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ABSTRACT

Measurements of galaxy cluster abundances, clustering properties, and mass-

to-light ratios in current and future surveys can provide important cosmolog-

ical constraints. Digital wide-field imaging surveys, the recently-demonstrated

fidelity of red-sequence cluster detection techniques, and a new generation

of realistic mock galaxy surveys provide the means for construction of large,

cosmologically-interesting cluster samples, whose selection and properties can be

understood in unprecedented depth. We present the details of the “maxBCG” al-

gorithm, a cluster-detection technique tailored to multi-band CCD-imaging data.

MaxBCG primarily relies on an observational cornerstone of massive galaxy clus-

ters: they are marked by an overdensity of bright, uniformly red galaxies. This

detection scheme also exploits classical brightest cluster galaxies (BCGs), which

are often found at the center of these same massive clusters. We study the algo-

rithm herein through its performance on large, realistic, mock galaxy catalogs,
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which reveal that it is > 90% pure for clusters at 0.1 < z < 0.3 with 10 or

more red galaxies, and > 90% complete for halos at 0.1 < z < 0.3 with masses

of > 2 × 1014h−1M⊙. MaxBCG is able to approximately recover the underlying

halo abundance function, and assign cluster richnesses strongly coupled to the

underlying halo properties. The same tests indicate that maxBCG rarely frag-

ments halos, occasionally overmerges line-of-sight neighboring (≃ 10h−1 Mpc)

halos, and overestimates the intrinsic halo red sequence galaxy population by no

more than 20%. This study concludes with a discussion of considerations for

cosmological measurements with such catalogs, including modeling the selection

function, the role of photometric errors, the possible cosmological dependence

of richness measurements, and fair cluster selection across broad redshift ranges

employing multiple bandpasses.

Subject headings: galaxies: clusters — cosmology: observations — methods: data

analysis

1. Introduction

Clusters of galaxies are the largest bound objects in the Universe. They are the likely

observational counterparts of dark matter halos, whose masses, abundance, and distribution

are sensitive probes of cosmology. Dark matter dominates their matter content, with baryons

forming no more than ≃ 15% of the total mass (Voit 2005, and references therein). The

baryonic component is comprised of stars bound to constituent galaxies, stars that make

up the intra-cluster light (Zwicky 1951; Gonzalez et al. 2005; Krick et al. 2006), and a hot

intra-cluster medium which accounts for ≃ 7/8 of the baryons (David et al. 1995; Evrard

1997; Allen et al. 2002). In addition to fueling stars, the gas component is responsible

for X-ray emission (Sarazin 1986; Rosati et al. 2002) and Sunyaev-Zeldovich decrements

(Carlstrom et al. 2002), all of which make possible the baryonic detection of dark matter

halos.

In cosmological measurements, the high end of the halo mass function is the most

observationally accessible. In this regime, cluster abundances are most sensitive to changes

in the proper distance at low redshift. By z & 1, abundances become more sensitive to

the growth function (Haiman et al. 2001; Levine et al. 2002; Battye & Weller 2003). This

sensitivity has motivated numerous X-ray and optical searches for the most massive clusters

across a range of redshifts. Observations provide constraints on the abundance of clusters as a

function of observables such as X-ray luminosity or optical richness. Extracting cosmological

constraints from these observations requires a good understanding of the relationship between
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these observables and the underlying cluster mass.

Among the various cluster detection schemes, optical imaging catalogs enjoyed the ear-

liest successes, targeting the high S/N end of the abundance function across a range of

redshifts. These began with the early photographic plate surveys of Abell (Abell 1958;

Abell et al. 1989) and Zwicky (Zwicky et al. 1968) and have since moved to digitized plate

catalogs (Lumsden et al. 1992; Dalton et al. 1997; Gal et al. 2000) and CCD-imaging cata-

logs (Postman et al. 1996; Annis et al. 1999; Olsen et al. 1999; Lobo et al. 2000; Goto et al.

2002; Gladders & Yee 2005). During the 1980’s, large spectroscopic catalogs were also gener-

ated, drawing from a host of redshift surveys including the CfA redshift survey, (Huchra & Geller

1982, and many others), the Nearby Galaxies Catalog (Tully 1987), the ESO Slice Project

(Ramella et al. 1999), the Las Campanas Redshift Survey (Tucker et al. 2000), the Nearby

Optical Galaxy Sample (Giuricin et al. 2000), the Southern Sky Redshift Survey (Ramella et al.

2002), the 2df redshift survey (Merchán & Zandivarez 2002; Eke et al. 2004; Yang et al.

2005), the Sloan Digital Sky Survey (Miller et al. 2005; Berlind et al. 2006), and DEEP2

(Gerke et al. 2005).

At about the same time, space-based X-ray telescopes became an invaluable tool for clus-

ter science, detecting hundreds of X-ray luminous clusters in flux limited surveys (Schwartz

1978; Gioia et al. 1990; Ebeling et al. 1998; Böhringer et al. 2001, 2004). Individual clus-

ters have been detected in this way out to z ≃ 1.4 (Mullis et al. 2005; Brodwin et al. 2005).

More recently, the Sunyaev-Zeldovich Effect has been cited as a powerful means for cluster de-

tection (Carlstrom et al. 2002). Imminent ground-based Sunyaev-Zeldovich surveys promise

nearly redshift-independent detections of a range of halos (Ruhl et al. 2004; Loh et al. 2005).

While finding massive clusters has become more routine, returning robust cosmological

constraints has proven challenging. For any method of detecting clusters, robust cosmo-

logical constraints are impossible without a reliable estimate of the absolute calibration of

and scatter in the observable–mass relation. Scatter can be due to both the stochastic na-

ture of the physics that relates the observables to mass, and to noise in the measurements

themselves. Because the abundance function drops precipitously with increasing mass, any

attempted selection of dark matter halos imposed by a cut on an observable in this high-mass

regime scatters systems asymmetrically above and below this cut, a selection effect known as

Eddington bias (Eddington 1913). In the exponential tail of the distribution, the number of

objects scattered up across the threshold in the observable considerably exceeds the number

scattered down, and depending on the size of the scatter, this difference can be comparable

to the sample size itself. (e.g., Lima & Hu 2005).

The quality of the cosmological constraints from any measurement of cluster abundances

will depend on the amount of scatter between the observable and halo mass, on the dynamic
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range of masses probed, and on how well the mass–observable relation can be calibrated.

Thus interpretation of these abundance measurements typically requires complex modeling

strategies (Ikebe et al. 2002; Holder et al. 2000; Levine et al. 2002; Battye & Weller 2003)

or self-calibration techniques (Majumdar & Mohr 2003, 2004; Lima & Hu 2005) to calibrate

them and to account for the selection biases incurred by the scatter in the mass-observable

relation. In addition, self-calibration techniques may be more challenging than previously

expected if halo clustering depends on properties other than mass (Wechsler et al. 2006b).

Despite their challenges, optically-selected cluster catalogs offer many advantages over

other methods. Optical surveys are generally able to detect individual galaxies at high S/N

to high redshift and in wide fields. This has enabled spectroscopic surveys to identify halos

at the group scale. Imaging catalogs can in principle do the same, over a substantially

larger redshift range, if they can limit the degrading effects of projection. By contrast, X-ray

surveys are relatively insensitive to projection issues (Ebeling et al. 1998; Böhringer et al.

2000) and can be used to detect intermediate-mass groups. Unfortunately the relatively low

X-ray luminosity of groups limits detection to the most luminous or low redshift objects.

In addition to the obvious advantage of more bang for the buck if photometric surveys

can be used to identify clusters robustly — indeed, such surveys are often done primarily for

other reasons, such as the measurement of the galaxy power spectrum — there are substantial

advantages to identifying systems farther down the abundance function. First, cosmological

constraints are improved when one can measure the mass function over a larger dynamic

range: e.g., the difference in the abundance of low mass to high mass systems can constrain

the normalization of the power spectrum with less degeneracy than the pure abundance of

the highest mass systems. Second, the effect that scatter has on weakening constraints are

somewhat mitigated when one can identify systems farther down the abundance function,

where the mass function is shallower.

The other strong advantage of optical surveys over other methods is the vast amount

of additional data available on the clusters, that can both contribute to mass calibration

and that can inform our understanding of galaxy evolution. In addition to measurements of

cluster clustering (e.g. Gonzalez et al. 2002) that are possible with other types of selection,

the galaxies used to identify the clusters can also be used for weak lensing measurements

(Sheldon et al. 2001, 2006), and for velocity measurements if some or all of the galaxies

have spectra (e.g., Yang et al. 2005; McKay et al. 2006). They can also be used to measure

the luminosity function and profiles of galaxy clusters (Hansen et al. 2005; Popesso et al.

2005), and the cluster mass-to-light-ratio (Tinker et al. 2005; Popesso et al. 2006), which

can improve cosmological constraints when combined with galaxy clustering measurements

(van den Bosch et al. 2003).
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As we will show, in imaging surveys, cluster catalogs that span a broad range of masses

and redshifts are a possibility. Minimizing projection is the primary driver behind mod-

ern cluster and group-finding algorithms. In recent years, imaging-based techniques have

matured with the construction of galaxy catalogs from surveys such as the Digitized Sec-

ond Palomar Observatory Sky Survey (DPOSS; Djorgovski et al. 1999), the Palomar Dis-

tant Cluster Survey (PDCS; Postman et al. 1996), the Red-Sequence Cluster Survey (RCS;

Gladders & Yee 2005), and the Sloan Digital Sky Survey (SDSS; York et al. 2000) to name

a few. Automated efforts were initiated in photographic plates, beginning with counts-in-

cells techniques (Couch et al. 1991; Lidman & Peterson 1996) and adaptive kernel estimators

(Gal et al. 2000, 2003). Around the same time the powerful matched-filter (Postman et al.

1996) and adaptive matched filter (Kepner et al. 1999) codes were developed for use on the

new CCD imaging. The adaptive kernel method of Gal et al. (2000) was among the first to

employ color cuts conducive to cluster galaxy selection in their codes. The Red-Sequence

method (Gladders & Yee 2000) was the first to explicitly use color selection of red-sequence

galaxies as the primary lever arm for cluster detection. The cut-and-enhance (Goto et al.

2002) and the spectroscopic C4 algorithms (Miller et al. 2005) generalized this notion of

color uniformity to clustering in any color.

The guiding principles usually invoked in the appraisal of these cluster finders are that

the algorithm must be automated and objective, should impose minimal constraints on

cluster properties, have a well-understood selection function, and should provide physical

properties of the clusters, such as redshift, luminosity, and richness (Gal et al. 2003; Gal

2006). The preceding algorithms address these points with varying degrees of success, and

primarily concern themselves with the optically-richest systems. Since cosmology with clus-

ters of galaxies is an integral component of many current and future surveys, cluster-finding

algorithms that exploit the full power of modern imaging surveys will become increasingly

important as well. In addition to uncovering the most massive halos, it is desirable that

they should also produce cluster catalogs that extend down the mass function, to measure

the mass function over the largest possible dynamic range.

