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Modern lattice gauge theory calculations are making it possible for lattice QCD to play an

increasingly important role in the quantitative investigation of the Standard Model. The fact

that QCD is strongly coupled at large distances has required the development of nonpertur-

bative methods and large-scale computer simulations to solve the theory. The development

of successful numerical methods for QCD calculations puts us in a good position to be ready

for the possible discovery of new strongly coupled forces beyond the Standard Model in the

era of the Large Hadron Collider.
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1. The Standard Model and beyond

The Standard Model is amazingly successful (maddeningly so), yet its many gaps and

puzzles make it clear that it is simply the low energy manifestation of new, higher-energy

physics yet to be discovered. Its many parameters are simply arbitrary, having their observed

values as a result of as yet undiscovered physics at higher energies than obtained up until

now. Its three similar generations of fermions and three similar forces are undoubtedly related

in some way yet to be discovered. To help understand what lies beyond the Standard Model,

the fundamental parameters of the Standard Model are being pinned down with greater and

greater precision in heavy flavor experiments around the world. New particles and forces are

being sought in very high energy experiments at the Tevatron and will be soon at the LHC.

Lattice calculations are essential to this program in two ways. First, they are required

to extract properties of quarks from properties of hadrons (particles that contain quarks).

Unlike leptons, such as the electron or neutrino, quarks cannot be observed directly, but are

confined permanently within hadrons. Their properties must be inferred using lattice gauge

theory calculations.

Secondly, lattice gauge theory calculations are essential to prepare for possible new nonper-

turbative phenomena in coming experiments. Lattice gauge theory is the first and only general

tool for solving nonperturbative quantum field theories. Of the four interactions known to par-

ticle physics, only one (quantum electrodynamics) is known to be described by a perturbative

theory, whose properties can be expressed as a power series in the electromagnetic coupling
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constant, αem, over all energy scales. Strong interactions are known to be described by a

nonperturbative theory, quantum chromodynamics or QCD. String theory, the current best

candidate for a theory of gravity, must have nonperturbative effects in it, or it would produce

a space-time quite different from the four dimensional world that we live in. In the theory of

the weak interactions, consider the “Higgs”, the particle that generates particle masses. Is it

• an elementary, perturbative Higgs?

• a bound state of a new strong interactions (technicolor, topcolor, . . . )?

• accompanied by very high energy gluino condensates (as in many models of supersymme-

try with strongly coupled sectors)?

It is likely that whatever new physics is discovered by the Large Hadron Collider, it will

contain some nonperturbative effects. QCD is providing an excellent test bed to sharpen our

nonperturbative tools to prepare for such questions.

2. Quarks, gluons, and lattice QCD

Asymptotic freedom and quark confinement. In the early sixties, the classification

properties of the observed hadrons led Gell-Mann and Zweig to note that the hadrons were

arranged in multiplets as if they were composed of smaller particles, which Gell-Mann called

quarks. In the same decade, deep inelastic scattering experiments at SLAC showed that in

high energy electron-proton collisions, protons behaved as if they were composed of weakly

interacting, almost-free constituents. Bjorken and Feynman called these entities partons. It

was not immediately clear whether to regard quarks as actual particles, or whether they

were merely a convenient classification tool. Furthermore, no one had ever seen a quark, so

they seemed to be strongly confined inside hadrons. This seemed inconsistent with the weakly

coupled nature observed in partons, so the relation between quarks and partons was not clear.

Why should such almost-free constituents be permanently confined?

This paradox was resolved in 1973 with the discovery of the “asymptotic freedom” of

QCD. The self-coupling of the gluons mediating the strong force caused the effective value of

the strong coupling “constant” to become larger and larger at long distances (long compared

with the proton radius), contrary to the well-known behavior of the electromagnetic coupling

constant. This meant that even though the quarks were indeed weakly interacting at short

distances and high energies, the force between them did not die off at long distances, leading

to their permanent confinement. Gross, Politzer, and Wilczek shared the 2004 Nobel Prize for

this discovery.

