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ABSTRACT

We interpret and model the statistical weak lensing measurements around 130,000 groups and
clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. (2007). We present
non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in
bins of both optical richness and cluster i-band luminosity. Since the mean cluster density profile is
proportional to the cluster–mass correlation function, the mean profile is spherically symmetric by the
assumptions of large-scale homogeneity and isotropy. We correct the inferred 3D profiles for systematic
effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their
brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the
brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations
between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in
cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of ∼ 13%
including both statistical and systematic errors. We also constrain the halo concentration parameter
and halo bias as a function of cluster mass; both are in good agreement with predictions from N-body
simulations of LCDM models. The methods employed here will be applicable to deeper, wide-area
optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey,
the Large Synoptic Survey Telescope and space-based surveys.
Subject headings: gravitational lensing – galaxies: clusters – large-scale structure – cosmol-

ogy:observations – galaxies: halos – dark matter

1. INTRODUCTION

Clusters of galaxies are among the most promis-
ing probes of cosmology and of the physics of struc-
ture formation. Theoretical calculation (Gunn & Gott
1972; Press & Schechter 1974) followed by numeri-
cal simulations with ever-increasing resolution (e.g.
Navarro et al. 1997; Evrard et al. 2002) have led to
a robust, quantitative framework for the understand-
ing of the non-linear growth, collapse, and evolution
of dark-matter halos. Rich clusters are now confi-
dently associated with the most massive, collapsed ha-
los. N-body simulations predict the abundance of halos
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(Sheth & Tormen 1999; Warren et al. 2006), their den-
sity profiles (Navarro et al. 1997), their concentrations
(Bullock et al. 2001; Eke et al. 2001; Wechsler et al.
2002; Macciò et al. 2007; Neto et al. 2007), and their
large-scale clustering (Kaiser 1984; Mo et al. 1996;
Seljak & Warren 2004a; Wetzel et al. 2007). The abun-
dance of dark matter halos is a strong function of
the cosmological parameters, especially σ8, the nor-
malization of the matter power spectrum (White et al.
1993; Viana & Liddle 1999; Bahcall et al. 2003). More-
over, the evolution of the cluster abundance with red-
shift is quite sensitive to the equation of state of
the dark energy (Haiman et al. 2001; Huterer & Turner
2001; Newman et al. 2002; Levine et al. 2002). An accu-
rate measurement of the cluster abundance can thus be
used to determine cosmological parameters.

However, to exploit clusters as cosmological probes re-
quires knowledge of the relation between their observable
properties and their masses — so far, a measurement
of the cluster mass-observable relation with the neces-
sary robustness and precision has been lacking. Various
methods have been employed to detect clusters and to
estimate their masses; each has advantages and disad-
vantages, and it is likely that in the future they will be
increasingly used in combination.

Measurements of X-ray flux and temperature pro-
files, combined with the assumption that the X-ray
emitting gas is in hydrostatic equilibrium (HSE) in a
spherically symmetric gravitational potential, can be
used to infer cluster mass profiles (Reiprich & Böhringer
2002; Nagai et al. 2007). However, recent XMM-Newton
and Chandra data (Markevitch & Vikhlinin 2007) have
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shown that a fraction of clusters have complex luminos-
ity and temperature structure, perhaps associated with
recent merger or AGN activity, calling into question the
spherical HSE assumption in those cases (Evrard et al.
1996). In addition, inference of the mass profile in HSE
requires measurement of the radial gas temperature pro-
file, which in turn requires large numbers of X-ray pho-
tons, so only nearby (Sanderson & Ponman 2004) or very
massive clusters (Allen et al. 2007) are suitable for this
treatment. Future X-ray observatories such as XEUS
and Constellation-X will have greatly improved sensitiv-
ity and will therefore be able to probe lower-mass clusters
with this technique.

The Sunyaev-Zel’dovich (SZ) effect, another gas-
based method of detecting clusters (Grego et al. 2001;
Carlstrom et al. 2002), has the advantage of being es-
sentially redshift independent. Theoretically, the inte-
grated Sunyaev-Zel’dovich flux increment is tightly cor-
related with cluster mass (Motl et al. 2005; Nagai 2006),
and the slope of the relation appears to be insensi-
tive to gas dynamics in cluster cores. Challenges for
this technique (Hallman et al. 2006) include the iden-
tification and removal of contamination by radio point
sources (Vale & White 2006). Recent SZ measurements
(LaRoque et al. 2006) will soon be supplemented by
studies from the APEX-SZ, the Sunyaev-Zel’dovich Ar-
ray, and by large surveys with, e.g., the Atacama Cos-
mology Telescope and the South Pole Telescope.

Dynamical cluster mass estimates, using the estimated
velocity dispersion of cluster galaxies, are also useful,
but they require many spectroscopic measurements per
cluster. The interpretation of the velocity dispersion as
a measure of‘the cluster mass also usually requires as-
sumptions about dynamical equilibrium and about the
distribution of galaxy orbits (velocity anisotropy), al-
though techniques to bypass these assumptions by sim-
ulating cluster galaxy dynamics directly have also been
employed (Evrard et al. 2007). Dynamical estimates are
also subject to uncertainty in the relation between galaxy
and dark matter velocity dispersion, called velocity bias,
which in principle requires inclusion of gas dynamics
and stellar feedback to properly simulate. Recent work
indicates that this effect is small, but depends on the
type of galaxy sampled (e.g. Nagai & Kravtsov 2005;
Diemand et al. 2004).

Gravitational lensing has proven an effective tool in
probing the masses of clusters. Due to the simplicity
of the gravitational physics of lensing, it has become
one of the most secure ways of demonstrating the ex-
istence of dark matter (Clowe et al. 2006). Strong lens-
ing, using multiple images and arcs, can provide precise
cluster mass estimates on small scales (Hammer 1991;
Kneib et al. 1996). However, strong lensing only occurs
in very massive clusters; moreover, strong lensing clus-
ters may not be typical of clusters of their mass, since the
existence of arcs requires high central mass concentra-
tions. Weak lensing has been used to construct projected
mass maps of clusters to larger scales (e.g. Fahlman et al.
1994; Tyson & Fischer 1995; Luppino & Kaiser 1997;
Clowe et al. 1998; Joffre et al. 2000; Irgens et al. 2002;
Cypriano et al. 2004; Bradač et al. 2006). However, in-
dividual weak lensing cluster mass estimates inferred
from shear measurements are subject to ∼ 20% un-
certainties (Metzler et al. 1999, 2001; Hoekstra 2003;

de Putter & White 2005), since they are sensitive to all
mass along the line of sight to the source galaxies, not
just that associated with the cluster. Weak lensing mass
estimates are also affected by the “mass-sheet” degener-
acy (Bradač et al. 2004): adding a constant mass sheet
to the 2D mass density does not change the weak lensing
shear.

