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AbstratA method is developed to searh for air showers initiated by photons using datareorded by the surfae detetor of the Auger Observatory. The approah is basedon observables sensitive to the longitudinal shower development, the signal risetimeand the urvature of the shower front. Applying this method to the data, upper limitson the �ux of photons of 3.8×10−3, 2.5×10−3, and 2.2×10−3 km−2 sr−1 yr−1 above
1019 eV, 2 × 1019 eV, and 4 × 1019 eV are derived, with orresponding limits on thefration of photons being 2.0%, 5.1%, and 31% (all limits at 95% .l.). These photonlimits disfavor ertain exoti models of soures of osmi rays. The results also showthat the approah adopted by the Auger Observatory to alibrate the shower energyis not strongly biased by a ontamination from photons.1 IntrodutionThe searh for photons in the ultra-high energy (UHE) osmi-ray �ux hasbeen stimulated by the observation of osmi rays with energies exeeding
EGZK ∼ 6×1019 eV [1,2,3,4,5,6℄. If these partiles are due to osmologiallydistant soures, the �ux spetrum is expeted to steepen above this energy. In-triguingly, a �ux spetrum with no apparent steepening above EGZK has beenreported by the AGASA Collaboration [7℄. To aount for this observation andto irumvent the theoretial hallenge of explaining partile aeleration tosuh energies, models involving new physis have been proposed in whih theosmi rays are reated at the observed energies at relatively lose distanesfrom the Earth. These �top-down� models [8,9℄ may involve super heavy darkmatter (SHDM) [10,11,12℄, topologial defets [13℄, or neutrino interationswith the reli neutrino bakground (Z-bursts) [14℄. A ommon feature of thesemodels is the predition of a substantial photon �ux at highest energies.7



The Auger Collaboration has reently reported a measurement of the osmi-ray spetrum from the Auger South site showing a �ux suppression above
EGZK [15℄. The Auger method is based on a large surfae array to ollet therequired statistis and a �uoresene detetor to alibrate the energy sale. Us-ing this �hybrid� approah, the energy reonstrution is largely independent ofhadroni interation parameters and, in ase of nulear primaries, of the pri-mary mass omposition. However, as explained later, the energy assignmentfrom surfae arrays an be substantially altered in the ase of primary pho-tons. This would a�et the reonstruted primary spetrum if a non-negligiblenumber of the highest-energy events, where data from the �uoresene tele-sopes are sparse due to their ∼10% duty yle, was atually due to photons(see also [16℄). It is worthwhile to note that the aeptane of �uoresenedetetors (as also applied in the HiRes experiment [5℄) an be altered in thease of photon primaries [17,18,19℄.UHE photons an also at as traers of the GZK (Greisen-Zatsepin-Kuzmin)proess [20℄ of resonant photopion prodution of nuleons o� the osmi mi-rowave bakground. The orresponding photon �uxes are sensitive to sourefeatures (type of primary, injetion spetrum, distane to soures ...) andto propagation parameters (extragalati radio bakgrounds and magneti�elds) [9,21,22,23,24℄.Thus, the searh for primary photons remains an important subjet for variousreasons [25℄, partiularly
• to set signi�ant limits to the possible ontribution of top-down mehanismsto the primary osmi-ray �ux;
• to searh for GZK photons, to prove the GZK e�et and onstrain soureand propagation models;
• to establish the maximum photon fration in the primary �ux, for whihthe energy estimate in the surfae array detetor would be altered;
• to obtain input to fundamental physis, for instane, to probe quantumgravity e�ets in the eletromagneti setor [26℄.Showers initiated by UHE photons develop di�erently from showers indued bynulear primaries. Partiularly, observables related to the development stageor �age� of a shower (suh as the depth of shower maximum Xmax) and tothe ontent of shower muons provide good sensitivity to identify primary pho-tons. Photon showers are expeted to develop deeper in the atmosphere (larger
Xmax). This is onneted to the smaller multipliity in eletromagneti inter-ations ompared to hadroni ones, suh that a larger number of interationsis required to degrade the energy to the ritial energy where the asadingproess stops. Additionally, the LPM e�et [27℄ results in a suppression ofthe pair prodution and bremsstrahlung ross-setions. Photon showers alsoontain fewer seondary muons, sine photoprodution and diret muon pair8