The consequence for particle physics is that, even though perturbation theory may be

used to analyze quark-quark scattering at high energies, to infer the properties of quarks from

the relatively low energy dynamics of hadron constituents, the nonperturbative methods of

lattice QCD are required.
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Lattice gauge theory calculations. Quantum field theories are defined by their path

integrals. For gauge theory, this may be written schematically as

Z =
∫
d

[
Axµψx, ψx

]
exp

(
−S(A,ψ, ψ)

)
, (1)

where A and ψ are the field variables of the gluons and quarks, and S is the classical action

of the theory. The quantum amplitude for a state of quarks and gluons at a given time to

evolve into another state at a later time is obtained by integrating over all possible intervening

classical field configurations. In principle, one integrates over independent fields defined at each

space-time point. A quantum field theory is in principle defined by an infinite dimensional

integral (not a very well-defined object). Quantum field theories must therefore be “regulated”.

A lattice quantum field theory regulates the continuum theory by defining the fields on a

four-dimensional space-time lattice. Quarks are defined on the sites of the lattice, and gluons

on the links. Continuum quantum field theory is obtained in the zero lattice spacing limit.

This limit is computationally very expensive, which is why large-scale computer simulations

are required.

Operationally, lattice QCD calculations consist of several steps. First, sets of gauge con-

figurations are computed that form a representative sample of the infinite set of possible

configurations. They are constructed in long Markov chains with Monte Carlo methods, such

as the venerable Metropolis method, or the more modern Hybrid Monte Carlo algorithm.

Configurations are accumulated at several lattice spacings, and at several values of the masses

of the light quarks in the fermi sea, which are heavier than the physical light quark masses.

Final physics results must ultimately be extrapolated to the continuum and light quark mass

limits.

Second, the propagation of quarks through the gauge configurations is calculated. This

means solving the Dirac equation on each gauge configuration. On the lattice, this is a sparse-

matrix problem, solved with relaxation methods, such as the biconjugate gradient algorithm.

This step can consume compute power that approaches that of the first step if many different

physical processes are analyzed.

Third, hadron correlation functions and amplitudes are computed from the quark propa-

gators. This is a computationally cheap step, consisting mostly of I/O.

State-of-the-art price/performance for computing hardware for this type of calculation is

currently under $1/MF. Larger projects are of order a few Teraflop-years. (That is, computing

power of several delivered Teraflops, dedicated for a year.) Many types of large computers are

used in lattice calculations,1) such as the purpose-built QCDOC at Brookhaven National

Laboratory (Fig. 1), large clusters of commodity computers such as the ones at Fermilab

(Fig. 2) and many other places, and the IBM Blue Gene at KEK (Fig. 3), currently the

largest computer in the world predominantly dedicated to lattice QCD calculations.

Progress in numerical science comes from both larger computers and from improvement of
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Fig. 1. A motherboard of the Columbia/Brookhaven QCDOC, a purpose built computer for lattice

QCD

Fig. 2. Clusters at Fermilab devoted to lattice QCD.

Fig. 3. The IBM Blue Gene computer at KEK, currently the largest computer predominantly dedi-

cated to lattice QCD calculations.
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methods. A methodological improvement that has been particularly important for the work

I will discuss is improved discretization. Numerical analysis tells us that if a derivative is

approximated by a discrete difference, the resulting discretization errors vanish as the square

of the lattice spacing:
∂ψ(xi)
∂x

= ∆xψ(xi) +O(a2), (2)

where ∆xψ(xi) ≡ (ψ(xi + a) − ψ(xi − a))/(2a). By incorporating next-to-nearest neighbor

interactions, we can write down an approximation to the derivative whose errors vanish as a

higher power of the lattice spacing:

∂ψ(xi)
∂x

= ∆xψ(xi)−
a2

6
∆3

xψ +O(a4). (3)

This allows control of discretization errors with far less computing power than the simpler

derivative.