Fortunately, to use clusters to constrain cosmological
parameters, determination of the masses of individual
clusters is unnecessary, since cosmological predictions of
structure formation are statistical in nature. Cosmo-
logical theory robustly predicts the halo mass function
n(M ; z, θi), where θi stands for a vector of cosmologi-
cal parameters. Astronomical observations measure the
abundance of clusters sorted by some observable prop-
erty O, n(O; z). To compare theoretical predictions with
observations, we need to measure or constrain the con-
ditional probability distribution, P (O|M ; z), that a dark
matter halo of mass M at redshift z will be observed as a
cluster with observable O in a given survey, including se-
lection effects and biases. This is the approach employed,
e.g., by Rozo et al. (2007a), who adopt the halo occupa-
tion distribution (HOD) description of this conditional
probability distribution and marginalize over the HOD
model parameters to arrive at cosmological constraints.
Alternatively, one could rely on, e.g., hydrodynamic or
semi-analytic galaxy formation models to directly predict
n(O; z, θi), but the theoretical uncertainties — which are
roughly captured in the HOD model — are still large.

The method of “cross-correlation weak lensing” pro-
vides a direct estimate of the mean mass for clusters
with some observable property O and therefore an impor-
tant constraint on the probability distribution P (O|M ; z)
needed to connect cosmological theory with cluster ob-
servations. Cross-correlation lensing consists of stacking
the weak lensing signal from a large number of objects,
selected by some property O, to measure the average
shear profile with high signal-to-noise. By combining
the signal from many lenses, the error on the mean shear
profile and on the inferred mean mass can in principle
be reduced to the sub-percent level; in that limit, sys-
tematic errors of interpretation start to dominate. Since
less massive objects are more abundant in the Universe,
cross-correlation lensing can be used over a very wide
range of lens masses — from massive clusters down to
galaxies, where it is referred to as galaxy-galaxy lensing
(Tyson et al. 1984; Brainerd et al. 1996; Fischer et al.
2000; Sheldon et al. 2004; Mandelbaum et al. 2006). Be-
cause the method corresponds to a statistical measure-
ment of the lens-mass cross-correlation function (see §3),
the inferred mean masses are insensitive to uncorrelated
mass along the line of sight to the source galaxies. For
cluster-scale lenses, the mean effects of correlated mass
along the line of sight, e.g., in neighboring clusters or
filaments, are generally negligible out to scales compa-
rable to the cluster virial radius. Moreover, their effects
can be measured and modeled, as we show in §4. As a
result, cross-correlation lensing is essentially free of the
projection effects that plague individual cluster lens mass
estimates.

In Sheldon et al. (2007) (hereafter Paper I), we pre-
sented average shear profiles from cross-correlation weak
lensing measurements around ∼ 130,000 clusters of
galaxies from the Sloan Digital Sky Survey (SDSS,
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York et al. 2000). These clusters were selected from
the maxBCG cluster catalog described in Koester et al.
(2007b); the maxBCG cluster finding algorithm, based
on the red sequence of early-type cluster galaxies, is de-
scribed in Koester et al. (2007a).

In this paper, we analyze the detected lensing signal
presented in Paper I and model the features seen in the
shear profiles. In §2 we summarize the relevant results
from Paper I. In §3 we apply the non-parametric in-
versions of Johnston et al. (2007) to infer the mean 3D
cluster mass density and aperture mass profiles in bins
of optical richness and luminosity (see §2.1). These in-
verted density and mass profiles, however, cannot be di-
rectly interpreted as profiles of dark matter halos. In
§4, we discuss why this is so and develop a parameter-
ized model which includes the effects of: displacement
of the center of the cluster halo from the brightest clus-
ter galaxy (BCG); non-linear shear corrections; lensing
by the central BCG; and lensing by neighboring clusters
and structures. When these effects are included, we find
that the inferred halo profiles are well fit by the uni-
versal dark matter profiles of Navarro, Frenk & White
(Navarro et al. 1997). In the context of this model, we
estimate the average halo virial mass, M200, as a function
of cluster galaxy richness and total galaxy luminosity.
We infer the mean halo concentration and halo bias as a
function of M200 and find them to be in good agreement
with the predictions of N-body simulations for the stan-
dard LCDM cosmology. In §6 we compare the inferred
mean halo masses vs. galaxy richness to recent dynam-
ical mass estimates from measured velocity dispersions
for the same cluster sample (Becker et al. 2007); the two
mass estimates agree very well, with the lensing estimates
having smaller errors. We conclude by discussing some
cosmological applications of these results as well as ap-
plications in future optical surveys.

For computing distances and, where needed, the lin-
ear power spectrum of density perturbations, we use
a spatially flat cosmological model with a cosmologi-
cal constant and cold dark matter (LCDM) with scaled
CDM density Ωm = 0.27, baryon density Ωb = 0.045,
scaled Hubble parameter h = 0.71 (for the linear power
spectrum not distances) and primordial spectral index
ns = 0.95. The linear power spectrum amplitude σ8 is
left free except where specified. We employ the linear
transfer function of Eisenstein and Hu (Eisenstein & Hu
1998). This model (with σ8 = 0.8) fits both the WMAP
third-year data Spergel et al. (2007) and the SDSS lumi-
nous red galaxy (LRG) clustering data (Eisenstein et al.
2005). All distances in this paper are in physical not
comoving units of h−1Mpc.