prodution are expeted to play only a sub-dominant role.Searhes for photons were previously onduted based on surfae arrays [28,29,30,31,32℄,and limits to the fration of photons were reported (see [25℄ for a review). Thederivation of limits to the photon fration using surfae array data alone isan experimental and oneptual hallenge (see also Setion 2.3). Firstly, foronlusions on the fration, the energy sales for photon and nulear primariesare needed. These energy sales may di�er from eah other for surfae arrays,and the di�erene between the sales may depend in a non-trivial way onprimary parameters suh as the shower zenith angle. Seondly, the energy re-onstrution of nulear primaries su�ers from substantial unertainties due toour limited knowledge of high-energy hadron dynamis.Both issues an be resolved using the �uoresene tehnique, whih is near-alorimetri and largely independent of simulating hadron interations. A or-responding approah has been developed and applied reently to obtain a�rst bound on the fration of photons from data taken at the Auger Observa-tory [19℄.In this work, using the larger number of events reorded by the surfae array,we derive for the �rst time a diret limit to the �ux of photons by searhing forphoton andidates and relating their number to the well-known exposure of thesurfae array. This avoids the need of simulating events inititated by nulearprimaries; only the photon energy sale is needed whih an be simulatedwith muh higher on�dene. Two observables of the surfae detetors arehosen whih have signi�antly di�erent behavior for nulear primaries whenompared to photons: the risetime of the reorded shower signal and the radiusof urvature of the shower front.We also derive a limit to the fration of photons. While the hallenge of usingtwo energy sales remains for this part of the analysis, hadron simulations anstill be avoided by using the hybrid alibration [15℄ to reonstrut the energiesof the observed events.The plan of the paper is as follows. In Setion 2, the observables used inthe analysis and their relationship with the omposition of osmi rays areexplained. In Setion 3, the simulation of UHE photons is onsidered. Themethod developed to distinguish events whih are photon andidates usingobservables of the surfae detetor is detailed in Setion 4. In Setion 5, theresults are presented. The onlusions are given in Setion 6.9



2 ObservablesThe analysis in this paper is based on data taken during 21,400 hours ofoperation of the surfae detetor reorded in the period 1 January 2004 to 31Deember 2006. The surfae detetor, when ompleted, will have 1600 waterCherenkov detetors spaed 1.5 km apart and overing ∼3000 km2 [33,34℄.Eah water Cherenkov detetor, or station, is a ylinder 1.2 m in height and3.6 m in diameter. Eah detetor is lined with a re�etive ontainer that holds12 tonnes of puri�ed water and is �tted with three nine-inh photomultipliertubes (PMTs) looking down into the water.When a relativisti partile passes through a station, Cherenkov radiationis emitted. The radiated photons then propagate through the water, beingre�eted at the station walls, and are either eventually absorbed or detetedby a PMT. The signals from the PMTs are digitised by a �ash analog todigital onverter (FADC) whih samples the signal every 25 ns. These digitisedsignals are then transmitted to a entral data aquisition system where eventtriggers are built. Eah event, then, has a detailed time pro�le si(ri, t) ofthe energy deposited in eah station i at distane ri in the shower plane.The funtion s(r, t) depends in a omplex way both on the parameters ofthe primary partile (energy, type, diretion) and on the detetor responseto di�erent seondary partiles (partiularly the eletromagneti and muonishower omponents).In this work, we extrat two relatively simple but robust observables from thesedata, noting that the wealth of information ontained in the time pro�les anfurther be exploited in future work. The observables, the radius of urvatureof the shower front and the risetime at 1000 m ore distane, were foundto provide good disrimination between photon and nulear primaries (seee.g. also Ref. [35℄). In addition to the quantitative studies of these observablesby means of the simulation-reonstrution hain, we will also sketh (in asimpli�ed way) why these observables are indeed expeted to di�er betweennulear and photon primaries.
2.1 Radius of CurvatureDue to geometrial reasons, the arrival of the �rst partiles at lateral distane
r from the axis is expeted to be delayed with respet to an (imaginary) planarshower front (see also Fig. 1, left plot). For a partile that is due to an earlierinteration at height H along the shower axis and observed at r, the delay10