It is relatively unambiguous how to remove the O(a2) errors in the gluon action,2) and the

various improvements in use are closely related to each other. The situation is dramatically

different with lattice fermions. There are several families of discretization methods, that each

have very different virtues and drawbacks. Staggered fermions3–5) can be calculated much

more rapidly than the other methods. They have therefore been the first to produce reasonably

precise unquenched results, and many of the results in Standard Model phenomenology in the

next section use them. They have some ugly theoretical properties,6) however, that lead some

physicists to look at alternatives. Wilson fermions were the original fermions used introduced

by Ken Wilson. They break chiral symmetry badly, and for that reason have had trouble

getting to quark masses as light as the ones in nature. Recent algorithmic advances7–9) have

altered this situation much for the better. Domain wall fermions10) and overlap fermions11)

have the nicest theoretical properties of all. They do not suffer the complications of staggered

fermions, and have clean chiral structure unlike Wilson fermions. In the past, they have been

by far the most expensive with which to calculate of all the methods, so phenomenological

calculations are just beginning. Rapid algorithmic advance in the last few years have greatly

sped up all the fermion methods, and it is not known at present which of these methods will

ultimately prove superior. At present, lattice theorists around the world are hard at work on

all of them, making sure that all methods give the same physical answers.

3. Lattice QCD confronts experiment

Progress in unquenched lattice QCD. In comparing QCD with experiment, we have

several different types of tasks. One is comparing the results of QCD calculations with known

experimental results and verifying that we can reproduce experiment. Since QCD is by now a

very solidly established theory, this serves more to verify lattice gauge theory methods, rather

than to test QCD. A second task is, where possible, to make predictions of physical results
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before they have been determined by experiment. Since hadron physics has been going on for

decades, it is rare when opportunities can be found, but a few have been. A third, different

type of task is to use verified lattice methods, combined with experiment, to obtain results

that cannot be obtained by experiment alone. Examples of these include the quark masses

and the strength of transformations of one quark to another under weak interactions (the

Cabibbo-Kobayashi-Maskawa, or CKM, matrix elements). Since only hadrons are observed in

experiment, and never quarks, these cannot be directly determined from experiment. Instead,

quark masses and CKM matrix elements are used as parameters in lattice calculations and

chosen so that the results of the calculations agree with experiment. These quark masses

and CKM matrix elements are among the fundamental paramenters of the Standard Model

that must ultimately be postdicted by future Beyond-the Standard-Model theories. Their

determination is one of the most important tasks of lattice QCD as far as particle physics as

a whole is concerned.

In the last few years, there has been dramatic progress in our ability to perform precise

calculations of simple quantities. For twenty years after the first lattice Monte Carlo calcula-

tions appeared around 1980, almost all lattice QCD phenomenology was done in the quenched

theory, meaning ignoring the effects of light quark-antiquark pairs. Although computation-

ally much cheaper than correct unquenched calculations, this method introduces errors of

unknown size into the results. The left-hand graph of Fig. 4 shows various combinations of

particle masses and decay constants calculated in the quenched theory and shows around

10% discrepancies with experiment. There is no theory, however, that allows us to estimate

in advance what size errors quenching introduces for any given quantity. Great strides, how-

ever, have been made in methods, in algorithms, and in computational power. They have now

brought us to an era when unquenched calculations are becoming the norm, with all three

light flavors of quark, u, d, and s, included dynamically.

The calculations in the graph of Fig. 4 were performed with improved staggered fermions

(called “asqtad” fermions in the jargon). The right-hand graph of Fig. 4 shows the same

quantities as on the left, but unquenched and now showing good agreement with experiment

at the few percent level.12) For these calculations, the masses of some quantities like the pion

and kaon masses are used as inputs to fix the fundamental parameters of QCD, the quark

masses and the strong coupling constant. Three different groups using this method, Fermilab,

MILC, and HPQCD, then compared notes on their predictions for the simplest quantities they

were calculating, with the results shown. These results are for the simplest physical quantities

we know how to calculate in lattice QCD. The calculations are now being extended to more

and more complicated quantities. Likewise, the results shown are obtained with staggered

fermions, the least computationally costly of the fermion methods, and it will be interesting