2. WEAK LENSING SHEAR MEASUREMENTS

The methods of measuring the weak lensing signal
are described in detail in Paper I. We briefly summa-
rize some of the important features here. For any pro-
jected mass distribution, the azimuthally averaged tan-
gential shear at projected radius R from the center of
the distribution is given by γ(R) = ∆Σ(R)/Σcrit ≡
[Σ(< R) − Σ(R)]/Σcrit, where Σ(R) is the 2D pro-
jected mass density at radius R, Σ(< R) is the aver-
age of Σ inside a disk of radius R, Σ(R) is the az-
imuthal average of Σ(R) in a thin annulus of radius
R, and the critical density for strong lensing is given

TABLE 1
12 N200 bins

Bin number N200 Number of clusters per bin

1 3 58788
2 4 27083
3 5 14925
4 6 8744
5 7 5630
6 8 3858
7 9-11 6196
8 12-17 4427
9 18-25 1711
10 26-40 787
11 41-70 272
12 71-220 47

Note. — The catalog is divided into 12 N200 rich-
ness bins. This table shows the boundaries of N200

values and the number of clusters for each bin.

by Σcrit ≡ c2/(4πG) DS/(DLDLS), with DS , DL, DLS

the angular diameter distances from the observer to the
source, to the lens, and between the lens and source,
respectively. These distances are cosmology-dependent
functions of redshift. Paper I presents average profiles
of ∆Σ(R) for maxBCG clusters binned by cluster galaxy
number, N200, and by optical luminosity L200. For these
measurements, the radius R is defined with respect to
the position of the BCG; see §4.3 for further discussion
of this point.

2.1. Richness and Luminosity measures N200 and L200

Although the richness and luminosity measures N200

and L200 are discussed in detail in Paper I, here we em-
phasize some of their important features to avoid possible
confusion. N200 and L200 are the galaxy number and to-
tal i-band luminosity measured within a projected radius

we call rgals
200 , in both cases counting only red-sequence

galaxies with luminosities larger than 0.4L∗ and satisfy-
ing other selection criteria (see Koester et al. 2007a for
details). This radius is not by definition, equivalent to
the r200 defined by the mass (Eqn. 4), which can in prin-
ciple be measured directly from lensing, since r200 is not
known prior to performing the weak lensing analysis. In-

stead, rgals
200 is determined by first measuring the number

of galaxies, Ngal, within a fixed 1 h−1 Mpc aperture and

calculating rgals
200 = 0.156 N0.6

gal h−1 Mpc, as discussed

in Hansen et al. (2005). Nevertheless, we find that rgals
200

is in fact a good approximation to r200 as determined
in this paper from the lensing data to within about 5%.
The mass-to-light ratio as a function of radius will be pre-
sented in Paper III of this series (Sheldon et al. 2007).
Note that N200 is dimensionless, and L200 has units of
1010h−2L⊙.

For the purpose of lensing measurement, the catalog
is subdivided into 12 N200 richness bins and 16 L200

richness bins. The richness boundaries for each richness
measure as well as the number of clusters per bin are
displayed in Tables 1 and 2.

3. INVERTING CLUSTER PROFILES

3.1. Inversion Method

The methods used to invert the lensing ∆Σ(R) pro-
files to 3D density and mass profiles are discussed in
detail in Johnston et al. (2007) and were first used by
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Fig. 1.— Left: Weak lensing profiles ∆Σ(R) for 12 bins of optical richness, N200. Right: ∆Σ(R) for 16 i-band luminosity bins, L200.

TABLE 2
16 L200 bins

Bin number L200(1010h−2L⊙) Number of clusters per bin

1 5 - 6.24 19618
2 6.24 - 7.8 18597
3 7.8 - 9.74 16042
4 9.74 - 12.2 12269
5 12.2- 15.2 9010
6 15.2 - 19.0 6152
7 19.0 - 23.7 4164
8 23.7 - 29.6 2666
9 29.6 - 36.9 1703
10 36.9 - 46.1 1042
11 46.1 - 57.6 638
12 57.6 - 71.9 344
13 71.9 - 89.8 210
14 89.8 - 112.1 108
15 112.1 - 140 49
16 140 - 450 46

Note. — The catalog is also divided into 16 L200 richness
bins. This table shows the boundaries of L200 values and the
number of clusters for each bin.

Sheldon et al. (2004) to obtain the galaxy-mass correla-
tion function from galaxy-galaxy lensing measurements.
Here, we provide a brief overview of the methods.

The mean excess 3D density profile ∆ρ(r) around a
set of clusters with a given observable O (e.g., rich-
ness or luminosity) is best thought of in terms of the
cluster–mass two-point correlation function, ξcm, since
∆ρ(r) = ρ̄ ξcm(r), where ρ̄ is the mean density of the Uni-
verse. By the assumptions of spatial homogeneity and
isotropy, ξcm depends only on the magnitude of the sep-
aration, r, not on direction. As a consequence, the mean
density profile ∆ρ(r) should be very nearly spherically
symmetric. Note that this is a purely statistical state-
ment: we do not assume that individual cluster density

profiles are spherically symmetric. The spherical sym-
metry of the average density profile enables the inversion
of the stacked lensing signal ∆Σ(R) to the 3D density
∆ρ(R) and the aperture mass M(R). By contrast, weak
lensing measurements of individual clusters can only be
used to reconstruct the projected 2D mass density, Σ(~x),
since lensing is produced by all of the mass projected
along the line of sight.

The mean 3D density profile is obtained as an integral
of the derivative of the shear profile ∆Σ(R) through a
purely geometric relation,

∆ρ(r) =
1

π

∫ ∞

r

dR
−Σ′(R)√
R2 − r2

, (1)

where a prime denotes a derivative with respect to R.
The lensing data ∆Σ enters here since it can be shown
that

− Σ′(R) = ∆Σ′(R) + 2∆Σ(R)/R . (2)

The 3D mass profile is given in terms of ∆Σ(R) and
∆ρ(R) as

M(R) = πR2∆Σ(R) + 2π

∫ ∞

R

dr r ∆ρ(r) ×
[

R2

√
r2 − R2

− 2
(
r −

√
r2 − R2

)]
. (3)

In practice, these integrals must be truncated at some
maximum radius, Rmax, the largest scale at which one
has lensing data (30h−1 Mpc for our data). The uncer-
tainty from this truncation is related to the mass-sheet
degeneracy. Due to the steepness of the cluster profiles
we infer in this paper, this truncation creates only a few
percent uncertainty in the last few radial bins of both
density or mass and virtually none in bins at smaller
radii. Complete details of the procedure are given in
Johnston et al. (2007).
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3.2. 3D Density and Mass Profiles

The inverted 3D density profiles for each of the 12 N200

richness and 16 L200 luminosity bins are presented in Fig-
ure 2. These profiles are noisier than the shear profiles,
since they involve derivatives of noisy data. The differen-
tiation in Eqn. 1 also leads to anti-correlations between
neighboring radial bins of ∆ρ(r).