from the longer path length an be approximated as
t =

1

c
(
√

H2 + r2 − H) ∝ r2

H
(r ≪ H). (1)The delay inreases (for r ≪ H about quadratially) with r. Importantly, thedelay dereases with inreasing height H . Air showers with the �rst groundpartiles oming from relatively large heights will have smaller delays t at �xeddistane r ompared to showers where the registered partiles originated fromsmaller heights. Compared to primary photons, showers from nulear primariesdevelop higher in the atmosphere (smaller Xmax). Additionally, shower muons(muh more abundant in showers from nulear primaries) an reah the groundfrom still higher altitudes further reduing the time delay. Thus, for nulearprimaries smaller delays are expeted ompared to photon primaries.We make use of this relation by �tting a shower front (abstrat surfae withonvex urvature de�ned by the fastest shower partiles) to the measuredtrigger times ti(ri) of the �rst partiles registered at distanes ri. In the presentstudy, the shape of the shower front is approximated using a spherial model(in aord with Eq. (1)), and the radius of urvature R of the shower front isobtained by minimizing χ2 in the funtion

χ2 =
∑

i

[c(ti − t0) − |R~a − ~xi|]2
c2σ2

t

(2)where ti is the trigger time for station i as de�ned in [36℄, t0 is the time of theshower in the enter of urvature, ~a is the unit vetor along the shower axis,
~xi is the loation of the station on the ground relative to the shower ore, and
σt is the unertainty in the shower arrival time [37℄. In the determination of
ti, a software �lter is applied to redue ontributions from spurious signals notrelated to the atual shower.2.2 RisetimeAlso the spread in time of the signal si(ri, t) registered at distane ri, whihorresponds to the thikness of the loal shower disk, an be extrated. UsingEq. (1), the di�erene of arrival times of partiles originating from a heightinterval [H1, H1 − ∆H ℄ follows as

∆t(H1, ∆H)∝ r2

(

1

H1 − ∆H
− 1

H1

)

=
r2∆H

H1(H1 − ∆H)

< ∆t(H2, ∆H) for H2 < H1. (3)11



Fig. 1. Illustration of geometrial e�ets on radius of urvature and risetime of theshower front. (Left) With respet to an imaginary planar shower front, partilesarrive more delayed at distane r when originating from a smaller height H2 < H1.Correspondingly, the radius of urvature of the atual shower front is smaller inase of the deep developing photon primaries. (Right) The spread of arrival times ofpartiles produed over a pathlength ∆H and arriving at distane r inreases for asmaller prodution height H2 < H1. Correspondingly, the risetime of the shower isinreased in ase of the deep developing photon primaries.The spread of arrival times of these partiles at �xed ore distane inreasesfor smaller prodution heights (see also Fig. 1, right plot). Aordingly, alarger spread is expeted in ase of the deep developing photon primaries(larger Xmax). We note that in general, the situation is more omplex. Thetime spread may depend on details of the previous shower development, par-tiularly also on the ompetition between the signals from the eletromagnetiand muoni shower omponents whih will be ommented on below. Still, geo-metrial e�ets are essential in the relation between time spread and primaryomposition.In this study, we use the risetime t1/2(1000) of the shower signal reonstrutedfor 1000 m distane and loated along the line given by the projetion of theshower axis onto the ground. First, the risetime tmeas
1/2 (ri) of a single stationis de�ned as the time it takes to inrease from 10% to 50% of the total sig-nal deposited in that station. Aording to Eq. (3), for non-vertial showersa (moderate) dependene of tmeas