(and necessary)to verify that one obtains the same answers with more costly methods.
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The prediction of a particle mass: the Bc. Most of the particle masses and other

simple quantities that are to be “predicted” by lattice QCD have been well known for fifty

years, so that only postdiction is possible. An exception has been the mass of the Bc meson, a

meson made of a bottom quark and a charm antiquark. Bottom quarks were discovered only

in the 1970’s, and since they are rarely produced in association with charm quarks, Bc mesons

had not been observed as of a few years ago. Fig. 5 shows the predictions of unquenched lattice

calculations, before the observation of the Bc.13) In December of 2004, the CDF experiment

at Fermilab announced the discovery of the Bc. Their result for the mass is shown in the gold

bar across the graph, in good agreement with the lattice prediction.

Fig. 4. Lattice predictions compared with experiment for simple quantities in quenched (left) and

unquenched (right) lattice QCD.12)

Fig. 5. The mass of the Bc meson observed by the CDF collaboration (gold bar across the figure) com-

pared with predictions of lattice QCD made before the observation (rightmost two data points).

(Color online.)
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Fig. 6. Determinations of the strong coupling constant from a variety of high energy processes, eval-

uated by convention at the mass of the Z boson, MZ .(From the Review of Particle Properties.)14)

The lattice determination (second from bottom) agrees well with the world average and is the

most precise individual determination.

The strong coupling constant. The effective coupling “constant”, αs(E), governs the

strength of the strong interactions of QCD. It is one of the best measured parameters of

QCD. Asymptotic freedom means that αs(E) is small in collisions at high energy, E. Therefor,

perturbation theory can be used to analyze high energy collisions in terms of a power series

in αs(E). The strong coupling constant can be measured in a large number of high-energy

processes, some of which are shown in the plot in Fig. 6. One can also obtain the strong

coupling constant with lattice methods. One should obtain the same results if lattice methods

are correct. One obtains αs on the lattice by using it as a parameter in particle spectroscopy

calculations, as in Ref.12) One then uses perturbation theory to convert the lattice coupling

constant to the form used in conventional continuum perturbation theory analyses. The result

is shown in the next-to-bottom point in Fig. 6. It incorporates three-loop lattice perturbation

theory. It agrees well with the world average of continuum results, as it should, and the lattice

result is now the most precise of the individual determinations. The result is15)

αs(MZ) = 0.1170(12).

The light quark masses. The value of the strong coupling constant was well known

before lattice calculations. Its confirmation by lattice calculations is a welcome validation

of lattice methods. By contrast, without the lattice, the values of the light quark masses

can only be estimated approximately. The mass of the strange quark in particular plays an
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important role in analysis of weak interaction phenomenology, so a good determination of

its value is a pressing concern. Quark models and a variety of phenomenological methods

yielded conventional wisdom estimates of ms ∼ 150 MeV for the strange quark mass, and

ml ∼ 6 MeV for the average of the up and down quark masses. That conventional wisdom, we

now know, is far off the mark. With lattice QCD, we can determine these masses with first-

principles calculations, for example, by tuning the quark masses to obtain the correct masses

for pions and kaons. Last year, the MILC collaboration using improved staggered fermions

reported16,17)

ms = 90(6) MeV, (4)

ml = 3.3(3) MeV. (5)

A recent paper by the CP-PACS and JLQCD collaborations reported a result using O(a)

improved Wilson fermions:

ms = 91+15
−6 MeV, (6)

ml = 3.5+0.6
−0.3 MeV. (7)

The two results are very compatible, giving necessary evidence that the results of lattice

calculations are not dependent on the quark method.

Golden quantities and the CKM matrix elements. Most of the results discussed so

far are for a particularly simple kind of quantity for lattice QCD: stable mesons (that is, ones

that only decay weakly and not hadronically), in processes with a single meson present at a

time. These are golden quantities for lattice QCD, with uncertainties that are smaller and

easier to understand than for most quantities. Although this is a restricted set, many of the

most important tasks of lattice gauge theory can be accomplished with quantities of this type.