Figure 3 shows the inverted mean aperture mass pro-
files, M(r), for the same richness and luminosity bins as
above. Since the mass profile is an integral of the density
profile, it is smoother than the latter, and neighboring
bins of M(r) are statistically correlated. This allows one
to better see the deviations from power-law behavior that
one expects from the halo model (see §4).

3.3. Direct Measurements of r200 and M200

The radius r200 is defined, herein, as the radius within
which the average density is 200 times the critical density
ρc. This defines the corresponding mass scale,

M200 ≡ M(r200) = 200 ρc(z)
4

3
π r3

200 , (4)

where ρc(z) = 3H2(z)/(8πG) is the critical density at
epoch z, and the Hubble parameter satisfies H2(z) =
H2

0

[
Ωm(1 + z)3 + (1 − Ωm)

]
for a flat LCDM Universe.

Throughout this paper we use z = 0.25, the mean cluster
redshift for our sample, and Ωm = 0.27 to compute ρc(z).
For these choices, the conversion between M200 and r200

is M200 = 2.923 × 1014 h−1M⊙

(
r200/h−1Mpc

)3
.

Using the inverted mass profiles shown in Fig. 3,
we can determine r200 and M200 in a model inde-
pendent way, by simply measuring where the curve
200 ρc(z) 4/3 π r3 crosses the mass profile. This pro-
cedure, which is illustrated in Fig. 3, requires one to
interpolate the data between the two radii closest to
the crossing point. This interpolation can in principle
be ill-defined if the data are noisy and the profiles non-
monotonic, but that never occurs for any of our profiles.
We have experimented with a few different ways of in-
terpolating. One can use the unique power law defined
by the two neighboring data points or fit a power law to
a four-point neighborhood of the crossing. We find that
these methods give essentially identical answers; since
the four-point method yields slightly lower scatter in the
mass–richness relation, we use that method.

While this procedure for inferring r200 and M200 has
the advantage of being model independent, the results
cannot be interpreted as the virial radii and masses of
the corresponding dark halos. The primary reason is that
BCGs, which we use to define the center of each cluster
for the lensing measurements, are not always positioned
at the center of mass of the underlying dark matter halo.
This fact, which we observe in our simulations, is not sur-
prising: for this analysis, clusters are the objects identi-
fied by the maxBCG algorithm, while dark matter halos
are theoretical constructs — the two are not in precise
one-to-one correspondence (Cohn et al. 2007; Rozo et al.
2007a). The model-independent profiles of Fig. 3, and
the corresponding values of r200 and M200, are the “true”
mass profiles of clusters centered on their BCGs. How-
ever, to estimate dark matter halo profiles and masses,
we must adopt a model to describe the data, which we
do in the next section. When we do so, we find that the

TABLE 3
Direct cluster Mcl

200
-richness calibration:

N200 Bins

〈N200〉 Mcl
200

( 1012h−1M⊙ ) rcl
200

(h−1 Mpc)

3.00 4.26 ± 0.45 0.24 ± 0.01
4.00 5.29 ± 0.65 0.26 ± 0.01
5.00 8.01 ± 1.34 0.30 ± 0.02
6.00 13.15 ± 1.65 0.36 ± 0.01
7.00 9.66 ± 2.28 0.32 ± 0.03
8.00 12.71 ± 3.36 0.35 ± 0.03
9.82 25.53 ± 2.86 0.44 ± 0.02
13.91 42.31 ± 3.42 0.53 ± 0.01
20.78 74.45 ± 7.46 0.63 ± 0.02
31.09 123.22 ± 11.28 0.75 ± 0.02
50.27 199.26 ± 24.81 0.88 ± 0.04
92.18 502.87 ± 87.61 1.20 ± 0.07

Note. — The Mcl
200

– richness relation for the
N200 richness bins. This estimate of M200 which
we call Mcl

200
is meant to represent the M200 of the

clusters as opposed to the dark matter halos. It is
estimated non-parametrically by determining where
the 3D mass profile M(r) cross the line determined
by 4/3πr3 200 ρcrit(z). These masses differ from the
parametric masses that include cluster miscentering
and other effects.

TABLE 4
Direct cluster Mcl

200
-richness calibration:

L200 Bins

〈L200〉 Mcl
200

( 1012h−1M⊙ ) rcl
200

(h−1 Mpc)

5.59 4.59 ± 0.77 0.25 ± 0.01
6.97 5.68 ± 0.81 0.27 ± 0.01
8.69 6.16 ± 0.96 0.28 ± 0.01
10.84 12.86 ± 1.42 0.35 ± 0.01
13.53 11.98 ± 1.80 0.34 ± 0.02
16.89 22.92 ± 2.89 0.43 ± 0.02
21.06 30.94 ± 3.60 0.47 ± 0.02
26.31 41.36 ± 4.51 0.52 ± 0.02
32.89 56.90 ± 7.80 0.58 ± 0.03
40.95 77.67 ± 9.78 0.64 ± 0.03
51.19 99.05 ± 13.49 0.70 ± 0.03
64.08 160.65 ± 22.19 0.82 ± 0.04
79.89 160.16 ± 30.13 0.82 ± 0.05
98.69 182.81 ± 35.58 0.86 ± 0.06
124.59 258.49 ± 53.30 0.96 ± 0.07
184.65 553.76 ± 93.41 1.24 ± 0.07

Note. — The Mcl
200

– richness relation for the
L200 richness bins.

inferred dark matter halo masses are about 50% higher
than the model-independent cluster masses. We use the
results of those model fits to constrain the halo mass –
richness relations and other scaling relations.

We will distinguish these two types of masses by re-
ferring to the parametric halo masses as M200 and non-
parametric cluster masses as M cl

200. For completeness,
we present these cluster masses in Tables 3 and 4 but
we will not use them elsewhere in this work. In another
publication, Paper III of this series on cluster mass-to-
light ratios (Sheldon et al.), we will refer to these non-
parametric M cl

200 masses.

4. HALO MODEL FITS TO LENSING PROFILES

To proceed, we construct a physical model of the av-
erage mass density in clusters that comprises three com-
ponents: the central BCG, the cluster-scale dark matter
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Fig. 2.— Left: Inverted mean density profiles, ∆ρ(r), for the 12 N200 richness bins shown in Fig. 1. Right: Inverted ∆ρ(r) profiles for
the 16 L200 richness bins shown in Fig. 1.

