mathematical Software
Libraries

L. Moneta∗
CERN, Geneva, Switzerland
E-mail: Lorenzo.Moneta@cern.ch

I. Antcheva
CERN, Geneva, Switzerland
E-mail: Ilka.Antcheva@cern.ch

A. Kreshuk
CERN, Geneva, Switzerland
E-mail: Anna.Kreshuk@cern.ch

W. Brown, M. Fischler, J. Marraffino

FNAL, Batavia, IL 60510, USA

LHC experiments obtain needed mathematical and statistical computational methods via the co-

herent set of C++ libraries provided by the Math work package of the ROOT project. The new

recent developments of this work package are presented. These developments include a new core

library, MathCore, which has been developed as a self contained component encompassing ba-

sic mathematical functionality, MathMore providing a complementary and expanded set of C++

mathematical functions and algorithms based on a GNU Scientific Library, and SMatrix, a new

liner algebra package optimized for small size matrices. An overview of the ROOT Mathemat-

ical libraries describing in greater detail the functionality and design of the packages recently

introduced in ROOT is shown.

XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research
April 23-27 2007
Amsterdam, the Netherlands

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

FERMILAB-PUB-07-766-CD



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

1. Introduction

Figure 1: New ROOT Math Components

The ROOT MATH work package is responsible to provide and to support a coherent set of
mathematical and statical libraries required for simulation, reconstruction and analysis of high
energy physics data. Existing libraries provided by ROOT are being re-organized in a new set of
mathematical libraries with the aim to avoid duplication and to facilitate support in the long term.
The new structure, shown in figure 1, consists of these main components:

• MathCore: a self-consistent minimal set of mathematical functions and C++ classes for the
basic needs of HEP numerical computing. It is released as an independent library.

• MathMore: a package incorporating functionality which might be needed for an advanced
user (as opposed to MathCore which addresses the primary needs of users).

• Linear Algebra: classes describing vector and matrix in arbitrary dimensions and of various
types. Two linear algebra libraries exist: a general matrix package completed with linear
algebra algorithms and SMatrix, a dedicated package for small and fixed size matrices.

• Fitting and minimization: classes implementing various types of fitting methods, including
the newly added linear and robust fitters and set of libraries for different function minimiza-
tion algorithms like Minuit [1] and Fumili [2], which can be loaded at run time by using the
plug-in manager system.

• Histogram library: classes for one, two and three dimensional histograms and profiles.

2



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

• Statistical libraries: various libraries grouping the various statistical algorithms of ROOT
like neural networks or boost decision trees for multivariate analysis which are provided by
the TMVA library, or classes for computing confidence levels and significances for discov-
eries. Some of the algorithms are already present in ROOT, but we expect in the future to
group together in a new set of coherent libraries.

In the following sections a detailed description is given for those components, which have
been recently developed and are now integrated inside ROOT.

2. MathCore

MathCore provides the basic and most used mathematical functionality. It is an self-consistent
component which can be released as an independent library and used outside of the ROOT frame-
work. MathCore consists up to now of:

• commonly used special functions like the Gamma, Beta and Error function

• mathematical functions used in statistics such as probability density functions for the major
distributions (normal, poisson, binomial, breit-wigner, etc..)

• the physics and geometry vector package containing classes for specialized vectors in 3D
and 4D and their operations

In the near future, it is planned to include in MathCore classes for random number generation
(TRandom), some additional mathematical functions provided by the existing TMath and numer-
ical algorithms such as numerical integrations which are currently provided by the TF1 class.

2.1 Mathematical functions

The special functions in MathCore (and MathMore) are implemented following the same
naming scheme proposed as next extension of the C++ Standard Library (see C++ extension pro-
posal [3]). Extensive tests of these newly introduced mathematical functions have been performed
by comparing the numerical results obtained with the functions from other packages like Mathe-
matica or Nag [4]. Often an accuracy at the level of 10−16 (double numerical accuracy) is reached
for functions such as the Gamma and the Error function, improving with respect to the functions
previously present in ROOT TMath.