In particular, almost all of the CMK matrix elements and quark masses can be determined

with lattice calculations in this category.

CKM matrix elements are measured in decay processes in which a quark of one flavor

turns into a quark of another flavor. Fig. 7 illustrates B meson “semileptonic” decay, that is,

decay into two leptons plus one or more hadrons. In the experimentally observed process, a B

meson decays into two leptons, for example the electron and a neutrino, plus hadrons (labeled

X), for example a pion. The complicated strong interactions of gluons with quark-antiquark

pairs responsible for confining the valence b and u quarks in the B meson is represented

schematically in the figure by the curly red lines (gluons) and green circles (quark=antiquark

pairs). The experimental rate depends on a QCD amplitude, which must be supplied by lattice

QCD, and on the CKM matrix element Vub, which is the coupling between an “up” quark (u)

and a “bottom” quark (b). Purely leptonic decays, such as a pion decaying into an electron

plus a neutrino, are parameterized by decay constants such as fπ. Pion leptonic decay depends
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Table I. The Cabibbo-Kobayashi-Maskawa matrix elements, with particle processes by which they

can be measured. 

Vud Vus Vub

fπ fK fB

K → πlν B → πlν

Vcd Vcs Vcb

fD fDs

D → πlν D → Klν B → Dlν

Vtd Vts Vtb

< Bd|Bd > < Bs|Bs > −



on the QCD amplitude fπ and on Vud, the CKM matrix element connecting up and down

quarks. The amplitudes for mesons like K, B, and Bs to mix with their antiparticles, K,

B, Bs, are proportional to other combinations of CKM matrix elements. In all, eight of the

nine CKM matrix elements can be determined from relatively simple lattice QCD calculations

combined with experiment, as shown in blue in Table I.

Semileptonic decays. In semileptonic decay, the shape of the decay amplitude as a

function of the momentum of the decay products is predicted by lattice QCD and can be

measured in experiment. Fig. 8 shows the form factor that parameterizes the decay ampli-

tude for D → Klν semileptonic decay as a function of t, the square of the four-momentum

transfered to the leptons, l and ν. The green points are lattice QCD predictions, the blue

Fig. 7. The decay of a B meson into leptons plus hadrons X, where X might be a pion or a D

meson.19)
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points are from the experiment of the Focus collaboration which appeared after the lattice

predictions.20–22) As can be seen, the agreement is excellent. Having tested the calculation by

verifying that the predicted shape is correct, by comparing the normalization between theory

and experiment, the CKM matrix element describing the quark coupling (in this case, Vcs)

may be obtained.

Fig. 8. Shape of the form factor describing the semileptonic decay D → Klν, as a function of the

momentum transfer t = q2. The predicted shape (green circles) agrees well with the observed

shape (blue diamonds). (Color online.)

BB and BsBs mixing. To illustrate the challenge ahead, consider the ρ− η plane, shown

in Fig. 9. In the Standard Model, the CKM matrix may be parameterized by four parameters,

two of which are called ρ and η. ρ and η have the form ρ − iη ∝ Vub. By determining

these parameters in many different ways, one can test whether or not consistent results are

obtained. Inconsistent results would be a signal of contributions to quark mixing from Beyond-

the-Standard-Model theories, rather from the Standard Model alone.

ρ and η parameterize the CP violation in the Standard Model. CP is a symmetry relating

the properties of particles to those of their antiparticles. Understanding the source of CP

violation in nature is key to understanding the abundance of matter over antimatter in the

visible universe. The plot is one of the most famous graphs in particle physics at the moment,

and reducing its uncertainties is an important goal of particle physics.