1011

1012

1013

1014

1015

1016

M
  (

 h
 -

1  M
O •
 )

1011

1012

1013

1014

1015

1016

M
  (

 h
 -

1  M
O •
 )

0.1 1 10
r (h-1 Mpc)

1011

1012

1013

1014

1015

1016

M
  (

 h
 -

1  M
O •
 )

0.1 1 10
r (h-1 Mpc)

0.1 1 10
r (h-1 Mpc)

0.1 1 10
r (h-1 Mpc)

1011
1012

1013

1014

1015

1016

M
  (

 h
 -

1  M
O •
 )

1011
1012

1013

1014

1015

1016

M
  (

 h
 -

1  M
O •
 )

1011
1012

1013

1014

1015

1016

M
  (

 h
 -

1  M
O •
 )

0.1 1 10
r (h-1 Mpc)

1011
1012

1013

1014

1015

1016

M
  (

 h
 -

1  M
O •
 )

0.1 1 10
r (h-1 Mpc)

0.1 1 10
r (h-1 Mpc)

0.1 1 10
r (h-1 Mpc)

Fig. 3.— Left: Inverted 3D aperture mass profiles, M(r), for the 12 N200 richness bins. The dotted blue diagonal line in each panel
denotes 200 ρc 4/3 π r3 (see Eqn. 4); this crosses the mass profile at r200 and M200, which are indicated with the dashed red vertical and
horizontal lines. Right: Inverted 3D aperture mass profiles, M(r), for the 16 L200 richness bins.
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halo in which it sits, and neighboring mass concentra-
tions. We will also consider non-linear shear. We treat
these in turn.

4.1. The BCG

Since every maxBCG cluster, by design, is centered on
a bright galaxy, we should allow for a contribution to
the mass from the baryons (mainly stars) and from the
dark matter sub-halo of the BCG (assuming the latter
is not modeled by the central cusp of the cluster-scale
halo). Gavazzi et al. (2007) find that a central baryonic
component is required to fit both the strong and weak
lensing profiles of early-type galaxies in the SLACS sur-
vey. Although this contribution could be modeled in a
number of ways, e.g., by using a de Vaucouleurs profile,
its effects are only significant on very small scales, and its
form is not well constrained by our data. Therefore, we
simply model this contribution as a central point mass,
M0, with lensing signal ∆Σ = M0/(πR2), where M0 is a
model parameter to be fit.

4.2. The cluster dark matter halo

Out to radii of a few Mpc, the density profiles appear
to be dominated by the cluster-scale dark matter halos.
N-body simulations of structure formation with cold dark
matter indicate that halos are reasonably well modeled
by the universal (NFW) profiles of Navarro et al. (1997),

ρNFW (r) =
δ ρc(z)

(r/rs)(1 + r/rs)2
. (5)

This form contains two free parameters, a scale radius
rs and an amplitude δ; ρc(z) is the critical density at
redshift z. At r ∼ rs, the logarithmic slope of the NFW
profile changes between the asymptotic values of −1 at
small scales (r ≪ rs) and −3 at large scales (r ≫ rs).
The parameters δ and rs are usually traded for a descrip-
tion in terms of r200 (or equivalently M200) and c200. As
above, r200 is the radius within which the mean den-
sity is 200 times the critical density and for which the
enclosed mass is M(r200) = 200ρc(z)(4/3)π r3

200, while
c200 ≡ r200/rs is the concentration. The amplitude δ can
be expressed in terms of c200 as

δ =
200

3

c3
200

ln(1 + c200) − c200/(1 + c200)
. (6)

Analytic expressions for the shear profile
∆Σ(R; c200, M200) of NFW halos can be found in,
e.g., Wright & Brainerd (2000). Various other defini-
tions of the virial radius have been used in the literature,
e.g., the radius within which the mean density is 180 ρ̄(z)
instead of 200ρc(z). We discuss the conversion among
these different systems in the Appendix.

4.3. Miscentering of the BCG and the Halo

For the lensing measurements, the center of each clus-
ter (R = 0) is defined to be the position of the BCG iden-
tified by the cluster-finding algorithm. As noted in §3.3,
some fraction of the BCGs may be offset from the centers
of the corresponding dark matter halos. Such “miscen-
tering” changes the observed tangential shear profile. If
the 2D offset in the lens plane is Rs then the azimuthally

averaged Σ(R) profile is given by the convolution

Σ(R|Rs) =
1

2π

∫ 2π

0

dθΣ
(√

R2 + R2
s + 2R Rs cos(θ)

)

(7)
(Yang et al. 2006).

To make progress, we need to know something about
the distribution of offsets, P (Rs). In order to estimate
this, we employ N-body simulation-based mock galaxy
catalogs that have been constrained to have realistic lu-
minosities, colors, clustering properties, and cluster pop-
ulations. These catalogs, which have been used in pre-
vious maxBCG studies (Koester et al. 2007a; Rozo et al.
2007a,b), populate a dark matter simulation with galax-
ies using the ADDGALS technique (Wechsler et al 2007).
The catalog is based on the light-cone from the Hub-
ble Volume simulation (Evrard et al. 2002), and extends
from 0 < z < 0.34. Galaxies are assigned directly to dark
matter particles in the simulation, with a luminosity-
dependent bias scheme that is tuned to match local clus-
tering data. The galaxy luminosities are first assigned
in the 0.1r-band, drawn from the luminosity function
of Blanton et al. (2003). The luminosity function is as-
sumed to evolve with Q = 1.3 magnitudes per unit red-
shift. We first constrain the relationship between galaxy
luminosity and Lagrangian matter densities on a scale of
∼ M∗, using the luminosity-dependent two-point clus-
tering of SDSS galaxies (Zehavi et al. 2005). For each
galaxy, a dark matter particle is then chosen on the ba-
sis of this density with some P (δ|Mr). Each mock galaxy
is then assigned to a real SDSS galaxy that has approx-
imately the same luminosity and local galaxy density,
measured here as the distance to the fifth nearest neigh-
bor. The color for each mock is then given by the SED
of this matched galaxy transformed to the appropriate
redshift. Because BCGs are now known to be distinct
from the general galaxy population, BCG properties are
further tuned to match the luminosities and colors of ob-
served BCGs; in addition a BCG is placed at the center
of each dark matter halo. This procedure produces a
catalog which matches several statistics of the observed
SDSS population, including the location, width and evo-
lution of the ridgeline, which makes it ideal for testing
the maxBCG algorithm. In this work, we use five galaxy
realizations that have been run using the same underly-
ing dark matter simulation; to improve our statistics, we
merge all five mock catalogs into one.