Evidence from studies of galaxy environments suggest a means by which to accom-

plish this. Galaxies in dense environments preferentially exhibit both early-type morpholo-

gies (Hashimoto & Oemler 1999; Goto et al. 2003; Kuehn & Ryden 2005) and red colors

(Balogh et al. 2004; Hogg et al. 2004; Tanaka et al. 2004). Indeed, Weinmann et al. (2006,

and references therein) confirm that the red fraction in clusters increases with increasing halo

mass and luminosity, and decreasing halo-centric radius. Thus, the presence of a nascent red

galaxy population in lower mass, lower richness halos, although less evolved than the red

galaxy population of massive clusters, provides the opportunity to extend cluster detection

to lower mass scales.
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In this work, we present “maxBCG”, an optical cluster-finding algorithm adapted specif-

ically to wide-field, multi-band digital imaging surveys, such as the Sloan Digital Sky Survey

(SDSS). This algorithm takes advantage of observational cornerstones of cluster galaxies:

they are typically the brightest galaxies at a given redshift; their brightest members share

very similar colors; and they are spatially clustered. As we will show, these properties alone

are sufficient to robustly select and center the richest clusters, while the power of the red-

sequence takes over at lower richness to select group-sized objects. Combining these factors

in an algorithm, and running it on surveys with the size and quality of the SDSS imaging

enables the generation of immense, high-quality cluster catalogs whose selection function can

be quantitatively determined. Between 0.1 < z < 0.3, maxBCG can reliably identify objects

with > 10 red galaxies, and masses of ∼ 2 × 1014M⊙ in a volume limited way.

Section 2 of this paper contains an outline of the maxBCG algorithm, and the details

of its components. The execution of the algorithm is covered in §3, followed by study of

the selection function and performance of the algorithm in mock galaxy catalogs in §4. A

discussion and summary conclude the paper. Throughout this paper, we assume Ωm =

0.3, ΩΛ = 0.7 and h = 1. A companion paper, Koester et al. (2006), presents a catalog

of 13,823 clusters identified using this method from SDSS data, over the redshift range

0.1 < z < 0.3.

2. Algorithm

2.1. Outline

We introduce the maxBCG algorithm, a new cluster detection technique which exploits

three primary features of galaxy clusters. The first is the obvious spatial clustering of galaxies

in clusters, which falls off as ∼ 1/r projected in 2 dimensions (Section 2.3). The second is

that the most luminous cluster galaxies inhabit a tight sequence in the color-magnitude

diagram (CMD), the so-called “E/S0 ridgeline”. The galaxies in the E/S0 ridgeline have

very uniform colors, and are among the reddest, brightest, and rarest galaxies at a given

redshift. Because of the strong 4000 Åbreak in their rest-frame spectra, their color is tightly

correlated with redshift, so that color measurements have the additional advantage that they

provide accurate redshift estimates.

The last feature is that there often exists a unique brightest cluster galaxy (BCG) that

resides in the E/S0 ridgeline, is typically coincident with the center of the galaxy distribution,

and is nearly at rest relative to the halo center. BCGs in rich clusters usually take the form

of giant elliptical galaxies, so large that they are only found at the centers of galaxy clusters.
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Thus they provide important additional information about cluster locations and redshifts.

These features are folded into a likelihood function which is redshift-dependent. Individ-

ual objects in an input photometric galaxy catalog are evaluated at an array of redshifts with

this composite function, to assess the likelihood that they are BCGs living in an overdense

environment consisting of galaxies with a small dispersion in color. An outline of algorithm

is as follows:

1. Using the likelihood function, each object in an input galaxy catalog is tested at an

array of redshifts for the likelihood that it is a cluster center.

2. Each object is assigned the redshift which maximizes this likelihood function.

3. The objects are ranked by these maximum likelihoods.

4. The object with the highest likelihood in the list becomes the first cluster center. All

other objects within z = ±0.02 (the typical σz on a red galaxy), a scaled radius r200, and

lower maximum likelihood are removed from the list of potential centers.

5, The next object in the list is handled similarly, and the process is continued, flagging

other potential cluster centers within that object’s neighborhood which have lower likeli-

hoods.

6. All unflagged objects at the end of this percolation are kept, and are taken as BCGs

identifying clusters in the final cluster list.

As a consequence of this method, each cluster gets a photometric redshift, the redshift

which maximizes its likelihood of being a cluster center. During the process, the number

of galaxies within 1h−1 Mpc, within ±2σ of the E/S0 ridgeline, and brighter than some

minimum luminosity, Lmin (see section 2.5), and dimmer than the BCG is recorded as Ngals,

an initial richness estimate. A scaled richness estimate, N r200
gals , is also generated. The only

difference from Ngals is that instead of using a fixed aperture, it counts objects within r200

of the BCG, where r200 = 0.156N0.6
galsh

−1 Mpc (Hansen et al. 2005).

In the following, the components of the likelihood function encoding these properties

are outlined and the overall likelihood function is described. The section concludes with a

description of the input galaxy catalog. Along the way we justify the choices made in design

of the algorithm.
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2.2. Likelihood Framework

The general strategy for finding clusters in maxBCG is to maximize the likelihood that a

galaxy resides at the center of a cluster by varying the redshift. This is a two-part likelihood

function. One part checks a galaxy for its similarity to a BCG, and the other part measures

the match of a galaxy’s environment to the E/S0 ridgeline. In what follows, we build the

components of the likelihood:

Ltot(z) = LBCG(z)LR(z) (1)

where LBCG and LR are the BCG and ridgeline likelihoods. The algorithm proceeds by

evaluating this full likelihood function for the whole galaxy density field and labeling peaks

in the field.

2.3. Ridgeline Likelihood

The ridgeline likelihood is broken up into spatial and color filters, which are folded into

a matched-filter likelihood. Each component contains parameters that are driven observa-

tionally, such as the width of the E/S0 ridgeline, or theoretically, such as the NFW density

(Navarro et al. 1996) profile.

2.3.1. Spatial Filter

N-body simulations and studies of galaxy distributions in rich clusters (e.g., on early

versions of this algortihm, Hansen et al. 2005) have shown that both the distribution of dark

matter around dark matter halos and the distribution of galaxies around cluster centers can

be well-modeled by an NFW profile. In three dimensions,

ρ(r) = δcρc
1

(r/rs)(1 + r/rs)2
, (2)

where rs = r200/c is a scale radius, c and δc are dimensionless parameters, and ρc is the

critical density. With x = r/rs, Bartelmann (1996) has shown that this can be written as a

surface density:

Σ(x) =
2ρsrs

x2 − 1
f(x) (3)
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with

f(x) =



















1 − 2√
x2−1

tan−1
√

x−1
x+1

x > 1

1 − 2√
1−x2

tanh−1
√

1−x
x+1

x < 1

0 x = 1

0 x > 20

(4)

Because f(x) diverges at small x, and because this assumption is shakier at small radii,

the profile is truncated at x = 0.667, or r = 100h−1 kpc (see below). Objects near the center

are given large weights, and those far away are strongly down-weighted. This model allows

for a variable scale radius, rs that could be additionally maximized to provide an optimal

size for each cluster. We choose a fixed rs = 150 kpc in this implementation. This quantity

is normalized to 1 by integrating the area over 0.0 < r < 3h−1 Mpc (0.0 < x < 20). Tests

show that varying rs between 100 kpc and 1h−1 Mpc only has a very marginal influence

on the overall abundance function or the algorithm selection function. In general, and in

accordance with other authors (Lubin & Postman 1996; Gladders & Yee 2000), we find that

the exact parameters of the radial likelihood function have only a minimal effect on the

performance. Only extremes, such as top-hat spatial filters that have sharp edges, strongly

influence the performance.

2.3.2. Color Filter

Investigations of rich clusters indicate the presence of a universal red-sequence, extending

from the nearby Coma and Virgo clusters (Bower et al. 1992), through intermediate redshifts

(Smail et al. 1998; Barrientos 1999), and out to redshifts as high as z ∼ 1.4 (Mullis et al.

2005; Eisenhardt et al. 2005). This population of galaxies dominates the bright end of the

cluster luminosity function (Sandage et al. 1985; Barger et al. 1998) and consists of E and S0

galaxies objects with a narrow scatter in color, hence its designation as the “E/S0 ridgeline”

(Visvanathan & Sandage 1977; Annis et al. 1999, Figure 1). This tight sequence is due to the

presence of the uniformly old underlying stellar populations in these galaxies, resulting from

passive evolution and minimal star formation. In Coma and Virgo, the stellar component

has most likely been in place for at least 2 Gyr (Bower et al. 1992). For a review of the red

sequence in galaxy clusters, see Gladders & Yee (2000) and references therein.

The red sequence is not limited to galaxy clusters. It persists smoothly down to the lower

density environments harbored in groups (Postman & Geller 1984; Zabludoff & Mulchaey

1998; Tran et al. 2001). Transformation of a field spiral into a red-sequence elliptical has been

hypothesized to occur in two steps (e.g., Weinmann et al. 2006): 1) mergers between spiral

galaxies in low velocity groups create ellipticals (Toomre & Toomre 1972), which in turn 2)
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are stripped of their hot gas through processes such as ram pressure stripping and galaxy

harassment, effectively truncating star formation (Larson et al. 1980; Balogh et al. 2000).

This picture has been supplemented by recent simulations which implicate active galactic

nucleus (AGN) feedback in truncating star-formation (e.g., Croton et al. 2006). Depending

on the state of the evolution of the group and the possible presence of AGN, the E/S0

ridgeline may be ill-defined in a given group. However, the presence of red-sequence galaxies

is ubiquitous in higher mass groups, and extends substantially farther down the richness

function than any properties that depend on cluster gas properties.

Motivated by the location of the 4000 Å break and the luminous red galaxy (LRG)

cuts outlined by Eisenstein et al. (2001), we employ cuts in SDSS g − r and r − i in our

search (Section 3), which depend on the color-redshift relation of the E/S0 ridgeline. First,

we measured the width of the ridgeline using stacked Abell clusters at z ≃ 0.1 in the SDSS

spectroscopic survey, and fit a line to the color-magnitude diagrams, as there is a small tilt.