All the major statistical functions are also provided with a coherent naming scheme. For each
statistical function, it is provided the probability density function (with suffix _pdf ), the cumula-
tive distribution function (with suffix _cdf ), the complement of the cdf (with suffix _cdf_c), the
quantile function (inverse of the cdf, with suffix _quantile) and the inverse of the complement
of the cdf (with suffix _quantile_c).

2.2 Physics and Geometry Vector package

This new package, called GenVector, is intended to represent vectors and their operations and
transformations, such as rotations and Lorentz transformations, in 2, 3 and 4 dimensions. The 2D
and 3D space are used to describe the geometry vectors and points, while the 4D space-time is used

3



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

for physics vectors representing relativistic particles. It has been developed in collaboration with
the Fermilab Computing group.

Class templates are provided for modeling the 3D and 4D vectors. There is a user-controlled
freedom on how the vector is internally represented. This is expressed by a choice of coordinate
system which is supplied as a template prameter when the vector is constructed. A coordinate
system can be one of several choices (Cartesian, Polar, Cylindrical and so forth). There is a further
degree of control: each coordinate system is itself a template so that the user can specify the
underlying scalar type.

The transformations are modeled by simple (non-template) classes, using double as the scalar-
type. For the purposes of understanding the classes available, the transformations are grouped in:
Rotations (in two and three dimensions), Lorentz transformations, and Poincare transformations,
which are Translation/Rotation combinations. Each group has several members, which may model
physically equivalent transformations but with different internal representations For example, a
Rotation may be kept as a 3x3 matrix (class Rotation3D) or as an axis and angle of rotation
(AxisAngle), or as 3 Euler angles (EulerAngles), or as a Quaternion.

For the 3D vectors two different classes exist: the DisplacementVector3D template class
to model an abstract 3-component direction-and-magnitude vector, not rooted at any particular
point, and the PositionVector3D template class to model a point in the 3D space. The two
classes behave differently to the transformations, for example the PositionVector3D rotates
and translates while the DisplacementVector3D only rotates. Equivalent classes exist also
for the 2D vectors.

In order to minimize any overhead in the run-time performances, as much as possible of all the
functions are inlined and the classes don’t have any virtual function and even virtual destructors.
Furthermore, users can also obtain optimal run-time performances, by choosing the best coordinate
system for basing the vectors. For example, an analysis which requires to evaluate the differences in
the azimuthal anghle Φ and pseudo-rapidity η between vectors, will profit from basing the vectors
on a Cylindrical-Eta based coordinate system. Examples of performances obtained using vector
based on two different coordinate system are shown in figure 2.

2.3 Random Numbers

In ROOT pseudo-random numbers can be generated using the TRandom classes. The classes
have been recently improved by replacing some obsolete generators. Currently, the following four
pseudo-random number generators are included in ROOT:

• Mersenne and Twister generator [5] provided by the class TRandom3. This is the default
generator in ROOT and the recommended one for the very good random propriety and its
speed. It can also be seeded automatically using a 128 bbit UUID number in order to generate
independent and streams of random numbers.

• RanLux generator [6] provided by the class TRandom1.

• Tausworhte generator [7] from L’Ecuyer provided by the class TRandom2. This generatos
has the advantage to use only 3 words of 32 bits for the state.

4



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

Figure 2: CPU time obtained using TLorentzVector and the new LorentzVector’s based on Cartesian
(XYZVector) and on Cylindrical-Eta (PtEtaPhiVector coordinates).

• Linear Congruential Generator provided directly in the base class TRandom. This generator
has a state of only 32 bits and therefore a very short period and should not be used in any
statistical application.