The maxBCG algorithm is then used to identify clus-
ters in the mock catalogs, and the resulting BCG posi-
tions can be compared to the centers of mass of the dark
matter halos in the input N-body simulations. We use
the matching technique described in Rozo et al. (2007a)
to match clusters to halos, and directly compute the off-
set Rs between the halo center and the BCG assigned
to the halo by the maxBCG cluster finding algorithm.
In the real Universe, miscentering for our cluster pop-
ulation can occur for either of two reasons — the real
BCG can be offset from the center of mass, or the BCG
can be misidenfied by the cluster finder. In the mock
catalogs, there is always a bright galaxy at the center
of the dark matter halo, so we are neglecting here the
first case. Although this is not likely to be precisely true
in all cases, our results indicate that miscentering due
to misidentified BCGs dominates the effects we discuss
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below.
For these catalogs, a richness-dependent fraction of the

BCGs appear to be accurately centered on their dark
matter halos (Rs ≃ 0), while the rest are reasonably well
described by a 2D Gaussian distribution,

P (Rs) =
Rs

σ2
s

exp(−1

2
(Rs/σs)

2) (8)

with σs = 0.42 h−1 Mpc, independent of cluster rich-
ness (see next section). The resulting mean surface mass
profile for the miscentered clusters can be written

Σs
NFW (R) =

∫
dRsP (Rs) ΣNFW (R|Rs) (9)

and ∆Σs
NFW (R) = Σs

NFW (< R)−Σs
NFW (R). We find

that the mean shear profile is not very sensitive to the
shape of the distribution of Rs, but it is sensitive to the
effective scale length σs.

Figure 4 shows the effects of such miscentering on the
lensing signal for a cluster with an NFW profile. The
effect on ∆Σ(R) is much larger than on Σ(R): the con-
volution in Eqn. 7 leads to a smoothing which essen-
tially flattens the Σs(R) profile at small scales, creat-
ing a mass sheet which causes little shear. While the
∆ΣNFW (R) profile is relatively flat at small scales, the
smoothed ∆Σs

NFW (R) profile is strongly suppressed at
scales R . 2.5σs.

In applying this model to the data in §5, we include
ln(σs) as a model parameter, using its value from the
mock catalogs as the central value of a Gaussian prior
probability distribution. We assume that a fraction pc

of the BCGs are accurately centered on the dark matter
halos, and that a fraction 1 − pc follow the distribution
of Eqn. 8. The simulations are used to formulate a prior
distribution for pc, as described in §4.5.

We determine this fraction pc of correctly centered
BCGs as a function of N200; this is shown in the left panel
of Figure 5. We can model this relation as pc(N200) ≡
1/(1 + exp(−q)) with

q = ln(1.13 + 0.92 (N200/20)). (10)

The dotted lines show the statistical 95% confidence
bands recovered in the simulations, whereas the dashed
lines show the 95% bands corresponding to the much
more generous 0.4 prior on q used in our analysis as de-
scribed in §4.5. The right panel of Figure 5 shows the
miscentering distribution P (Rs). The data from the sim-
ulations is roughly fit by a two dimensional Gaussian of
width σR = 0.42 h−1 Mpc. Note that because the mock
catalogs place the BCG of a halo at the center of the
halo, the offset Rs is identically zero if maxBCG assigns
the correct BCG to each cluster.

Our best fit model is shown as a solid line, while the
dashed lines show the models that bound the 68% con-
fidence regions corresponding to the 30% Gaussian prior
on the parameter σS used in §4.5 to fit the data. It is
clear that our adopted priors are much more generous
than the statistical noise in the simulations. We choose
this wider prior since there may be differences between
the mock catalogs and the real data. The wider prior
likely can mostly account for real offsets between BCGs
and the center of the mass concentration. Finally, we

10-2 0.1 1 10
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Fig. 4.— Effect of an offset between the BCG and the halo center
on the projected mass profile Σ(R) and the lensing signal ∆Σ(R).
The black solid curve shows the Σ(R) profile for an NFW halo with
c200 = 5 and r200 = 1 h−1 Mpc. The black dashed curve shows the
corresponding ∆Σ(R) profile. The red curves show the resulting
mean profiles when the distribution of randomly-oriented BCG-
halo offsets is a 2D Gaussian with dispersion σs = 0.42h−1 Mpc
(indicated by the blue vertical line). The red solid curve shows the
smoothed Σs(R) and the red dashed curve the smoothed ∆Σs(R)
profile. Miscentering has the effect of making the Σs(R) nearly
flat, i.e., a mass sheet, at small scales. Although Σ(R) and Σs(R)
differ by only 10−30% near r = σs, ∆Σ and ∆Σs differ by an order
of magnitude. For this example, ∆Σs(R) peaks at r ≃ 2.5σs; this
behavior depends slightly on c200.

emphasize here that we are adopting the same miscen-
tering distribution for all richness bins. The differences
between the various richness bins in the mock data are
much smaller than the 30% prior that we use.

4.4. Neighboring mass concentrations

The NFW profile is expected to be a good represen-
tation of the stacked mass profiles on small to interme-
diate scales surrounding clusters, but on large scales the
lensing signal is dominated by neighboring mass concen-
trations, e.g., nearby halos and filaments. We model this
contribution via the so-called two-halo term (Seljak 2000;
Mandelbaum et al. 2005),

ρ2h(r) = b(M200, z) Ωm ρc,0 (1 + z)3 ξl(r, z) (11)

where ρc,0 is the critical density at the present epoch,
and ξl(r, z) is the auto-correlation function of the mass
in linear perturbation theory, evaluated at the redshift
of the clusters. Here, b(M200, z) is the linear bias pa-
rameter for dark matter halos, which has a predicted de-
pendence upon halo mass and redshift (Sheth & Tormen
1999; Seljak & Warren 2004b).