1/2 (ri) on the internal azimuth angle of thestations within the shower plane is expeted. This is beause the height Hmeasured along the shower axis is larger for those stations on the exterior side12



of the shower ompared to those on the interior side of the shower. To aountfor this, the observed tmeas
1/2 (ri) are orreted depending on the internal azimuthangle ζ of that station:

tcor1/2(ri) = tmeas
1/2 (ri) − g · cos ζ (4)

g =−66.61 + 95.13 · sec θ − 30.73 · sec2 θ + [0.001993 · sec θ

−0.001259 · sec2 θ + 0.0002546 · sec3 θ − 0.0009721] · r2
iwhere the parameter g depends on distane r and primary zenith angle θand is parameterised from the data, and ζ is the lokwise angle between theprojetion of the shower axis on the ground and the line onneting the showerimpat point and the station.It is also expeted from Eq. (3) that the values tcor1/2(ri) depend on the distane

ri of the stations. We obtain the �nal risetime t1/2(1000) of the shower byperforming a �t to tcor1/2(ri) using the funtion
t1/2(r) = (40 + ar + br2) ns . (5)The parameters a and b are determined for eah event by �tting the stationdata (typial values are 50 ns km−1 and 100 ns km−2 respetively). The fun-tion is anhored at 40 ns at r=0 as that is the mean single partile responsein the water Cherenkov detetors.While geometrial e�ets onneted to the di�erent shower developments fromnulear and photon primaries are a main reason for the risetime di�erene(larger t1/2(1000) in photon showers), again this sensitivity to omposition isfurther strengthened by shower mouns whih are more abundant in the aseof nulear primaries and an dominate the registered signal at larger zenithangles. As muons tend to arrive within a shorter time window ompared tothe eletromagneti omponent whih su�ers from multiple sattering, thisfurther redues the risetime t1/2(1000) for nulear primaries.2.3 EnergyAs an energy estimator, the time-integrated energy deposit S(1000) at 1000 more distane is used [38℄. However, for the same initial energy and diretionthe average S(1000) from primary photons an be a fator ≥2 below thatfrom nulear primaries [39,40℄. Reasons are the (typially fator ∼4) smallernumber of muons and, due to the later development, the steeper ground lateraldistribution in primary photon showers. For a limit to the fration of primaryphotons, the energy sales (transformation from S(1000) to primary energy)13



for both photon and nulear primaries are required, while the determinationof a limit to the �ux an rely on the photon energy sale alone.The energy sale for nulear primaries is based on the �uoresene tehniqueby using events that are deteted with both the surfae detetor and the �uo-resene telesopes [41℄. The energy sale for photon primaries (whih induealmost purely eletromagneti asades) is taken from simulations. Thus, bothapproahes are largely independent from assumptions about hadron intera-tions at high energy.Using a diret relationship between S(1000) and primary energy for the photonenergy sale results in a (relatively poor) resolution of about 40%. To improvethis, a unique energy onversion for photons is applied that is desribed indetail in Ref. [40℄. It is based on the universality of shower development [42℄,i.e. the eletromagneti part of the shower is expeted to develop in a well-preditable manner for depths exeeding Xmax. In brief, for given values of
S(1000) and Xmax, the primary energy is estimated by

S(1000)

Eγ
= 1.4(1 +

∆X − 100

1000
)[1 + (

∆X − 100

340
)2]−1 (6)with ∆X = Xground − Xmax ,where S(1000) is measured in units of vertial equivalent muons (VEM) [36℄,the photon energy Eγ is in EeV, and ∆X is in g m−2. Sine Xmax is not diretlymeasured by the surfae detetor alone, an iterative approah using Eq. (6) istaken to estimate the energy. After an initial guess of the photon energy using

S(1000) alone, the typial Xmax of the photon showers at this energy is takenfrom simulations. With this estimate of Xmax, a new estimate of the photonenergy is obtained using Eq. (6), and the proedure is repeated. The energyestimate is found stable after few iterations and an energy resolution of ∼25%is ahieved [40℄. We use this improved estimation of the photon energy, butnote that the main onlusions remain valid also when using a diret energyestimation.3 Monte Carlo SimulationsThe QED proesses of LPM e�et [27℄ and geomagneti asading ([43,35℄ andreferenes therein) need to be onsidered for photon showers at highest energy.As mentioned before, the LPM e�et leads to a suppression of the pair produ-tion and bremsstrahlung ross-setions and, thus, additionally inreases theseparation of photon and nulear primaries in terms ofXmax (for a review of the14