Random Number Generator Intel 32 Intel 64
MT (TRandom3) 22 ns 9 ns
TausWorthe (TRandom2) 17 ns 6 ns
RanLux (TRandom1) 120 ns 98 ns
LCG (TRandom) 14 ns 5 ns

Table 1: CPU time (in nanoseconds) for generating one pseudo-random number on a Linux box with the 32
or 64 bit architecture running CERN Scientific Linux 4 and using the GNU gcc version 3.4 compiler

The CPU time for generating a pseudo-random number using the 4 generators are shown in
table 2.3. The base class TRandom implements as well methods for generating random numbers
according to specific distributions. Recently a new faster algorithm for generating normal dis-
tributed random numbers, based on the acceptance-complement ratio method (ACR) [8], has been
added to ROOT. This algorithm is much faster than the traditional Box-Muller method used previ-
ously in ROOT. For example, on a 64 Intel Linux box running ROOT compiled with gcc 3.4, the
time for generating one random gaussian number has been decreased from 183 to 42 ns.

The latest releases of ROOT contains in addition an interface to UNU.RAN [9], a software
package for generating non-uniform psedu-random numbers. It contains universal (also called au-
tomatic or black-box) algorithms that can generate random numbers from large classes of contin-

5



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

uous (in one or multi-dimensions), discrete distributions, empirical distributions (like histograms)
and also from practically all standard distributions.

3. MathMore

This package incorporate more advanced mathematical functionality to extend MathCore. The
need of separating the functionality is twofold. In order to keep the size of the core of ROOT reason-
able, only the most used mathematical functionality is included in it. Secondly, there are licensing
issues concerning some of the more advanced functionality which uses the GNU Scientific Library
(GSL) [10]. One of the design goals is to hide the implementation and presently the mathematical
functionality from GSL is used underneath. It would be very easy to shift to use another numerical
package and being completely transparent to the user and straightforward for the developer. As for
now MathMore is composed of the following parts:

• special functions like Bessel functions of various types and fractional order, elliptic integrals,
Laguerre and Legendre polynomials, hypergeometric functions

• cumulative distribution functions and their inverse for chi-squared, gamma, f and t-distributions
and their inverses. There are also the inverses of the CDF’s of the Breit-Wigner, exponential,
Gaussian, lognormal and uniform distributions.

• classes for numerical algorithms like derivation, various types of adaptive and non-adaptive
numerical integration, interpolation and root finding algorithms for one dimensional func-
tions

It is foreseen to extend MathMore with C++ binding to GSL numerical algorithms for multidimen-
sional functions such as Monte Carlo integration, root finders and minimization.

Fast Fourier Transforms are provided via an interface to the FFTW [11] package, that has been
recently introduced in ROOT.

4. Linear Algebra

ROOT contains a general matrix package for describing matrices and vectors and their linear
algebra operations in arbitrary dimensions and of various types. Classes exist to model general
matrices, symmetric and sparse matrices. Recently a template parameter has been introduced in
the TMatrix classes for describing the underlying type.

4.1 SMatrix

Following requests from the LHC experiments a new package, SMatrix, has been introduced.
SMatrix is a C++ package for high performance vector and matrix computations. It can be used
only in problems when the size of the matrices is known at compile time, like in the tracking
reconstruction of HEP experiments. It is based on a C++ technique, called expression templates,
to achieve an high level optimization. The C++ templates can be used to implement vector and
matrix expressions such that these expressions can be transformed at compile time to code which is
equivalent to hand optimized code in a low-level language like Fortran or C (see for example [12])