The shape of the linear correlation function is deter-
mined by the cosmological parameters ns, h, and Ωm for
a flat LCDM model and is constrained by observations
of galaxy clustering (Eisenstein et al. 2005; Zehavi et al.
2004). The linear correlation function can be expressed
as

ξl(r, z) = D(z)2 σ2
8 ξl((1 + z) r) , (12)

where ξl(r) with a single argument is the linear corre-
lation function evaluated at z = 0 and normalized to
σ8 = 1. The presence of the factor of (1+z) in the above
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Fig. 5.— Left: The probability that a cluster is correctly centered as a function of cluster richness, N200, in mock catalogs. The
diamonds with error bars are the measurements in the simulations, whereas the solid line is our best fit model (see text for details). The
dotted lines show the 95% confidence (2σ) band from statistical uncertainties only. The dashed line shows the more generous 95% confidence
region corresponding to the adopted 0.40 prior uncertainty on q, which are wider to allow for some possibility that there are differences in
the probability of a cluster being correctly centered between our mocks and the real data. Right: The distribution of the projected radial
offsets between a halos and clusters which are not correctly centered. Diamonds with error bars show the measurement in the mocks, while
the solid line represents the best 2D Gaussian model, corresponding to a width σS = 0.42 h−1 Mpc. The dashed lines are the two models
that bound the much more generous 68% confidence region of σS with the adopted 30% prior on σS .

expression converts the physical distance r into comov-
ing units. All distances in this paper are in physical not
comoving units. The linear growth factor satisfies

D(a) ∝ H(a)

∫
da′ [H(a′)a′]

−3
, (13)

with a = 1/(1+z); D is normalized to unity at a = 1 (z =
0). We can therefore express the two-halo contribution
to the density as

ρ2h(r) = Bρc,0 (1 + z)3 ξl((1 + z) r) , (14)

where we have defined an effective bias parameter

B ≡ b(M200, z) Ωm σ2
8 D(z)2 . (15)

The contribution of the two-halo term to the lensing
signal, for fixed values of ns, h, and Ωm, can be written
as ∆Σ(R; B) = B∆Σl, where, as before, ∆Σl(R) = Σl(<
R) − Σl(R), and

Σl(R)= (1 + z)3ρc,0

∫
dyξl

(
(1 + z)

√
y2 + R2

)

=(1 + z)2ρc,0 W ((1 + z)R) (16)

with

W (R) ≡
∫

dy ξl(
√

y2 + R2) . (17)

4.5. Summary of halo model and parameter priors for
∆Σ fits

Combining the results from sections 4.1 through 4.4,
we can write down the model for the lensing signal ∆Σ
thus far,

∆Σ(R) =

M0

πR2
+ pc∆ΣNFW (R) + (1 − pc)∆Σs

NFW (R) + B∆Σl

(18)

where, sequentially, the terms come from the BCGs, the
halos centered on the BCGs, the halos not centered on
the BCGs, and the neighboring halos.

There are two further effects to consider. This model
assumes a constant halo mass where, in reality, the sig-
nal will be averaged over the distribution of halos masses
for each richness bin. The other effect that we will con-
sider is the non-linear shear effect that is discussed in
Mandelbaum et al. (2006). We will treat this non-linear
contribution first and then integrate the full signal over
the distribution of masses.

The average tangential ellipticities do not trace the
shear exactly but rather trace the reduced shear, g ≡
γ/(1− κ). Let eij be the i-th source galaxy around clus-
ter j for some radial bin. As shown in Mandelbaum et al.
(2006) an estimator for ∆Σ formed from a weighted aver-
age of ellipticities and identical halos has a second order
contribution

∆̂Σ=
∑

ij

Wij eij

=∆Σ + ∆Σ Σ LZ (19)

with
LZ =

〈
Σ−3

crit

〉
/

〈
Σ−2

crit

〉
(20)

This differs from the
〈
Σ−2

crit

〉
/

〈
Σ−1

crit

〉
in

Mandelbaum et al. (2006) in that our weighting
has an explicit factor of Σ−1

crit.

Wij =
1

2R

σ−2
ij Σ−1

crit(i, j)∑
kl σ−2

kl Σ−2
crit(k, l)

(21)

where R is the shear responsivity and σ2
kl are the esti-

mates of variances on source ellipticities.
Using the photometric redshifts for the source galaxies

and the maxBCG photometric estimates for the cluster
redshifts, we find LZ = 1.40 × 10−4 h−1 pc2/M⊙. This
quantity varies only a few percent across different cluster
samples and different radial bins; a variation we ignore.
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For the last step we need to consider that within any
richness bin, there will be scatter in mass. So we need to
integrate this expression over the probability distribution
of halos masses P (M200). Here, 〈 〉 indicates averaging
over P (M200).

〈̂∆Σ〉 = 〈∆Σ〉 + 〈∆Σ Σ〉 LZ (22)

We will use a log-normal distribution of M200 at fixed
richness with a variance in lnM200 given by VM which is
our last model parameter.

For the first term 〈∆Σ〉 we can integrate Eqn. 18
over P (M200). Corresponding to Eqn. 18, there is a
three-term expression for Σ (the point-mass doesn’t con-
tribute). So our second order correction has 12 terms
that need to be integrated over P (M200). Most of these
pairs (i, j) do not contribute since 〈∆Σi Σj〉 (R) LZ ≪
〈∆Σ〉 (R) at all scales.

Only two of these terms make meaningful contributions
at the smallest scales,

∆ΣNL = LZ ×[
p2

c 〈∆ΣNFW ΣNFW 〉 +
pcM0

πR2
〈ΣNFW 〉

]
. (23)

With this last expression we can write down our full
model for our data where, again, 〈 〉 indicates averaging
over P (M200).

̂< ∆Σ(R) > =

M0

πR2
+ pc 〈∆ΣNFW 〉 (R)

(1 − pc) 〈∆Σs
NFW 〉 (R) + B∆Σl + ∆ΣNL

(24)

This model has seven parameters: the BCG point mass
M0; the two NFW halo parameters r200 and c200; the
scatter in the mass–richness relation VM ; the halo mis-
centering width σsand the halo centering fraction pc; the
linear bias amplitude B = b(M200)Ωmσ2

8D
2(z) which

should also be thought of as the average over the mass
distribution.

Since we will integrate over P (M200) we need to be spe-
cific about what we mean by our parameter r200. We take
this to be the r200 corresponding to the average M200.
For a log-normal distribution < M200 >= exp(VM/2+µ)
where µ is the average ln(M200).

Becker et al. (2007) measures the variance of the log-
arithm of the galaxy velocity dispersion as V ar(σv) =
0.0963 − 0.0241(N200/25) and Evrard et al. (2007) de-
termines the scaling M200 ∝ σλ

v with λ = 2.98. This
results in

VM = 0.855− 0.214 ln(N200/25). (25)

We allow for an uncertainty of 0.60 in VM in our prior
(i.e. a 30% uncertainty for the scatter). This log-normal
model also seems consistent with our mock catalogs.