We then projected the distribution along the line. The resulting color distributions are well-

fit by Gaussians with widths if 0.05 and 0.06 in g− r and r− i, in agreement with a range of

studies (Bower et al. 1992; Smail et al. 1998; López-Cruz et al. 2004; Barrientos et al. 2004);

since the color errors are small (≃ 0.005 mag) for this bright sample (r . 17.7), most of the

width is intrinsic to the ridgeline. This information is folded into LR for some color j − k

using a normalized function Gj−k, of the following form:

Gj−k(z) =
1√
2πσ

exp
(xj−k − x̄(z))2

2σ2
(5)

where xj−k is the color of some galaxy being tested, x̄(z) is the predicted E/S0 ridgeline

color at some redshift (see below) and the width, σ, is determined according to

σ =
√

σ2
j−k + (σr

j−k)
2 (6)

Here, σj−k is the error in the measured color of an individual galaxy and σr
j−k is the intrinsic

width of the E/S0 ridgeline, 0.05 for g − r and 0.06 for r − i. The ridgeline width is taken

to be constant with both redshift and richness, a reasonable approximation for the redshift

range considered here. It is clear that this function will peak in the field of a rich cluster

when the right redshift-color combination is tested, and that the peak will be strong for

galaxies with well-measured colors and for clusters with especially tight E/S0 ridgelines.

One feature of this prescription is that the photometric error, σj−k, is folded into the

cluster detection process. Galaxies with poorer color measurements are able to contribute to

ridgelines at a wider range of redshifts, albeit at a suppressed level because of the breadth of

Gj−k. Those with good color measurements have a very narrow, highly peaked Gj−k, such
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that they make a very strong contribution to the ridgeline at the right redshift, and a van-

ishingly small contribution to ridgelines at other nearby redshifts. The input of photometric

errors to cluster detection is somewhat similar to that in Gladders & Yee (2000), where the

color slices are defined according to the typical photometric error and the intrinisic ridge-

line width. For comparison, Goto et al. (2002) use photometric error estimates to exclude

galaxies from the cluster detection process whose color errors are larger than the expected

ridgeline width. Kim et al. (2002) and Gal et al. (2000) do not use the photometric error

explicitly in cluster detection.

As noted by Gladders & Yee (2000), the fiducial color–redshift model, x̄(z), does not

need to be perfect to find clusters; clustering in color requires little knowledge of redshift.

However, accurate color–redshift relations are certainly helpful in providing accurate pho-

tometric redshifts. This is a very reasonable demand, as the strong 4000Å break feature

in red-sequence galaxies makes g − r an effective indicator of redshift. This feature enables

red-sequence algorithms to deliver accurate photometric redshifts without spectra. The ac-

curacy of the photometric redshifts is borne out in the accompanying maxBCG catalog paper

(Koester et al. 2006), where the photometric redshift errors are shown to be σz < 0.015 for

clusters with N r200
gals > 10 and with 0.1 < z < 0.3. For comparison, in the SDSS, the method

of Goto et al. (2002) also returns photometric redshift errors of σz = 0.0147 over a similar

redshift range, while the hybrid-matched filter of Kim et al. (2002) has errors that range

from σz = 0.007 to 0.02. Outside the SDSS, the digitized NSC (Gal et al. 2003) survey

reaches σz as low as 0.033, while the RCS (Gladders & Yee 2005) estimate σz = 0.05 over

0.2 < z < 1.0.

In maxBCG, the determination of x̄(z) is driven observationally, by the SDSS LRGs

(Eisenstein et al. 2001) whose colors and redshifts serve as a template. An advantage of

using the LRGs is the fact that they provide observationally-determined colors and redshifts

of the early-type galaxies that we expect to be in dense environments. A drawback is that the

standard LRG color–magnitude selection criteria are only valid for z > 0.15, so that LRGs

outside this range must be selected by alternate means. We handle this shortcoming by using

a combination of spectroscopic classification (eclass < 0) and morphology (fracDev
r

> 0.8)

(Stoughton et al. 2002; Bernardi et al. 2005) to extract luminous early-type galaxies below

z = 0.15 from the SDSS full spectroscopic sample (Adelman-McCarthy et al. 2006). The

g − r and r − i colors of these spectroscopically-identified objects were used to predict the

ridgeline colors of z < 0.15 clusters. A fiducial version of the cluster finder was then run,

and spectroscopically-identified cluster members were used to create a refined prediction of

the color–redshift relation at z < 0.15.

Beyond z = 0.15, where the standard LRG selection is robust, and clusters with multiple
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member spectra are less common, the LRG colors were used to select the initial cluster

galaxies. Their colors were then used to calibrate the color–redshift relation. The resulting

piecewise-defined function for determination of the ridgeline g− r color vs. redshift is shown

in Figure 2. A similar relation exists for r−i. The combined g−r and r−i models constructed

in this way are at the heart of the ridgeline component of the likelihood function, as well as

the photometric redshifts provided by this algorithm.

For comparison, the LRG g − r colors are shown in Figure 2, as shown in Table 1 of

Eisenstein et al. (2001). The upper and lower short dashed lines are the g-r colors predicted

from their Pegase simulations for passive (upper) and star-forming (lower) dotted lines. The

LRG cuts in the SDSS are designed to select the brightest & 3L∗ red galaxies, which should

also be the reddest. The upper short-dashed line indeed falls on the red end of the cluster

galaxy colors at each redshift, and the star-forming model forms a sort of lower bound for

the cluster members, so the cluster colors (and our model) compare quite well with the LRG

sample.

2.3.3. Constructing the Ridgeline Likelihood

The general framework for developing LR is identical to that derived by Postman et al.

(1996). The following reviews this process. The application of this formalism to our filters

is valid as long as the assumptions about the Gaussian character of the galaxy number

counts in a given angular aperture hold. Even when this begins to fail, the efficacy of the

red sequence and the fact that the likelihoods are used as a ranking tools (§3) and not as

absolute assignments of cluster significance allows us to use this method of identification for

relatively low mass groups.

The framework is constructed by first writing down the cluster likelihood:

LR ∼ 1

σ
exp

[b(c) + ΛNM(r, c) − D(r, c)]2

σ2
(7)

where M(r, c) is the model for the cluster spatial and color distribution and ΛN is a measure

of the cluster richness. In this work, we take M(r, c) = Σ(r/rs)Gg−rGr−i, described in

equations (3) and (5). This is essentially the contribution of a galaxy with colors c, at a

physical radius r to the likelihood that a test point is in a cluster ridgeline. The uncertainty,

σ2, is Poisson since the number counts in the aperture are dominated by background, b(c).

The Poisson nature then implies σ2 ≃ b(c). We note that the Gaussian approximation is

assumed in Eq. 7; since the counts are essentially Poisson distributed with a high mean, the

Gaussian approximation is sufficient.
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We have on hand a survey containing galaxies with colors and magnitudes, c and m, and

radial distances r from a point of interest. Sitting at some point in the survey, the likelihood

is evaluated over the full survey, D(r, c), such that:

lnLR ∝
∫

Area,c

(

ln σ +
[b(c) − D(r, c)]2

σ2
+

[Σ(r/rs)Gg−rGr−i]
2

σ2

)

(8)

It is apparent in the previous sections that the relevant quantities in the likelihood are

all functions of redshift. The models for the colors and the angular scale of the spatial

filter will be set after a redshift is chosen for likelihood evaluation (§3). Given that σ2 ≃
b(c), Postman et al. (1996) have shown that maximizing this quantity is nearly the same as

maximizing

lnLR ∝
∫

Σ(r/rs)Gg−rGr−i

b(c)
d2rdmdc (9)

The integral is evaluated by taking the input galaxies to be δ-functions at the radii

and magnitudes at which they are observed. This turns the integral into a sum over all

the galaxies in the survey (Eq. 10). This likelihood equation is then applied in following

manner: Sit on some galaxy in the survey, a “potential” BCG (section 2.4) at a location

θ. Look at each neighboring galaxy, k, of Ng total neighboring galaxies. Each neighboring

galaxy has colors ck, and projected distance rk from the potential BCG. Compute the product

Σ(r/rs)Gg−rGr−i for each neighboring galaxy, and sum:

S(θ) =

Ng
∑

k=1

Σ[rk(θ)]Gg−r(ck)Gr−i(ck) (10)

The sum S(θ) consequently embodies the measure of a galaxy’s environment, and serves as

the ridgeline likelihood.

2.4. BCG Likelihood

2.4.1. Brightest Cluster Galaxies

The second component of the full maxBCG likelihood is LBCG, the likelihood that a

galaxy is a brightest cluster galaxy. By definition, every cluster has a BCG, and it usu-

ally takes the form of a luminous early-type galaxy with an r−1/4 surface brightness profile.

In some cases the BCG is a giant “cD” galaxy, whose surface brightness is shallower than

r−1/4 at large radii, forming the cD-envelope. Their luminosities can reach ∼ 10L∗ and the
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envelopes can extend up to 1 Mpc (Hoessel & Schneider 1985). Particularly in the rich-

est clusters, these galaxies comprise a statistically-distinct population (Hansen et al. 2005;

Loh & Strauss 2006). In measuring the cluster luminosity function, Hansen et al. (2005)

have shown that excluding the BCG markedly improves the fit to a Schechter function, and

that the BCG luminosity function is approximately Gaussian. The contrast between BCGs

member galaxies for poorer systems is less evident.

Because of the rarity of clusters, galaxies with BCG properties are themselves rare.

Using this extra information increases the fidelity of cluster finding. With this likelihood, we

look for individual galaxies with specific properties, and fold this in with a measurement of

their environment as specified by the ridgeline likelihood. As in Loh & Strauss (2006), who

statistically selected BCGs from the SDSS LRG sample on the basis of local density and

magnitude, we find that average BCGs make up the bright tip of the red-sequence. Their

location in the E/S0 ridgeline is clear in ridgeline plots in Figure 1.

In an effort to study the ubiquity of BCGs, and quantify the characteristics of BCGs, the

combined NORAS-REFLEX sample described in Koester et al. (2006) was used to conduct

a preliminary visual inspection of the 99 clusters from this combined catalog. We find that

79/99 (≃ 80%) of the clusters in this sample exhibit a single distinct BCG. Of the remaining

20 clusters, 15 display 2 BCG-like galaxies, and the remaining 5 have no clear BCG and are

in fact rather optically-poor. A handful of those with 2 BCG-like galaxies appear as if they

are two separate systems undergoing mergers. Of the 79 distinct BCGs, 74 are within ±0.1

in g − r of the ridgeline for the cluster (≃ 94%), and 82 out of the full sample of 99 fell

within the ridgeline (≃ 83%).

The BCGs in these clusters fall very near the X–ray centers as well. The median

separation of the 79 distinct, visually-identified BCGs, is 54h−1 kpc. When we add in the

clusters with 2 BCGs, the median separation rises to 77h−1 kpc, and the median separation

of the full 99 clusters is 220h−1 kpc.

The reader is also referred to Koester et al. (2006), where it is revealed that in the final

cluster catalog, the maxBCG algorithm centers clusters within a median 57h−1 kpc of the

X–ray center for this same NORAS-REFLEX sample.