LPM e�et and experimental observations of the LPM suppression, see [44℄). 1In ase of geomagneti asading of UHE photons, the initial onversion of theUHE photon into an eletron-positron pair an indue a �preshower� (mostlysynhrotron photons plus eletron-positron pair(s)) outside the atmosphere.The subsequent air showers from suh �onverted� photons develop higher inthe atmosphere (smaller Xmax) than air showers diretly initiated by UHEphotons do. As geomagneti asading beomes important at energies above
∼50 EeV at the southern site of the Auger Observatory, this proess is ofminor relevane for the bulk of data used in this analysis.The shower simulations were generated with the Aires simulation pakage(v2.8), whih inludes the LPM e�et and geomagneti asading [45℄. QGS-JET 01 [46℄ was used as the hadroni interation model. The simulation ofthe water Cherenkov detetors uses the GEANT4 [47℄ simulation pakagealong with spei� ode that handles PMT response and data aquisitioneletronis. The result is that the output of a simulated event is in a formatthat is idential to the data format reorded with the Auger Observatory. Theshower reonstrution proedure used is the same for real events as it is forsimulated events to avoid systemati di�erenes at the reonstrution stage.4 MethodIn brief, the limit to the photon �ux is obtained as follows. Seletion uts areapplied to the data (and simulations) to ensure events of good reonstrutionquality and a high aeptane of the detetor to photons. Based on S(1000),showers above a minimum primary energy are seleted. This data set is thensearhed for photon andidates using t1/2(1000) and R (see Setion 2 for de�ni-tions). Simulations assuming photons are used to determine the orrespondingseletion e�ienies. From the number of photon andidates, the e�ienieswith respet to photons, and the experimental exposure (obtained from thegeometrial aeptane known from detetor monitoring), the upper limit tothe photon �ux is derived.The riteria to selet events of good quality are:
• the station with the largest signal is surrounded by 6 ative stations;
• ≥5 stations used in the �tting of the lateral distribution funtion [48℄ outof whih ≥4 stations have a non-saturated signal of ≥10 VEM (vertialequivalent muons) [36℄;
1 Even when arti�ially swithing o� the LPM e�et, photon showers still havea signi�antly larger Xmax than nulear primaries (di�erenes >150 g m2 above1019 eV) and a smaller number of muons.15



Fig. 2. Photon detetion and reonstrution e�ieny (right hand sale) as a funtionof the energy (in EeV) and zenith angle of the primary photon. The analysis isrestrited to a minimum energy of 10 EeV and zenith angles greater than 30◦ andless than 60◦ (0.866 > cos θ > 0.5).
• redued χ2 < 10 (χ2 from Eq. (2)).The �rst ut restrits the analysis to well-ontained events, eliminating inpartiular events near the border of the array. It a�ets the geometrial a-eptane only. The multipliity riterion in the seond ut is important alsoto ensure a good reonstrution of t1/2(1000) and R. As the multipliity isrelated to primary energy, this ut also a�ets the energy-dependent aep-tane of the array to photons. The third ut rejets the extreme tail of the χ2distribution when reonstruting R, removing ∼4% of data. As noted before,the assumption of a spherial model used in Eq. (2) is a simpli�ation and,thus, not expeted to provide a perfet desription of the omplex features ofthe shower front. This ut restrits the analysis to events where a single valueof R an be reasonably extrated. It has been heked with simulations thatno bias to photons is introdued this way.As an be seen from Fig. 2, the resulting photon e�ieny drops to smallvalues below ∼10 EeV. At higher energy, near-vertial photons an also failthe station multipliity ut due to their deep development. Therefore, theanalysis is restrited to
• primary energies ≥10 EeV;
• primary zenith angles of 30−60◦. 16
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x = t1/2 or R referring to risetime or radius of urvature, respetively) fromthe mean value x̄γ predited for photons is derived in units of the spread σx,γof the observable x,

∆x =
x − x̄γ(S(1000), θ)