The plot shows the bounds on the ρ− η arising from various physical processes, with the

small red circle illustrating the combined bound. Several of the uncertainties in the plot arise

from estimates of the uncertainties in lattice QCD calculations. For example, the bounds in

the dark green curves, labeled εK , arise from measuring the mixing between K mesons and

their antiparticles, analyzed with lattice QCD. Similarly, the bounds in the yellow circles,

labeled δmd, arise from BB mixing. The orange circles show the constraint arising from the

combination BB and BsBs mixing from before (Fig. 9) and after (Fig. 10) the discovery

of BsBs mixing at the Tevatron last year. These constraints are only possible due to the
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Fig. 9. Current bounds on ρ and η, which parameterize CP violation in the CKM matrix.24) The

plot shows the status before the discovery of BsBs mixing at the Tevatron.

Fig. 10. Current bounds on ρ and η, which parameterize CP violation in the CKM matrix.24) The

plot shows the status after the discovery of BsBs mixing at the Tevatron.

existence of good lattice gauge theory calculations. The experimental errors on the mixings

that have been measured are of order 1%. The 10 or 20 % uncertainties in the quantities shown

in the graph are estimates of the uncertainties of lattice calculations. The current round of

calculations aims at reducing these to something of order 5%. Clearly, to profit fully from the

experiments that have been done, one needs to aim at lattice uncertainties of around 1%, So

challenging work remains ahead for lattice gauge theorists if the experimental results are to
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be fully exploited.

Decay constants To show that accuracies of 1-2% in this type of calculation are not an

unreasonable goal, we can consider a new paper from HPQCD on decay constants (which

parameterize the amplitudes for decay of a meson into a pair of leptons). They employ several

improvements over previous calculations. Most importantly, they use a staggered fermion

actions for the quarks that is more highly improved than previously (HISQ, or Highly Improved

Staggered Quarks25)). They employ several other improvements to reduce the size of the

uncertainties. Their results are:26)

fD = 241(3)MeV, (8)

fDs = 208(4)MeV, (9)

fDs/fD = 1.162(9), (10)

fK/fπ = 1.189(7). (11)

The accuracies for the D and Ds decay constants are a factor of 4-5 improved over previous

results,27) an impressive step forward.

Fig. 11 shows their results as a function of light quark mass, extrapolated down to the

physical light quark limit, and compared there with experiment (black lines). In the case of the

D and Ds decay constants, the theory calculations have moved quite a bit beyond experiment

in accuracy (in contrast to the reverse situation in BB and BsBs mixing). The challenge now

for lattice calculations is to extend this level of accuracy to many quantities.

4. The future

I have emphasized a small set of well-done quantities that have a strong connection to

particle physics experiment. However, the current reach of lattice QCD is much broader than

this. It is possible to study processes with multiple hadrons present at the same time, although

more difficult than for single-hadron processes. The case of K → ππ has been worked out very

clearly.28) Lattice calculations can investigate QCD in the realms of high temperatures and

potentially of high densities that are of interest in neutron stars and the early universe.29)

Well-developed investigations of nuclear structure are underway.30)

Calculations continue to become more and more powerful through improved methods,

better algorithms, and more powerful computers. This is allowing us to improve the precision

of existing calculations, to verify that all fermion formulations give the same answers, and to

extend our reach to new QCD quantities.

More exciting times could await lattice gauge theory in Beyond-the-Standard-Model

physics, depending on what is discovered at the LHC. Such new physics could present a

variety of challenges. For theories that are like QCD, but with larger numbers of colors or

flavors, the same methods that are proving successful for QCD can be used. For simple su-
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Fig. 11. The decay constants of the Ds, D, K, and π mesons, as a function of the light quark mass.

When the results are extrapolated to the physical light quark masses (black dashed lines), the

results agree well with experiment (black circles at the left of the graphs). For the D and Ds

mesons, the theory results are much more accurate than the experimental results. (Color online.)

persymmetric theories, promising methods are under development for their solutions.31) For

other conceivable new theories, major algorithmic advances will be required, for example in

the very interesting case of theories in which right and left handed quarks do not come in pairs

with the same color charge. The era of the LHC and Beyond-the-Standard-Model physics is

likely to prove as eventful for lattice gauge theory as the current one has been.
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