Taken together, these results demonstrate that classical BCGs fall within the E/S0

ridgeline better than 90% of the time, and that they are quite near the center of the cluster,

both of which are encouraging for the task at hand. Nevertheless, the complex nature of

the cluster environment creates exceptions to this pattern, and this must be kept in mind as

LBCG is folded in the maxBCG technique.
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2.4.2. BCG Model

LBCG is calculated independently of environment. Our goal is to tune maxBCG to find

rich clusters, and to center those clusters on the cD-like BCGs. Thus, we need to build a

sizable sample of training BCGs, enough to generate a model for the colors and magnitudes

of such objects. This observationally-driven model is constructed in two steps. First, fiducial

BCGs are chosen by constructing a template consisting of bright (Mr < −21) LRGs and their

distribution in g− r, r− i, i, and z space modeled with a linear combination of Gaussians fit

by expectation maximization algorithm (Connolly et al. 2000). Below z = 0.15, the SDSS

spectroscopic sample was used to select LRGs similar to ridgeline calibration in §2.3. The

maxBCG cluster finder is then run with these bright LRGs serving as the BCG model for

LBCG. Then, to construct a refined BCG model, a set of visually identified BCGs from the

richest clusters across 0.1 < z < 0.3 are chosen from this first run. We identify 100 BCGs

in rich clusters with a characteristic cD envelope, and a single nucleus. Because of their

luminosities, most have spectroscopic redshifts in the SDSS, so that it is possible to track

their colors and magnitudes as function of redshift.

The r-band magnitudes are plotted as a function of redshift for these BCGs in Figure

3. In this figure, note that we plot the r-band for comparison to the study of Loh & Strauss

(2006), but in practice we use the i-band magnitude (see §2.5 and the Discussion). There is

a clear trend of magnitude with spectroscopic redshift. We fit a quadratic function to this

relation, and use it as our model for the trend of BCG magnitude with redshift. The slope of

this magnitude–redshift relation is nearly identical to that in Loh & Strauss (2006), with an

offset to brighter magnitudes, as expected. The BCGs from rich objects in the full maxBCG

catalog in (Koester et al. 2006) (greyscale, Figure 3) display a magnitude–redshift relation

similar in shape to that found by Loh & Strauss (2006).

The BCG colors evolve with redshift in essentially the same way as the ridgeline does

(see Figure 1 for examples of BCGs in the color–magnitude relation). This is consistent with

the results Weinmann et al. (2006), who show that on average, central galaxies properties

correlate well with their satellite properties.

The likelihood, LBCG, is specified to be

LR(z) = GBCG
g−r (z)GBCG

r−i (z)e−((m−mi)/σc)2 . (11)

As mentioned above, the Gaussians GBCG
j−k are nearly identical to their ridgeline-likelihood

counterparts. A crucial component of this likelihood is the smooth cutoff function that

ensures that a galaxy’s luminosity (indicated by its i-band magnitude) is high enough to

be a BCG at a given redshift. The cutoff, mi, is taken from the i-band magnitude–redshift

relation, similar to that for the r-band in Figure 3. The width σc, is taken from Loh & Strauss
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(2006) to be 0.3 magnitudes. Fitting in this way to rich clusters makes us most sensitive to the

richest clusters that harbor these BCGs, and further boosts their cluster likelihoods relative

to poorer systems. Through visual inspection, we find that this component of the maxBCG

likelihood is most effective in properly centering clusters on what one would manually classify

as the BCG.

2.5. Input Galaxy Catalog

For ease of processing, the input catalog is broken up into redshift-dependent slices. In

each slice we include galaxies whose colors are within 3σ of the predicted g − r and r − i

colors. A redshift-dependent lower magnitude limit is also imposed in each slice, such that

galaxies with luminosities down to some Lmin are measured for each cluster, regardless of

redshift. This requirement reflects the wish to measure richnesses and find clusters in a

manner that does not dependent on survey flux limits.

We define the cutoff magnitude, a(z) + M∗, which is designed to consistently select

objects above Mmin at all redshifts we consider. M∗ is drawn from the galaxy luminosity

function in clusters, and a(z) embodies distance, k-correction, and evolution of M∗. This

cutoff is selected so that at the redshift limit of the catalog, objects of brightness a(z) + M∗

have small photometric errors and are still well within the ridgeline of typical clusters. We

work in the i-band when applying these cuts, as the 4000Å break at z < 0.3 stays well out

of the range of the i-band, which is centered at ≃ 7400Å . The typical early-type spectra

red-ward of 5000Å are relatively flat compared to the break, so this minimizes differences

in luminosity estimates that would be due to large spectral features moving into and out of

bands.

We will shortly determine a(z), but first it is instructive to consider the relevant mag-

nitude range we wish to target. M r
∗ in the r-band for the galaxy population is -20.44

(Blanton et al. 2003), at z ≃ 0.1, and rises to -20.75 in rich clusters (Hansen et al. 2005).

Using Table 1 in Eisenstein et al. (2001) for the non-star-forming galaxy model, we can

convert this characteristic r-band magnitude for rich clusters to an approximate i-band

magnitude, M i
∗, at z = 0.1. For this combination, M i

∗ = −21.24, which implies a luminosity

L∗ = 2.3 × 1010h−1L⊙. For the galaxy catalog we use in Koester et al. (2006), a cutoff of

0.4L∗ is chosen, for which the maximum magnitude of the input galaxy catalogs we have on

hand, corresponds to a redshift limit of ∼ 0.40. For the rest of this paper, we refer to this

0.4L∗ as “Lmin”.

To actually determine the appropriate k-corrected magnitude cut at each redshift range
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of interest, we use a Pegase-2 stellar population/galaxy formation model, similar to that

of Eisenstein et al. (2001). Briefly, a range of plausible scenarios was run until the color

distribution was very near that of the LRG/BCG colors. A very metal-rich non-primordial

gas model was chosen, and predictions for the i-band magnitude of an Lmin galaxy over

the range of redshifts was output. The characteristic magnitudes and luminosities are set

at M i
∗ = −21.22 in this model, which corresponds to 2.25 × 1010L⊙. This compares well

with the value of M i
∗ = −21.24 derived from the observed cluster luminosity function. The

corresponding Lmin, as defined above, is then 0.9× 1010h−1L⊙, with an absolute magnitude

of −20.25 in the i-band. These outputs are saved as our redshift-dependent magnitude limit

a(z) + M∗.

One final magnitude-dependent step is enforced when actually running the algorithm. In

evaluating LR to test some galaxy for its similarity to a BCG, only galaxies with apparent

magnitudes dimmer than that of the potential BCG are included in LR. This works in

concert with LBCG to select clear BCGs more reliably; if there are two bright galaxies with

otherwise nearly equal likelihoods, the dimmer one will almost always receive the lower

ridgeline likelihood, by virtue of the fact that LR increases with the number of galaxies

evaluated. It also reduces the number of bright foreground galaxies evaluated in the likelihood

function or included in the cluster membership. This cut only depends on the magnitude of

the object being tested as a BCG, and not the redshift.

3. Evaluating Likelihoods

As an alternative to pixelization of the galaxy catalog, every galaxy in the survey is

tested as a potential cluster center, and the likelihoods are computed considering the possi-

bility that any other galaxy could be a member galaxy of the potential cluster. To speed up

computation, the following exceptions are made (in the following, galaxies being evaluated

as BCGs at clusters centers are called “candidate BCGs” and objects evaluated in the cluster

likelihood are called “neighbors”):

1. To be considered as a center, the candidate BCG must lie within ±3σ in g − r and

r − i of the predicted ridgeline colors at the assumed redshift, and brighter than Lmin.

2. A neighbor galaxy must be within projected 3 h−1 Mpc of the center.

3. A neighbor galaxy must be within ±3σ in g−r and r− i at the test redshift, brighter

than Lmin, and dimmer than the candidate BCG.

In all these cuts, σ is given by Eq. 6 for the appropriate color. The goal is to eliminate



– 18 –

objects whose colors, magnitudes, and angular separations are clearly inconsistent with being

red-sequence galaxies at the test redshift. A consequence of item (1) is that each candidate

BCG is tested at a range in redshift of ∼ z ± 0.05, which we find is adequate to map out

the maximum in the likelihood. Figure 4 shows the shape of these likelihood functions vs.

redshift for a previously unknown maxBCG cluster at z = 0.23. In Figure 5, the SDSS

image (see online Journal for color version) is shown, centered on a bright BCG with a

preponderance of red galaxies nearby.

Each object in the survey is considered for its likelihood to be a BCG in this way, using

the likelihood functions to determine its likeness to a BCG and its environment at a range

of redshifts. A maximum-likelihood redshift is assigned by

Ltot(zmax) = max(Ltot(z)) (12)

(see Figure 4, vertical dotted line), and the overall likelihood that an object is a cluster

center is

Lmax
tot (z) = LR(zmax)LBCG(zmax). (13)

The result is a list of candidate BCGs with maximum-likelihood redshifts, zmax, and maxi-

mum cluster likelihoods Lmax
tot . Each object on the list is marked as a candidate cluster center,

with a richness Ngals and a scaled richness N r200
gals (see the beginning of §2). Its “members”

list includes galaxies within a projected separation of r200, 2σ of the ridgeline colors, brighter

than Lmin, and dimmer than the candidate BCG.

By these means, all galaxies within the specified color–magnitude range in the survey

are tested as candidate centers. In a typical rich cluster, dozens of members will have

been evaluated as potential centers. To build the final cluster list from these candidate

centers, the candidate centers are first sorted by decreasing total maximum likelihood. The

top object on the list is taken as the BCG of a cluster. All other objects with 1) maximum

likelihoods less than this object, 2) redshifts within ±0.02 (the approximate redshift precision

for all richnesses) and 3) within r200 of the object, are flagged and prevented from seeding

new clusters. The next object on the list is treated in a similar way, and by this simple

percolation process, candidate BCGs are flagged whenever they fall within the confines of

a higher likelihood object. This process descends all the way through the list of candidate

BCGs. The remaining unflagged objects enter the final cluster catalog. In the studies

presented herein, we truncate the process at objects with N r200
gals = 10 and less. While weak

lensing and dynamical mass estimates (McKay et al. 2006; Sheldon et al. 2006) indicate the

lower richness objects really do trace lower-mass systems, it is not clear what other selection

effects may be taking place below this limit. In particular, below the average mass for this

limit, some groups may have less well-defined red-sequences and central galaxies that have
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different properties. An important feature of the execution is that the reported center of the

cluster lands on a cluster galaxy, which typically has the characteristic properties of a BCG.

Figure 6 shows the local value of the composite likelihood function in a 1-degree field

centered on Abell 1689. A double peak, corresponding to two galaxies near Abell 1689’s

center, is located at (ra,dec) of (197.87,−1.34). The SDSS image of Abell 1689 is shown in

Figure 7. Two other previously-identified clusters, one X-ray, one optical, fall in this same

field and are easily singled out. Their images are shown in Figures 8 and 9. The large

number of peaks with 10 < Lmax
tot < 100 correspond to group-sized objects, many of which

are absorbed as members of the higher likelihood cluster-sized objects.