6



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

Matrix size 
2 3 4 5 6 7 8 910 20 30

C
P

U
 T

im
e 

-810

-710

w ⋅ v

SMatrix
TMatrix
HepMatrix

slc4_ia64_gcc346

Matrix size 
2 3 4 5 6 7 8 910 20 30

C
P

U
 T

im
e 

-810

-710

-610

w + v ⋅M 

SMatrix
TMatrix
SMatrix_sym
TMatrix_sym
HepMatrix
HepMatrix_sym

slc4_ia64_gcc346

Matrix size 
2 3 4 5 6 7 8 910 20 30

C
P

U
 T

im
e 

-810

-710

-610

 * M * vTv

SMatrix
TMatrix
SMatrix_sym
TMatrix_sym
HepMatrix
HepMatrix_sym

slc4_ia64_gcc346

Matrix size 
2 3 4 5 6 7 8 910 20 30

C
P

U
 T

im
e 

-710

-610

-510

-410

A * B + C

SMatrix
TMatrix
SMatrix_sym
TMatrix_sym
HepMatrix
HepMatrix_sym

slc4_ia64_gcc346

Matrix size 
2 3 4 5 6 7 8 910 20 30

C
P

U
 T

im
e 

-710

-610

-510

-410

TA * M * A

SMatrix
TMatrix
SMatrix_sym
TMatrix_sym
HepMatrix
HepMatrix_sym

slc4_ia64_gcc346

Matrix size 
2 3 4 5 6 7 8 910 20 30

C
P

U
 T

im
e 

-810

-710

-610

-510

-410

-1A

SMatrix
TMatrix
SMatrix_sym
TMatrix_sym
HepMatrix
HepMatrix_sym

slc4_ia64_gcc346

Figure 3: Comparison in matrix operations between SMatrix, TMatrix from ROOT and HepMatrix from
CLHEP, for the general squared and symmetric matrices of various dimensions.

The SMatrix has been deeveloped initially as part of the HeraB analysis framework [13]. A subset
of the original package has been now incorporated in ROOT, with the aim to provide to the LHC
experiments a stand-alone and high performant matrix package for reconstruction. The package
has now substantially evolved and the API differs from the original one.

SMatrix contains the generic SMatrix and SVector classes to describe matrix and vector
of arbitrary dimensions and of arbitrary type. The classes are templated on the scalar type and on
the dimension, like number of rows and columns for a matrix. The matrix classes have in addition
as template parameter, the storage representation. This extra parameter differentiates general and
symmetric matrices. It has a default instantiation, valid for a general matrix, and based on a class
containing a C array of size N ×M, where N is the number of rows and M is the number of
columns. The storage for a symmetric N×N matrix is instead based on an array of reduced size
N ∗ (N + 1)/2, the independent parameters of a symmetric matrix. A static structure provides in
addition the values of the offsets, enabling to translate indices from the matrix positions to the
storage positions. This structure avoids therefore to calculate these offsets every time a matrix
element is requested.

This package it is not intended to be a replacement of the TMatrix classes and it does not
provide complete linear algebra functionality. What is provided are operations such as the matrix-
matrix, matrix-vector, and vector-vector operations, plus some extra functionality for square matri-
ces, like inversion and determinant calculation. An optimized inversion is provided for matrices of
size up to 5x5.

7



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

The package is designed for small size matrices, when maximum performances are achieved
by avoiding temporaries with expression templates, and by having the functions inline. The disad-
vantages of this approach are large code size and long compilation time, which both increase when
the matrices get bigger in size. It is therefore not recommended to use SMatrix for large matrices
(N,M > 10). Figure 3 shows the performances of SMatrix, comparing with TMatrix and CLHEP.

5. Minimization and Fitting

ROOT contains 2 general purpose minimization packages: Minuit[1] and Fumili[2] and a
smaller class TLinearFitter, specific for fitting functions linear in parameters. In the linear
case fitting requires only one pass over the data and the user doesn’t have to set initial parameter
values any more. The computation time decreased substantially, which makes it very convenient
for large datasets. An extension to the linear fitter (robust fitter) for removing bad observations,
outliers, based on the approximate Fast Least Trimmed Squares (LTS) regression algorithm for
large data sets [14], has been added.

The RooFit package[15], is now distributed within ROOT. This toolkit contains a collection
of “standard” probability distribution functions and allows to easily construct new complicated
models. It provides also functionality for normalization and automatic pre-fit normalization of
PDFs.

A new version of Minuit, developed inside the SEAL project [16], it is now integrated inside
ROOT as a new package, called Minuit2.