σx,γ(S(1000), θ)
. (7)where x̄γ(S(1000), θ) and σx,γ(S(1000), θ) are parameterized from simulationsusing primary photons. In Fig. 3, examples are shown for these parameteriza-tions of the observables along with distributions of real events.Seondly, we ombine the information ontained in the quantities ∆t1/2

and
∆R by performing a prinipal omponent analysis [51℄, leaving a more sophisti-ated statistial analysis for the future. To determine the prinipal omponent(de�ned as the axis with the largest variane), 5% of the real events are usedtogether with results from photon simulations, see Fig. 4. For the simulations,a power law spetrum of index -2.0 has been assumed (see below for otherindies). The remaining 95% of the data are then projeted onto the prinipalaxis along with the simulated photons.This proedure allows the a priori de�nition of a simple ut in the projeted17
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Fig. 4. The deviation from a photon predition for 5% of the data (losed squares)and simulated photon events (rosses). The solid grey line is the prinipal omponentaxis identi�ed using the limited set of real showers while the dashed line is theaxis perpendiular to the prinipal omponent. The minimum energy is 10 EeV(Eγ > 10 EeV).distribution to �nally obtain photon andidate events. The ut was hosenat the mean of the distribution for photons, suh that the e�ieny of thisut is f = 0.5 by onstrution. Any real event falling above this ut willbe onsidered a photon andidate. We note that suh photon andidates, ifouring, an not yet be onsidered as being photons, as they atually might bedue to bakground events from nulear primaries. A presene of bakgroundevents would result in weaker upper limits (larger numerial values) in theanalysis approah adopted here.Finally, an upper limit on the number of photonsN CL
γ at on�dene level CL isalulated from the number of photon andidate events Nγ above a minimumenergy, Emin. The upper limit on the �ux or fration of photons above a givenenergy is based on N CL

γ along with the integrated e�ieny ε of aeptingphotons, the photon seletion ut e�ieny (f = 0.5), and either the exposure
A of the detetor for the �ux limit:

ΦCL(E > Emin) =
N CL

γ (Eγ > Emin) × 1
f
× 1

ε

0.95A
, (8)18



or the number of non-photon andidate events Nnon−γ in the data set for thefration limit:
FCL(E > Emin) =

N CL
γ (Eγ > Emin) × 1

f
× 1

ε

Nγ(Eγ > Emin) + Nnon−γ(Enon−γ > Emin)
. (9)In Eq. (8), the fator 0.95 is from the fat that only 95% of the data are usedto determine the number of photon andidate events. The energy is labeledas either the energy aording to the photon energy reonstrution, Eγ , or(required in Eq. (9)) the energy aording to the non-photon energy reon-strution, Enon−γ .Experimentally, the limit ΦCL to the �ux is more robust than the limit FCLto the fration due to the di�erent denominators of Eqs. (8) and (9). For FCL,two energy sales are required; also, with inreasing energy, the statistialunertainty of the quantity (Nγ +Nnon−γ) beomes large. For ΦCL, in ontrast,the aperture is known to good (∼3%) auray.Though the present work does not aim at extrating a omposition of nulearprimaries, it is interesting to hek whether the prinipal omponent axis foundfrom real data and the separation along it re�ets what would be expetedif the bulk of the real data is due to nulear primaries. In Fig. 5, the samesimulated photon events are used as in Fig. 4 but the 5% of real data arereplaed with a set of ∼750 Monte Carlo proton and iron showers with anenergy of 10 EeV. The separation observed in real data is both in the samediretion and of a similar magnitude as that expeted from simulated nulearprimaries.5 ResultsThe data from 2004�2006 are analysed as desribed in the preeding setion.The integrated aperture of the Observatory is 3130 km2 sr yr for the angularoverage regarded in this analysis. Above 10, 20, and 40 EeV, for the energysale of photons (in brakets for nulear primaries), the data set onsists of2761 (570), 1329 (145), and 372 (21) events. The measured values of t1/2(1000)and R are used to determine the projetion on the prinipal axis. A satterplot of this quantity vs. the primary energy is shown in Fig. 6, while in Fig. 7the orresponding distributions are plotted for the three threshold energies.No event passes the photon andidate ut. The upper limits on the photon�ux above 10, 20, and 40 EeV are then 3.8 × 10−3, 2.5 × 10−3, and 2.2 ×