4. maxBCG Selection Function

A cluster catalog is only useful for cosmological constraints insofar as its purity and

completeness can be understood, both as a function of redshift and of halo mass and/or halo

richness. Such measurements have typically been made in X-ray and optical cluster-finding

algorithms by Monte–Carlo methods, in which galaxies (or X-ray photons) with various radial

distributions are inserted into a suitable background (Postman et al. 1996; Gal et al. 2003).

The specific parameters of the model are usually varied to demonstrate an insensitivity of

the measurements to the particular choice of parameters.

Here, we begin by taking the Monte–Carlo approach, following a technique similar to

that described in Goto et al. (2002). To quantify completeness, we first shuffle input SDSS

galaxy catalogs (see Koester et al. 2006) by randomly reassigning galaxy colors and smear-

ing the positions by 5’. We insert artificial clusters in the following way: 1) at five discrete

redshifts, z = 0.1, 0.14, 0.18, 0.22, and 0.26, we extract photometric data for Abell clusters in

the SDSS. 2) After background subtraction, we measure the average color and radial distri-

butions of the Abell clusters stacked at these five redshifts (Koester et al. (2007)). 3) At each

redshift, the radial distributions, are fit with power laws, and the color distributions are fit

with 4th-degree polynomials. 4) To ensure a realistic richness and redshift distribution in the

artificial cluster catalog, clusters are constructed by randomly choosing a redshift and rich-

ness from the actual maxBCG cluster distribution (Koester et al. 2006). The most nearby of

the 5 discrete redshifts is chosen as a suitable model for the color and radial distributions of

clusters at that redshift; k-corrections are applied to the colors so that they are actually con-

sistent with the randomly chosen redshift (v4.1.4 of KCORRECT, Blanton et al. (2003b).)

5) A total of 15,000 clusters are inserted into the shuffled background, and maxBCG is run

on the resulting galaxy catalogs. To determine if an artificial cluster is found by these means,

we ask for each artificial cluster, “is there a maxBCG cluster within ±0.025 in redshift and
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N r200
gals ≥ 10? If so, the cluster is considered detected.

In Figure 10, 90% completeness is reached in all redshift ranges by N r200
gals = 20. The

decreased completeness below this range is partially due to the fact that the artificial clusters

were constructed to statistically represent rich Abell clusters, and not the poorer group-sized

systems we also wish to detect with maxBCG.

To measure the false-positive rate, we simply run maxBCG one the same shuffled galaxy

catalogs constructed above. At N r200
gals = 10, we detect 178 clusters, compared to the 2558

in the maxBCG catalog described in Koester et al. (2006), for a 7% false-positive rate. At

N r200
gals = 15, the rate is 1%, and is < 1% by N r200

gals = 20. Two clusters at N r200
gals = 21 are the

largest systems detected in the shuffled catalogs. The false-positive rate is indeed small.

Using traditional methods to evaluate completeness and purity, the maxBCG algo-

rithm fares very well. However, to more fully assess the catalog’s quality, we employ mock

galaxy catalogs largely designed for the purpose of understanding maxBCG selection effects,

whose galaxy distribution based on the underlying dark matter distribution and tuned to

match observed luminosity-dependent and color-dependent galaxy clustering measurements

(Wechsler et al. 2006a). There are two motivations for proceeding in this way. First, com-

pared to simple Monte–Carlo realizations, the mock catalogs are more representative of

galaxy clusters in the universe, and will reveal a more realistic picture of the performance of

the cluster finder. While any given mock catalog is unlikely to be a perfect representation

of the Universe, as we do not understand everything about the physics of galaxy forma-

tion and galaxy bias, the closer such catalogs can be, the more robust our understanding

of the cluster-finder selection effects can be. These mocks have a strong advantage over

previous simplistic methods in that they embed their clusters in a realistic network of fil-

aments and voids, a feature essential for understanding the effects of projection on cluster

finding. Secondly is that much of our understanding of large-scale structure is embodied in

N-body simulations, and the strength of cosmological constraints comes from understanding

the connection of observables with dark matter halos in these simulations. Thus mocks that

correctly encode this connection are essential to extract the full power of these data. Ideally,

our simulations would directly predict galaxy properties and their distribution from first

principles, but we are currently a long way from a complete theory of galaxy formation that

can do this robustly. Empirical simulations that connect very realistic galaxy distributions

with dark matter halos are the first step towards this eventuality, and allow us to compare

observations directly to such simulations.

We establish for the remainder of this work the following definitions: a halo refers to

an object in the mock catalog, consisting of dark matter and constituent galaxies. A cluster

refers to any object output by the maxBCG algorithm, whether it is run on real data or on
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the mock catalog. As part of this exercise, we use richness definitions particular to halos

and derived clusters separately. In Table 1, we provide a summary of the various quantities

we employ. The halo-specific measurements include the mass (M200), an intrinsic “true”

richness of the halo, as assigned in the mock catalog (Nint), and the richness of red galaxies

in these halos, N red
int . This latter quantity is aimed at describing the richness of each halo

as it would be seen by maxBCG in an ideal case: given the halo’s redshift, the number of

galaxies from Nint is computed by creating a color–magnitude box centered on the E/S0

ridgeline colors, 2σ wide. The cluster-specific measurements, Ngals and N r200
gals , have already

been defined.

MaxBCG is run on the mock catalog in an identical way to how it is run on the real

data. We present a naive comparison in Figure 11. The halo abundance in bins of N red
int is

compared to the N r200
gals distribution of the derived maxBCG clusters from that simulation.

For reference, N red
int = 100 objects have masses of M200 ∼ 1 × 1015, and N red

int = 50 objects

have masses of M200 ∼ 5 × 1014 In principle, N red
int of halos is similar to N r200

gals , in that they

use the same color cuts, and have a physical scale associated with them.

The abundances are approximately consistent in their slopes, but there appears to be

an overabundance of clusters at all richnesses. This could be due to the performance of the

cluster finder itself, wherein it tends to merge smaller systems along the same line of sight.

It could also possibly stem from small-scale projection effects that would cause maxBCG to

overestimate the halo richness, making N r200
gals an overestimate of N red

int . In the next section,

these possibilities as well as others are investigated.

4.1. Completeness and Purity

As part of the output of maxBCG, we include cluster members, which are galaxies

within a certain spatial distance of the BCG and inside a color–magnitude box appropriate

to the maximum likelihood redshift. As these are predominantly red-sequence galaxies, a

large fraction are physically associated with the cluster, at around the 80% level, as indicated

by spectroscopy (Koester et al. 2006). The members are thus good indicators of the cluster’s

position in physical space, so we use them as such when comparing to the simulations. The

same goes for the mock galaxy catalog: halo galaxy members are good indicators of the halo

positions, as they all sit with r200 of the halo. We thus wish to use the overlap between halo

galaxies and cluster galaxies to assert whether or not a halo in the simulation is “matched”

to a cluster returned by maxBCG. In the same spirit as N red
int , we only consider red halo

members, i.e. the exact galaxies that make up N red
gals are considered halo members.
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In this exercise, we consider runs of maxBCG on three mock galaxy catalog realizations

of the same cosmology in the interests of minimizing sensitivity to statistics. We restrict

ourselves to a cluster catalog with objects of N r200
gals ≥ 10, and 0.08 < z < 0.32, as this is

the final cut applied to the catalog presented in Koester et al. (2006). The halo catalog

includes halos of M200 > 5 × 1013 solar masses and redshifts 0.1 < z < 0.3. To aid in the

interpretation, we first note that this mass limit corresponds to an average N red
int ≃ 5 and

Nint ≃ 10. The redshift correspondence between “matched” (see below) clusters and halos

is quite good, but the fact that there is some scatter between the maxBCG photometric

redshift and the halo redshift (Figure 12) should be accounted for in the interpretation.

To measure the completeness, we ask the question “for a given halo, which cluster con-

tains the largest fraction of the red halo galaxies?”. Call this fraction fh, and the cluster that

satisfies this criteria, the “best” match. We can define a threshold for fh below which we

consider a halo to remain unmatched. For this exercise, we choose fh as follows: First, note

that the cluster membership criteria counts bright red galaxies within r200, and in the simu-

lations, halo richness is also computed inside an r200 value determined from the darkmatter

profile. When matching, only the bright red halo galaxies inside r200 are considered. The

median r200 of the dark matter halos with M200 > 8 × 1013 is r200 = 0.95 Mpc. However,

that used in maxBCG for clusters with 10 or more red galaxies is 0.88 Mpc, so that ratio of

the areas is 0.882./0.952. or ≃ 0.3. Thus, fh = 0.3 is an appropriate threshold.

In Figure 13, we choose a threshold of fh = 0.3 , and display contours of completeness

across the full redshift and mass range of halos. Evidently, maxBCG exhibits a very high

completeness at high mass, which begins to decline at around 2×1014h−1M⊙. Many of these

“missed” objects are assigned N r200
gals < 10, which excludes them from the richness cut we

make here, a manifestation of the mass-richness scatter. Indeed, at 8 × 1013h−1M⊙, there

are only about 5 red galaxies in a typical mock halo.

It is safe to conclude that maxBCG locates clusters with high completeness down to

at least M200 = 2 × 1014M⊙, and certainly identifies a large population of even lower mass

objects. Thus, our stated completeness is quite conservative; in particular if completeness

were defined without this explicit cut in richness it wouldn’t decline at these masses (see

Rozo et al. 2006 for a discussion).

Figure 13 also reveals that the cluster catalog includes halos with z > 0.3, nearly at

the edge of the simulation. Although these halos are within the redshift error of maxBCG

(σz ≃ 0.015,Koester et al. (2006)), they introduce a level of contamination to the final cluster

catalog. The same could be said for lower mass halos being misidentified as higher mass

halos, but the interpretation is less clear, as the mass-observable scatter is quite large; the

idenification of low mass halos could still be within the limits of the mass-observable scatter
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without actually being contamination.

The purity is defined here by asking the reverse question: “for a given cluster, which

halo contains the largest fraction of the cluster members?”. This fraction is fc, and the

halo that satisfies this criteria is the “best” halo match. A threshold at fc = 0.3 is chosen

for defining a match, and the purity contours in richness and redshift space are shown in

Figure 13. At redshift edges of the catalog, the purity declines slightly. This is due to

the fact the halo catalog we match to is truncated at z = 0.3 and z = 0.1, the range we

are concerned with at present. Thus there are some clusters with photometric redshifts that

place them within the redshift bounds of the cluster catalog, but whose associated halos have

true redshifts just outside this range. This is evident in the scatter of the halo-to-cluster

redshift correspondence shown in Figure 12. We can confidently say that over the range of

the catalog, the purity is well over 90%.