A new GUI for fitting has been introduced in order to drive the fitting process, by selecting the
fitting function, initial parameter values, fitting and minimization options. The lay-out of the new
main fitting panel is shown in figure 4. Additional panels exist for setting the initial values of the
function parameters or to set the minimizer type and options.

In the future it is planned to improve the existing ROOT fitting classes, by extending the
functionality of the TVirtualFitter class, by providing support for parallel fits, various fitting
and minimization methods and easier integration with RooFit.

5.1 Minuit2

The algorithm of the original fortran version of Minuit have been re-designed and re-implemented
in the C++ language, under the directed supervised by the original author [1]. Minuit2 provides
and enhances all the functionality of the original Fortran version. The profits from basing on an ob-
ject oriented design are an increased flexibility, easy maintainability in the long term and opening
to extensions such as integration of new algorithms, new functionality, changes in user interfaces.
For example, the Fumili algorithm has been integrated directly inside the minimization framework
provided by Minuit2.

Various extensive tests have been performed to study and validate the numerical quality, con-
vergence power and computational performances of this new version. Some of these tests are
described in details in this document [17].

Minuit2 has been now integrated inside ROOT as an additional implementation of the ROOT
TVirtualFitter class. In the future it is expected to improve the functionality by adding the
possibility of supplying constraints on the parameters.

8



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

Figure 4: The new panel used for fitting ROOT data objects like the histogram classes.

6. Conclusions

Various new developments in the ROOT Mathematical libraries have been performed since the
last ACAT conference. A large fraction of the work is driven by the needs of the LHC experiments
for the reconstruction and analysis of their data. In the future it is expected to consolidate the new
developed libraries taking into account the needs and feedback received from the users. Already
some of the LHC experiments, like LHCb and CMS, are using these new libraries in their software.
Furthermore, it is planned to improve the existing ROOT analysis classes, such as the histograms
and function classes to use the mathematical functionality provided by these new libraries.

References

[1] F. James, MINUIT Reference Manual, CERN Program Library Writeup D506.

[2] S. Yashchenko, New method for minimizing regular functions with constraints on parameter region,
Proceedings of CHEP’97 (1997).

[3] W. Brown and M. Paterno, A proposal to Add Mathematical Special Functions to the C++ Standard
Library, WG21/N1422 = J16/03-0004.

9



P
o
S
(
A
C
A
T
)
0
4
2

ROOT Math Libraries L. Moneta

[4] The Numerical Algorithm Group (Nag) C Library, see also
http://www.nag.co.uk/numeric/cl/CLdescription.asp

[5] M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uniform
pseudorandom number generato, ACM Trans. on Modeling and Computer Simulations, 8, 1, (1998),
3-20

[6] F. James, RANLUX: A Fortran implementation of the high quality pseudo-random number generator of
Lüscher, Computer Physics Communication, 79 (1994) 111.

[7] P. L’Ecuyer, Maximally Equidistributed Combined Tausworthe Generators, Mathematics of
Computation, 65, 213 (1996), 203-213

[8] W. Hoermann and G. Derflinger, The ACR Method for generating normal random variables, OR
Spektrum 12 (1990), 181-185.

[9] http://statistik.wu-wien.ac.at/unuran.

[10] M. Galassi et al, The GNU Scientific Library Reference Manual - Second Edition, ISBN =
0954161734 (paperback). See also http://www.gnu.org/software/gsl

[11] http://www.fftw.org.

[12] T. Veldhuizen, Expression Templates, C++ Report, Vol. 7 No. 5 June 1995, pp. 26-31.

[13] T. Glebe, SMatrix - A high performance library for Vector/Matrix calculation and Vertexing,
HERA-B Software Note 01-134, December 2, 2003.

[14] P.J. Rousseeuw and K.Van Driessen, Computing LTS Regressio n for Large Datasets, Estadistica 54,
163 (2002).

[15] http://roofit.sourceforge.net.

[16] M. Hatlo et al., IEEE Transactions on Nuc lear Science 52-6, 2818 (2005)

[17] A. McLennan,Function Minimization, CERN-LCGAPP-2005-07

10