10−3 km−2 sr−1 yr−1 (at 95% CL). The limits on the photon fration are 2.0%,5.1%, and 31% (at 95% CL) above 10, 20, and 40 EeV. In Tab. 1, all relevantquantities (number of events, e�ienies, resulting limits) are summarized.19
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Emin N(Eγ > Emin) Nγ N 0.95

γ Nnon−γ ε Φ0.95 F0.9510 2761 0 3.0 570 0.53 3.8 × 10−3 2.0%20 1329 0 3.0 145 0.81 2.5 × 10−3 5.1%40 372 0 3.0 21 0.92 2.2 × 10−3 31%Table 1Results of the analysis searhing for photon andidate events. The fration and�ux limits are integral limits above Emin (EeV), ε is the e�ieny of detetion andreonstrution, Φ0.95 is in units of km−2 sr−1 yr−1, and all results are 95% on�denelevel.From Fig. 6 it an also be seen that the separation of data and photon pri-maries inreases with energy. In partiular at highest energies above EGZKfor the photon energy sale, there is no indiation for photon-initiated events.Thus, the absene of photons, within the improved limits plaed in this work,shows that the method applied by the Auger Observatory to alibrate theshower energy is not strongly biased by a photon �ontamination�.We studied potential soures of systemati e�ets in the analysis. To determinethe e�ieny to photons and to establish the photon andidate ut, a primary20
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Emin 10 20 40 10 20 40 10 20 40
α E�ieny (ε) Flux (×10−3) Fration [%℄1.7 0.60 0.83 0.93 3.3 2.4 2.2 1.8 5.0 312.0 0.53 0.81 0.92 3.8 2.5 2.2 2.0 5.1 312.5 0.43 0.76 0.91 4.7 2.6 2.2 2.5 5.4 313.0 0.36 0.71 0.90 5.5 2.8 2.2 2.9 5.9 32Table 2Results when hanging the exponent (α) in the power law of the simulated spetrum.The default value is 2.0. The e�ieny of detetion and reonstrution is on the left,the resulting limit on the fration of photons is on the right, and the limit on theintegrated �ux is listed in the middle in units of km−2 sr−1 yr−1 (95% CL).in Fig. 8 for the photon �ux and in Fig. 9 for the photon fration. We plaed the�rst diret limit to the �ux of UHE photons (an earlier bound from AGASA,about an order of magnitude weaker than the urrent bounds, was derivedindiretly via a limit to the fration and the �ux spetrum [29℄). In terms ofthe photon fration, the urrent bound at 10 EeV approahes the 10−2 levelwhile previous bounds were at the 10−1 level.A disovery of a substantial photon �ux ould have been interpreted as a signa-ture of top-down models. In turn, the experimental limits now put strong on-straints on these models. For instane, ertain SHDM or TD models disussedin the literature (SHDM and TD from Ref. [21℄ based on the fragmentationalulations of Ref. [11℄, SHDM' from Ref. [12℄ 2 ) predit �uxes that exeedthe limits by a fator ∼10. It should be noted that a simple resaling of the�ux preditions from top-down models, whih were motivated by and based onthe energy spetrum observed by AGASA, would redue the predited photon�ux by only a fator ∼2 whih would still overshoot our experimental limitby a fator ∼5 at 1019 eV. While a minor ontribution from top-down modelsto the observed UHE osmi-ray �ux might still be allowed within the limitsderived in this work, urrent top-down models do not appear to provide anadequate explanation of the origin of the highest-energy osmi rays (see alsoRef. [56℄ for a omparison of photon �ux preditions to the Auger limits fordi�erent top-down model parameters).In aeleration models, photon �uxes are usually expeted to be a fator 2 ormore below the urrent bounds (f. the GZK photon preditions in the Figs. 8and 9 from Ref. [21℄). Suh �uxes an be tested with future data taken at theAuger Observatory (see also Ref. [25℄). After �ve years of operation with theomplete surfae detetor, sensitivities at the level of ∼4×10−4 km−2 sr−1 yr−1for the integrated �ux and ∼0.7% for the fration of photons above 20 EeV

2 Two others of the eight photon �ux spetra alulated in Ref. [12℄ from ryptondeays may still be ompatible with our limits within a fator ∼2.23
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