4.2. Richness Scaling

In the case of completeness, it is not enough to simply say that all halos above some

mass threshold were “found”. By the matching executed above, a massive halo with a high

N red
int could be matched to a cluster with low N200

gals. While this is considered “found”, ideally

a halo that was successfully flagged by the cluster finder would be associated with a cluster

of a richness that is reflective of the halo’s richness. In this sense, we can take the matching

exercise a step further and ask “how well does the richness of the best matched cluster reflect

that of the underlying halo?”

In the top panel of Figure 14, halo richnesses and the richness of the best-matched

cluster are compared for one of the mock galaxy catalogs. Each halo is represented by a

cross or a diamond. Halos represented by crosses are those that were the most massive

match to each cluster. Halos represented by diamonds are those that were matched with

clusters that had already been previously matched by a larger halo. Following Gerke et al.

(2005), we call this “overmerging”. There is a large population of halos with well-matched

clusters, i.e., clusters with richnesses indicative of the underlying halo properties. However,

there is a subset of overmerged halos (diamonds) with low N red
int and high N r200

gals . Naively, this

may be attributed to catastrophic projection effects that have been known to plague optical

cluster finding. This in turn could mean that we have clusters we think are rich, but really

are just projections of many random things along a deep line of sight. But there is another

possibility. Our likelihoods will not resolve halos within a few Mpc of each other, along

the line of sight, particularly large halos with a few smaller neighbors. Thus maxBCG can

merge these objects, selecting one large, dominant halo and merging the smaller neighbors.
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Members from these neighboring halos overlap strongly with the cluster members from the

dominant cluster, so all the halos match to the same cluster. This explains the low N red
int ,

high N r200
gals population seen in Figure 14.

The three boxed points at the of the top panel of Figure 14 illustrate this merging. They

are three separate halos of masses 1.03×1015, 6.57×1014, 3.94×1014M⊙, N red
int of 89, 62, and

38, redshifts at 0.233, 0.229, and 0.235. The latter two appear as diamonds. These halos are

in fact all within < 7.1h−1 Mpc of each other, approximately along the same line-of-sight.

This physical distance is below the resolution we expect to gain from the red sequence. The

cluster that is best matched to all three of these halos has N r200
gals = 269, greater than the

sum (189) of these three halos. A large portion of the objects in this region of Figure 14

are less severe instances of this same type of overmerging. But the matching algorithm used

here generally associates rich clusters with rich halos, so our quoted completeness is dually

informative. These smaller halos (diamonds) are evidence that maxBCG is performing as

expected, merging smaller, nearby halos with larger ones.

To further elucidate the situation, the question can be turned around: “how well does

the richness of the best matched halo reflect that of the underlying cluster?”. This asks the

same question of cluster-to-halo matching for the purity measurements. In the lower panel

of Figure 14, for each cluster, we plot cluster N r200
gals and the N red

int of the best matched halo.

This selects one best halo for each cluster. The excess at low N red
int and high N r200

gals seen in

the top panel vanishes, which shows that indeed those small halos(diamonds in the upper

panel) were not poorly matched, but that they were absorbed into large clusters. The case

described above of extreme overmerging shows up as one point at (89,269).

The diamonds that appear on the lower panel are clusters that were matched to a halo

which had already been claimed as best match by a richer cluster. This fragmentation, in

which the halo is broken up by maxBCG, is much less prevalent than overmerging (this is

quantified in the following section). When fragmentation does occur, there is still generally

one large halo matched to one large cluster, with a few smaller clusters in the neighborhood

as well.

The most interesting case to study here is the two clusters with N r200
gals = 223, 15, and

redshifts 0.170, 0.173. These two correspond to one halo, with a mass M200 = 1.726 ×
1015M⊙, N red

gals = 163, and z = 0.167. There is one clear dominant cluster here, and two

others with much smaller richnesses. This is a case of fragmentation, but it is not especially

problematic because there is still a dominant cluster associated with the halo. This same

dominant cluster shows up in the top panel of Figure 14 at (163,223).

It is safe to conclude then that we are successfully matching rich clusters and rich halos,
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and that our completeness and purity measurements are telling us much more than “did

we find all the halos” and “is there a halo there or not?” By either means, rich halos are

associated with rich clusters. We note that this is encouraging for mass calibration. The

extension of these results to understanding the mass-richness relation is enticing, and is

undertaken using observational weak lensing and dynamical measurements in other works

(McKay et al. 2006; Sheldon et al. 2006; Koester et al. 2006).

We conclude this section by applying the insight gained from looking at the richnesses to

the abundances seen in Figure 11. In Figure 14, we display best-fit lines to richness relations.

If the offset in the abundances is really due to a disagreement between the maxBCG N r200
gals

richness and the intrinsic N red
int , and the line is a good fit, then the line should should supply

the transformation between the two, using either fit. In the upper panel, the the best-fit

line has a slope 1.409 ± 0.013 and intercept 1.227 ± 0.190. This tells us how we should

transform N red
int for the halo abundance to N r200

gals . If it is perfect, it should shift the halo

abundance curve onto the maxBCG abundance. In the lower panel, the best-fit line has slope

is 0.601± 0.005 and the intercept 1.028± 0.160, telling us how to transform the N r200
gals in the

maxBCG abundance to N red
int . If this transformation is perfect, it should shift the maxBCG

abundance into agreement with the halo abundance. Overplotted on Figure 11 are resulting

abundances under the transformation of N red
int to N r200

gals (upper dotted line and upper panel of

Figure 14) and the reverse transformation (lower dotted line and lower panel of Figure 14).

The latter transformation nearly brings the maxBCG abundance into agreement with the

intrinsic halo abundance, while the former transformation brings the halo abundance into

agreement with maxBCG only at low richness. From Figure 14, the duplication present in

the upper panel alerts us to the difficulty in seeking a simple relation between the richnesses,

but the relation is more straightforward from the reverse situation in the bottom panel.

Without further modeling of this relationship, we can assert now with confidence that the

offset in the abundances observed in Figure 11 is largely due to differences in the richness

measurement.

4.3. Fragmentation and Overmerging

Measurements of the cluster abundance function or of cluster clustering are potentially

powerful cosmological tools. A standard assumption is to assume that each cluster from the

cluster catalog can be matched uniquely to one halo. The extent to which this is true depends

on the cluster finder, and the definition of the halo (Kim et al. 2002; Gerke et al. 2005). For

instance if the cluster finder assigns two clusters to each halo, an inflated abundance function

will result, as well as a correlation function with increased amplitude. A full treatment of
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this relationship depends on the exact scientific goal one wishes to address. We explore

this question in detail, as it applies to cosmological constraints from the cluster abundance

function in Rozo et al. (2006). In this section, some relevant issues for such modeling are

described.

Up to this point, we have taken the “best” match of halos to clusters and vice-versa

to measure the purity and completeness respectively. Using these methods, it is possible

for a halo to have, say, 70% of its members come from one cluster, 20% from another, and

the remaining 10% not associated with any cluster. In cases where the fractions become

nearly equal, say, 50/45/5, there is no clear one-to-one association. This was touched upon

in 14, where our matching prescription revealed examples of halos being merged into several

clusters, and a few of the opposite, where halos were broken up into two or three clusters.

To evaluate the fragmentation incidence, we take a halo and look at the top two clusters

that contributed members, the “best” and the second best. We create a simple fragmentation

diagnostic:

φh =
Nh

2

Nh
1

(14)

where Nh
1 and Nh

2 are the numbers of members contributed by the best and second best

cluster matches. φh = 0 when Nh
2 = 0 and there is no fragmentation, and φh = 1 when the

halo was perfectly broken in two. This distribution is shown as a function of N red
int in the top

panel of Figure 15. To understand the distribution better, we bin the halos by richness and

report the median of φh in each richness bin (solid line) It quickly approaches 0, indicating

that there is a minimal amount of fragmentation. The fragmented halo at N red
gals = 163 shows

up as a point at (163,0.2) in this panel. Out of 112 halos with N red
gals > 50, 7 have φh > 0.1,

or 6%. For N red
int > 10, this rises to 25%.

The exercise is repeated for clusters, considering the top two halo matches. The over-

merging statistic, φc is shown in Figure 15, lower panel. The median hovers around 0.2,

indicating that there is some over-merging present in the catalog at all richnesses. It is clear

that there is a population of clusters that consist of overmerged halos. For N r200
gals > 50,

118/299 halos have φc > 0.2, or 39%. The number is slightly lower for the full range of

N r200
gals > 10, at 37%. It thus remains true that imaging based-cluster surveys will be subject

to overmerging, as colors have difficulty resolving of order 10 Mpc line-of-sight distances.

This is another contribution to the apparent overabundance seen in Figure 11.

More generally, rich clusters with large apertures will be particulary subject to over-

merging of systems along the line-of-sight. This is likely true of any imaging survey, and

future cosmological analyses using clusters from imaging surveys will require a detailed un-

derstanding of the extent to which this influences the final constraints.
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4.4. Improved modeling of selection effects

Thus far, we have presented the basic features of the algorithm one must incorporate

into any cosmological analysis. The matching routines executed herein are designed simply,

so that we can understand the output of maxBCG. However, consideration of the richness

estimates and the prevalence of fragmentation and overmerging using the maxBCG algorithm

demonstrates that these effects must be modeled in detail to fully understand the selection

function and properly model abundances. Rozo et al. (2006) employ a matching algorithm

similar in spirit to that presented here, that makes cluster-to-halo associations clearer, and

makes the selection function of maxBCG easier to quantify. Figure 15 demonstrates the

improvement one can realize in the matching. We refer to this as “exclusive” matching, and

point the reader to (Rozo et al. 2006) for a full description. Note that exclusive matching

does substantially better than the “one-way” matching used in the current work, and in

particular that the slope between the cluster abundance and the halo abundance is now

roughly unity. We refer the reader to this paper for a detailed discussion of how to calibrate

the full connection between clusters and halos in a way approprate for modeling cluster

abundances.

5. Discussion

We have described herein the key components of the maxBCG cluster finder and their

origins. The performance of its likelihood functions have been demonstrated in a few case

studies of observed galaxy clusters. Over the redshift range of 0.1 < z < 0.3, its selec-

tion function was evaluated as a function of halo mass and cluster richness. The results of

the selection function tests were further supported by the demonstration that the maxBCG

cluster–mock halo correspondence behaves as expected: rich clusters typically correspond to

rich, massive halos. These same comparisons proved to be efficient diagnostics of fragmen-

tation and overmerging. It seems that in addition to the N r200
gals richness measurement being

an overestimate of richness (Figures 11 and 14), maxBCG tends to overmerge systems along

the line of sight (Figures 14 and 15).

5.1. Features of MaxBCG

This algorithm differs from other photometric cluster finders in its use of likelihoods.

Earlier methods have used a range of methods to compute cluster likelihoods and assign

significances (Postman et al. 1996; Gladders & Yee 2000; Gal et al. 2000). In these methods,
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cluster candidates have been selected by assessing the global significance of their likelihoods

and then choosing some likelihood threshold above which cluster candidates are selected.

These highest significance clusters are then reported in the catalog.

In maxBCG, we set out to push farther down the abundance function by making no such

cut. The likelihood function is used locally to report the highest likelihood objects in some

region of sky, and then the likelihoods are used to excise locally less significant objects. At

no point do we enforce a global likelihood cut, so that the likelihood function is permitted to

define objects down to very low richness. Although the completeness and purity are decreased

in this regime, the average properties of these lower likelihood, lower richness objects are

very encouraging. Their stacked velocity profiles (Koester et al. 2006; McKay et al. 2006)

and weak lensing measurements (Sheldon et al. 2006) indicate that they are indeed massive

objects whose richnesses are strongly coupled to the underlying mass distribution. This

opens up this possibility of leveraging the larger statistics of this lower mass population in

constraining cosmology, if the selection effects can be properly understood.

Another fundamental difference in the execution of this algorithm is its reliance on

galaxy positions. We evaluate the likelihood function at the locations of galaxies, and not

on pixelized data. In pixelization schemes, the data is broken up spatially, and likelihood

functions are tested at each pixel. Various means are then used to assess significant peaks

in the likelihood function across pixels in the survey, and significant pixels are then tied

to clusters. This method helps to speed up the cluster search, and it also prevents over-

identification of substructure, or multiple identifications of the same cluster. At the cost

of computational time, we find that using galaxy positions allows us to report cluster po-

sitions centered on visually-identified BCGs. By our percolation scheme, we do not suffer

from over-identification of substructure, which would manifest itself in our fragmentation

measurements.

5.2. Background

Recall that we measure cluster properties down to 0.4L∗ ≡ Lmin at each redshift. Ideally,

the Lmin cutoffs could be derived empirically from the LRG distribution in the way that the

colors were extracted. This requires a full treatment of the luminosity function of LRGs vs.

redshift. Obviously, biases in the model could bias the richness measurements and possibly

the likelihood functions. The two major sources of bias are incorrect k-corrections and, to a

lesser extent, evolution of the luminosity function.

We can take a quick look at the consequences of biases introduced by slight errors in
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the offset a(z) of the a(z) + M∗ cutoff (see section 2.5). First, at z = 0, we can integrate

down the cluster luminosity function (Hansen et al. 2005) to a(z) + M∗ = −20.25 in the

cluster’s rest frame. This gives us a count of the number of galaxies, Nc in the cluster

brighter than -20.25. Now, imagine we place the same cluster at z = 0.2, where the i-band

samples a bluer, and possibly dimmer part of the rest frame spectra of the cluster galaxies.

K-corrections use a model of the spectra of such galaxies to correct for this systematic offset,

but the model may represent this offset with varying degrees of success at different redshifts.

Assume that the k-corrections at z = 0.2 are too dim by only 0.15 magnitudes on average.

Call this error δm. We can again integrate down the same luminosity function, this time

to 0.15 + a(z) + M∗, and get a number of cluster galaxies Nc + δNc. Comparing this value

to that of the rest-frame (Nc) reveals that the number counts can be 20% higher when the

k-corrected limiting magnitude Lmin is 0.15 too dim. The fractional errors in the number of

cluster galaxies for a given magnitude error, δm, can be cast in the following form:

δNc

Nc
≃ 1.33δm (15)

Thus, when δm varies with redshift, it is clear that the richness estimate and the likelihood

function (see next paragraph) can have unwanted redshift dependence built in.

If there are indeed biases in Lmin, it will certainly affect our richness measurements,

but we don’t expect it to bias the cluster finder itself. First, because the LR varies slowly

with redshift the backgrounds at adjacent redshifts, say z = 0.2 and z = 0.21, are very

similar. Second, the redshift-color relation is smooth and well-understood so that the color

filter component of the likelihood function does not radically change. Last, the ridgeline

likelihood function is usually strongly peaked as a function of redshift, so that there is an

obvious maximum in redshift space. Again, this is not a problem for rich objects, because

the detections are robust. Redshift biases are more likely to be seen in low richness objects,

where the detections are not high S/N and the background number counts are not well-

approximated as Gaussian, and the galaxy population is not as dominated by red-sequence

galaxies. Broader spectroscopic samples and realistic mock galaxy catalogs that include more

faint galaxies will enable a more systematic study of the effect of background in maxBCG

cluster detection.

If there are obvious redshift biases introduced by this method, in particular the model

for Lmin, they will be borne out in the catalog (see Paper I). In particular, for 0.1 < z < 0.3,

the number of objects should increase like the volume enclosed. In the accompanying paper

(Koester et al. 2006) we demonstrate that this is approximately the case, and the catalog is

volume-limited to z =0.3.
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5.3. Model Biases

There are notable exceptions to our model for the BCG colors. A well-known population

of so-called cooling-flow clusters contain BCGs where gas is in the process of cooling and

forming stars, which creates a significantly bluer BCG. The presence of emission lines in the

BCG spectrum provides evidence for a cooling flow. A1835 is a well-known example (e.g.

McNamara et al. 2006). While we successfully find such clusters, we do not pick the brightest

cluster galaxy as the center because its g − r ≃ 0.6 is significantly bluer than the other red-

sequence cluster galaxies, which all hover around g − r ≃ 1.3. In the BCS X-ray cluster

catalog (Ebeling et al. 1998), 27% of BCGs show some sort of emission lines (Crawford et

al., 2003). The extent to which emissions lines are prevalent in BCGs living in the cluster

population as a whole, and the impact they have on the BCG colors, are questions we can

begin to address with maxBCG-selected catalogs. The study of Weinmann et al. (2006),

which selects low-redshift groups from spectroscopy without reference to color, hints that

BCG colors different from those of the cluster population are the exception rather than the

norm.

The matched-filter technique applied here is built around the colors of the E/S0 ridge-

line and the NFW distribution expected in clusters of galaxies. The idea is that it should

faithfully describe the average properties of galaxy clusters. Certainly, it will discriminate

against objects that don’t fit this model, which is more likely to be true at lower mass and

richness, and potentially at higher redshift. We can only quantify this in so far as the mock

catalogs are a realistic representation of the cluster and background populations. However, it

is worth pointing out that any cluster finder that operates on photometric data will have to

make some assumptions about the galaxy populations and their distributions, and it is thus

worth making these assumptions as easy to understand and as close to reality as possible.

A final note is that the cluster finder is requires an assumption about the cosmological

dependence of the angular diameter distance and the cluster luminosity function used at

various stages of the algorithm. Given a large enough sample with redshifts, the luminosity

function could be determined observationally, but for large changes in cosmology, it is less

clear what to do about the angular diameter distance. The sensitivity of both of these to

cosmology is currently under investigation.

5.4. Photometric Errors

As the redshift of an object increases, so does its photometric error. One would like

for the photometric errors to be much less than the intrinsic ridgeline width. As the errors
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get bigger, we allow galaxies to be tested as members in more clusters. This can potentially

affect the richness by preferentially inflating richnesses at high redshift, where the color errors

are larger. The cluster catalog presented in Koester et al. (2006) is approximately volume-

limited in all richness bins, which suggests that this effect is not too severe. However,

a more well-understood richness measurement comes at the price of the information lost

by discarding galaxies with large errors. Appropriately dealing with photometric errors is

currently an issue of interest.

5.5. Issues for extending to higher redshift

The SDSS is a goldmine of cluster data, and it provides an important testing ground

for algorithms which will generate the cluster catalogs important to cosmological constraints

in future surveys. We have restricted ourselves to a redshift range where the clusters are

well-measured, and most of the redshift and color information is contained in one band.

The selection is quite uniform across all redshifts, but this may change when the search

encompasses z > 0.35, as the 4000 Å break migrates in the r-band, and r − i contains

more information. Future surveys will aim to find clusters uniformly across a broad range

of redshifts, spanning many filters. The likelihoods that embody these color models must

weight the different colors fairly, and smoothly handle transitions from one band to another.

The SDSS is deep enough that the same methods provide a means to select clusters out

to at least z ∼ 0.6, and still see the brightest members. Toward this redshift, the flux-limit

of the survey becomes an issue in fairly measuring richnesses and evaluating likelihood at all

redshifts.

5.6. MaxBCG vs. Other Wavelengths

The results presented here and in Koester et al. (2006) indicate that maxBCG recov-

ers galaxy clusters with purity and completeness levels of 90% for M > 2 × 1014M⊙ and

N r200
gals ≥ 10. X–ray selected clusters of similar sky and redshift coverage such as the Bright-

est Cluster Sample (BCS Ebeling et al. 1998) and the Northern ROSAT All-Sky (NORAS

Böhringer et al. 2000) Survey are complete at the 80 − 90% level above a given flux limit

which will naturally impose a selection effect on the resulting cluster sample that is strongly

dependent on redshift. Redshift-dependent effects in maxBCG arise only through biases in

Lmin over 0.1 < z < 0.3. Böhringer et al. (2000) reach 76% in purity, as determined through

optical follow-up of X–ray selected clusters. The purity of X–ray samples is altered by un-



– 32 –

resolved active-galactic nuclei or stellar contamination, while the purity of optical samples

can be compromised by projection.

Aside from the completeness and purity of the sample, understanding the mass distri-

bution of the cluster sample is of utmost importance. From the preceding analysis, it is

clear that projection plays a role in both richness estimation and in overmerging. These can

both bias the estimate of the mean mass at fixed richness, and the estimate of the scatter.

The same can be said of mass estimates in X–ray and SZ surveys: point-source contami-

nation, mergers, and other gasdynamical processes contribute to the overall X–ray signal.

No technique is perfect, but for given cluster sample, the extent to which contamination of

the observables can be understood will strongly affect the resulting cosomological parameter

constraints.

6. Summary

The maxBCG algorithm represents a significant step forward in large galaxy survey

cluster detection. Much is known about the properties of cluster galaxies, and the availability

of immense, rich, imaging catalogs allows us to begin leveraging this knowledge to detect

cleaner and more robust cluster samples and to provide new cosmological information. Since

optical surveys in the near future intend to pursue cluster cosmology to varying degrees, the

advances presented here are timely. We summarize them as follows:

• MaxBCG pushes beyond the high end of the abundance function, down to group-sized

halos, where there is additional cosmological information. The purity and completeness

across this broad range are above 90% for N r200
gals > 10 and M200 > 2×1014, respectively,

across 0.1 < z < 0.3. Systems below this mass range are quite accessible as well,

depending on where one draws the richness cut.

• In addition to spatial clustering of red-sequence galaxies, we add in information about

brightest cluster galaxies and multiple colors to refine the search.

• The likelihoods are evaluated at individual galaxies, as opposed to pixelizing the sky.

• The selection function of the algorithm is explored in detail with mock galaxy catalogs.

Since the mock catalogs contain a wealth of observationally-motivated information that

is coupled to the underlying mass, we are able to undertake an unprecedented study

of the performance of the algorithm on individual halos to gain a deeper perspective

on the halo selection.
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• The mock catalog provides an initial demonstration of the richness–mass mapping;

richer systems are preferentially associated with more massive halos.

• We confirm the expectation that on ∼ 10h−1 Mpc scales, maxBCG tends to over-

merge systems projected along the line-of-sight, an effect that will have to be modeled.

Fragmentation is not found to be significant.

• We open the discussion of difficulties that will be encountered in future multi-band,

wide-angle, high-redshift cluster surveys. Among these are uniformity of the richness

measurements, challenges in using multiple colors, photometric errors, and quantifica-

tion of the selection function.

In an accompanying paper (Koester et al. 2006) and others soon to follow, maxBCG is

further assessed with ≃ 7500 deg2 of SDSS imaging data. In this test on real data, the scaling

of cluster richness with velocity dispersion is demonstrated, as are the quality of photomet-

ric redshifts, the incidence of projection, the uniformity of richness measurements and the

agreement between these optical clusters and earlier X-ray selected catalogs. The maxBCG

method provides a different approach to optical cluster selection with a number of useful

features. The experience gained in using it on SDSS data will provide important guidance in

planning and executing future surveys, such as those planned to study dark energy, includ-

ing the Dark Energy Survey (The Dark Energy Survey Collaboration 2005), the Panoramic

Survey Telescope & Rapid Response System (Kaiser & Pan-STARRS Collaboration 2005),

the Supernovae/Acceleration Probe (Aldering et al. 2002), and the Large Synoptic Survey

Telescope (Haiman et al. 2004).
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Popesso, P., Biviano, A., Böhringer, H., & Romaniello, M. 2006, ArXiv Astrophysics e-prints
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Table 1. Richness Definitions

Name Description

M200 Underlying halo mass in mock catalog

Nint Occupation number of halo

N red
int Number of red Nint galaxies, brighter than Lmin

Ngals Number of red galaxies in a cluster, inside h−1 Mpc

N r200
gals Number of red galaxies in a cluster, inside r200

Note. — This table is a compilation of the richness mea-

surements used in the halo to cluster comparison in Section

4.
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Fig. 1.— BCGs and cluster members in the fields of two rich clusters. The top and bottom

plots are the CMDs in the 2h−1 Mpc surrounding fields of Abell 2142 (z = 0.092), and Abell

1682 (z = 0.23). The large cross is the BCG, small dots are field galaxies within 2h−1 Mpc,

small crosses are cluster members (see text). The small scatter and tilt in these are clear,

particularly in Abell 2142, where the ridgeline can be observed to much fainter magnitudes.

Already at z = 0.23, we see that the ridgeline is broader, primarily due to photometric

errors.
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Fig. 2.— Color (g − r) vs. spectroscopic z input relation for clusters of all richnesses.

Each dot represents cluster members with spectroscopic redshifts. Their color SDSS (MODEL

magnitudes) and redshift are plotted. The curve is the piecewise-defined ridgeline-redshift

relation, essentially best fits to the cluster colors and redshifts. The upper and lower dotted

lines denote the LRG passively-evolving and star-forming colors (see text).
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Fig. 3.— Magnitude–redshift relation for BCGs. The upper solid curve is adapted from

Loh & Strauss (2006), using rpetro. The lower curve is the fit to the r-bands of 100 visually

identified BCGs from a first run of maxBCG, diamonds on the plot. Because the magnitudes

are observed, distance modulus, k-corrections, and evolution are automatically included. The

difference between Loh & Strauss (2006) and this curve is due mainly to the fact that the

former do not restrict themselves to the brightest BCGs. The greyscale density plot is the

population of BCGs from the maxBCG catalog described in Koester et al. (2006)
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Fig. 4.— Likelihoods for a previously unknown Ngals = 30, z = 0.23 maxBCG cluster.

The upper panel shows a sample LR(z), with the maximum-likelihood redshift denoted with

a vertical line. The components of LBCG(z) are shown in the lower panel. The narrow

Gaussian is Ggr, the broad is Gri, and the dashed curve is the magnitude threshold. See the

associated image (Figure 6)
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Fig. 5.— Image of object described in text and in Figure 4. Uniform red galaxies dominate

the image, which spans 200”, or ≃ 0.5h−1 Mpc. See online edition of the Journal for color

image.
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Fig. 6.— Cluster likelihoods in the field of Abell 1689 (center circle). Two other high

likelihood peaks also reside in this field. At (197.33,-1.62), z = 0.08, is a REFLEX X-

ray selected cluster, MS 1306.7-0121 (left circle, Böhringer et al. 2004). At (198.58,-1.46),

z = 0.18, is NSC J131423-012734, part of the Northern Sky Optical Cluster Survey (Gal et al.

2003).
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Fig. 7.— Abell 1689, positioned on the maxBCG center. The FOV is ≃ 0.75h−1 Mpc

wide. The image is overwhelmed with luminous red cluster galaxies, essentially all at the

same redshift. In Abell et al. (1989), the position given is (ra,dec)=(197.8917,-1.365), which

is 0.03 degrees different from the maxBCG postion, or ≃ 230 kpc. The redshift given by

Struble & Rood (1999) is z = 0.1832, compared to z = 0.189 given by maxBCG. Also, note

that the colors of these are less red than those from Figure 5, the z = 0.23 cluster. See online

edition of Journal for color image version.

.
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Fig. 8.— NSC J131423-012734, at z=0.18 in the field of Abell 1689, ∼ 0.75 degrees away.

The FOV is also ≃ 0.75h−1 Mpc, centered on the maxBCG position. The NSC catalog

(Gal et al. 2003) quotes a position at (ra,dec)=(198.5983,-1.4597), 0.016 degrees from the

maxBCG center, or ≃ 125 kpc. The NSC photometric redshift of z = 0.247 is not consistent

with maxBCG, which gives z = 0.181 . SDSS spectroscopy provides redshifts for 4 cluster

members, all at nearly z = 0.18. See online edition of Journal for color image.
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Fig. 9.— MS 1306.7-0121, an X-ray selected cluster at z = 0.08, in a FOV spanning ≃
0.38h−1 Mpc. In Stocke et al. (1991), the position is given as (ra,dec)=(197.3254,-1.6228),

0.005 degrees from the maxBCG center, or ≃ 20 kpc. Its redshift is z = 0.088, compared to

the z = 0.08 given by maxBCG. The BCG is clearly dominant and the colors of this lower

redshift cluster are slightly less red than the previous two images, and quite noticeably bluer

than Figure 5. See online edition of Journal for color image.
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Fig. 10.— Monte–Carlo Completeness of MaxBCG. The completeness is tested using shuffled

catalogs with artificial clusters similar to Goto et al. (2002) (see text).
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Fig. 11.— Integrated counts for the derived cluster catalog (upper points, N r200
gals ) compared

to the halo abundances, using N red
int as the halo richness. Poisson error bars are overplotted.

The offset stems from richness estimates (§4.2) and fragmentation and overmerging (§4.3).

In §4.2, a richness correction is determined by the simplest halo to cluster matching scheme.

Assuming the differences are due only to richness estimation, the correction is applied to

each abundance. The upper dotted line gives the new halo abundance after correction of

the halo richnesses, and the new cluster abundance, where cluster richnesses are corrected,

is given as the lower dotted line. Clearly, the process is not commutative.
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Fig. 12.— Accuracy of the photometric redshift estimation for clusters. Plot compares

the redshift identified for maxBCG clusters in the mock catalog with the redshift of the

best-matched dark matter halo.
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Fig. 13.— Completeness and purity. The top panel shows contours of constant completeness

in the redshift-mass plane, for a matching fraction of fh = 0.3. The lower panel shows

contours of constant purity in the redshift N r200
gals −z plane, for a matching fraction of fc = 0.3.

The decrease in completeness at low mass, and purity at low and high redshift are due to the

chosen cuts on cluster richness and redshift: lower mass halos are found, but have < 10 red

galaxies, and clusters at the redshift boundaries are often associated with halos just outside

z = 0.1 or z = 0.3.
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Fig. 14.— Richness scalings between cluster and halo catalogs. Top Panel : Halos matched

to clusters. For each halo N red
gals is plotted vs. N200

gals of the best-matched cluster. The

diamonds represent duplicate halos (see text), and boxed points are examples cited in the

text. Bottom Panel : Clusters are matched to halos. For each cluster N r200
gals is plotted vs.

N red
gals of the best-matched halo. The diamonds represent duplicate clusters (see text). Solid

lines represent the mean relations in each case.
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Fig. 15.— Fragmentation and overmerging as a function of richness. Upper panel shows

fragmentation of halos, as a function of their red-galaxy richness (as defined by Eq. 14); lower

panel shows the overmerging of halos, as a function of cluster ridgeline richness. The solid

lines in upper and lower panels display the median amount of fragmentation and overmerging,

respectively, while the dotted lines indicate the first quartile of the respective distribution.

Fragmentation is nearly non-existent, while small-scale projection along the line of sight

causes slight overmerging that boosts the cluster richness estimates by 10–20 percent.
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Fig. 16.— Exclusive matching of clusters and halos, adapted from Rozo et al. (2006). A full

account of the algorithmic properties presented in section 4 enables a well-defined matching of

halos and clusters, as presented in Rozo et al. (2006). This is clearly a marked improvement

on the upper panel of Figure 14, and demonstrates the efficacy of an exclusive matching

algorithm.



This figure "f5.jpg" is available in "jpg"
 format from:

http://arXiv.org/ps/astro-ph/0701268v1

http://arXiv.org/ps/astro-ph/0701268v1


This figure "f7.jpg" is available in "jpg"
 format from:

http://arXiv.org/ps/astro-ph/0701268v1

http://arXiv.org/ps/astro-ph/0701268v1


This figure "f8.jpg" is available in "jpg"
 format from:

http://arXiv.org/ps/astro-ph/0701268v1

http://arXiv.org/ps/astro-ph/0701268v1


This figure "f9.jpg" is available in "jpg"
 format from:

http://arXiv.org/ps/astro-ph/0701268v1

http://arXiv.org/ps/astro-ph/0701268v1

	Introduction
	Algorithm
	Outline
	Likelihood Framework
	Ridgeline Likelihood
	Spatial Filter
	Color Filter
	Constructing the Ridgeline Likelihood

	BCG Likelihood
	Brightest Cluster Galaxies
	BCG Model

	Input Galaxy Catalog

	Evaluating Likelihoods
	maxBCG Selection Function
	Completeness and Purity
	Richness Scaling
	Fragmentation and Overmerging
	Improved modeling of selection effects

	Discussion
	Features of MaxBCG
	Background
	Model Biases
	Photometric Errors
	Issues for extending to higher redshift
	MaxBCG vs. Other Wavelengths

	Summary