Table 5 lists all seven model parameters used in the
fits, including the information about the prior distribu-
tions. To enforce positivity, logarithms are used for all
parameters except B and M0. Each prior distribution is
taken to be a Gaussian with mean and standard devia-
tion as indicated in the table. In addition M0 is forced to

be positive since it is not at all constrained on the lower
end. Here, a “weak prior” means that neither the best-
fit parameters nor the estimated parameter errors change
significantly if the standard deviation of the prior distri-
bution is increased. Since the parameter pc is constrained
to lie in the range [0, 1], we use the transformed param-
eter q ≡ ln[pc/(1 − pc)] which has range [−∞, +∞] and
can thus be assigned a Gaussian prior. The prior mean
of q and VM vary with richness as described in Eqn. 10
and 25.

To fit the measured ∆Σ profiles with the model, we use
a Markov Chain Monte Carlo (MCMC). MCMC is useful
for efficiently calculating likelihoods in multi-dimensional
parameter spaces. MCMC methods generate “chains” or
sequences in the parameter space that represent a fair
sampling from the full posterior probability distribution.
Thus, they allow one to visualize the likelihood surface
and see degeneracies between parameters without assum-
ing that the errors are normally distributed (as in the
Fisher matrix method). It is also straightforward to in-
clude priors on parameters in the MCMC approach. Our
MCMC routine uses the Metropolis-Hastings algorithm
with Gaussian transition functions. The total number of
steps is 100,000, and we discard a burn-in period of the
first 1000 steps. Runs of varying length show that con-
vergence of the posterior distribution is reached before
10,000 steps and longer runs such as our 100,000 step
run improve the sampling but do not affect the sample
mean or variances by meaningful amounts.

4.6. Systematic errors

There are two major sources of systematic error in any
weak lensing measurements: shear calibration error and
errors associated with photo-z biases. The shear calibra-
tion error of the shear estimation methods that we use
for the SDSS were tested as part of the Shear TEsting
Program II (STEP2 ; Massey et al. (2007)) and found to
be less than a percent (for the RM method in STEP2).
However, we allow for a 3% error in shear calibration
since the STEP simulation error may not represent the
full calibration error when these methods are applied to
real data — e.g., the PSF modeling of SDSS was not
tested in STEP.

The dominant systematic error is that associated with
biases in the photometric redshift distribution. We use a
neural network based method (Cunha et al. In prepara-
tion) which uses a training set of spectroscopic redshifts
from the SDSS, CNOC2 (Yee et al. 2001) and CFRS
(Lilly et al. 1995). See Paper I for details.

Although it is difficult to estimate the residual photo-z
bias, we will assume that the amplitude of the resultant
masses is uncertain at the level of 7% and we will include
this in our errors of the zero-point of the mass–richness
relation. Further improvements in photo-z calibration
should be able to reduce this overall error by as much as
a few percent.

Another source of systematic errors is model depen-
dency. The priors that we have chosen are considered to
be independent between richness bins and so combining
12 to 16 bins of data reduces the effective width of these
priors by about 4 when considering averaged quantities
such as the mass–richness relation (see §5.1). However if
the prior means for these quantities such as q and VM are
shifted systematically from their true values, the effect of
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TABLE 5
Halo Model Parameters for ∆Σ fits

Param # Parameter Description Prior-mean Prior-sigma Note

1 ln(r200) r200 radius -0.693 1.5 weak prior
2 ln(c200) concentration 1.386 3 weak prior
3 B bias amplitude 0.5 4.0 weak prior
4 q miscentering parameter see text 0.4 strong prior
5 ln(σS) miscentering width -0.868 0.3 strong prior
6 M0 point mass (1012 h−1M⊙) 0 2.5 weak prior
7 VM variance of ln(M200) see text 0.6 strong prior

Note. — Parameters in the model (Eqn. 24) for ∆Σ. The mean and standard deviation for
the Gaussian prior distribution are given as well as a brief description.

these maginalizations may not fully account for this. By
experimenting with different values for these prior means
we can estimate the possible level of additional system-
atic errors. For the mass–richness relation we estimate
that this will contribute an additional systematic error of
10%. The concentration, c200, is more affected by shifts
in these nuisance parameters, particularly q and M0. We
allow for a 30% systematic error on the amplitude of the
c200–M200 relation §5.2. The bias parameter, B is less
affected by these nuisance parameters but as we shall see
in §5.3, some knowledge of VM is required to compare it
with theoretical predictions.

5. RESULTS OF HALO MODEL FITS

Figure 6 shows the result of an MCMC run for the sev-
enth M200 richness bin. These are the one-dimensional
marginal posteriors for the 7 parameters. Most resemble
a normal distribution with the exception of M0 which is
constrained to be strictly positive. The red lines indicate
the prior normal distribution for each. The first three
lnR200, ln c200 and B have uninformative priors whereas
q, lnσS and lnVM have constraining priors. That is, in
the later case, the posterior resembles the prior; the data
are uninformative for these three.

Figure 7 shows the marginal posterior distributions for
all 21 pairs of parameters for the same bin. The red re-
gion is the 68% (1 σ) confidence region; green is the 95%
(2 σ) confidence region and blue is the 99% (3 σ) confi-
dence region. Although none of these parameters appear
to be strongly degenerate at these noise levels, there is
some correlation. R200 is correlated with both q and VM

and c200 is correlated with q and M0. These contours
also allow for an estimate of how the best fit parameters
might be biased if we have systematically misestimated
our nuisance parameter priors. If the shot noise were
significantly smaller, these correlations with nuisance pa-
rameters would become more dominant sources of error,
and so modeling the effect of these (and possibly other)
parameters will become a more critical issue for future
experiments.

The results of fitting this model to the ∆Σ profiles
in the 12 N200 richness and 16 L200 luminosity bins are
shown in Figures 8 and 9. In each panel, the green curve
shows the NFW halo profile, the blue curve indicates the
two-halo term, the red curve is the BCG point mass term,
the orange curve is the smoothed (miscentered) NFW
halo component, and the purple dashed curve shows the
non-linear correction. The magenta curve shows the sum
of these terms. One can see that the model does a good
job of fitting all of the features in the shear profiles, the

most prominent of which is the one-halo to two-halo tran-
sition, which usually occurs near r200. The best fit pa-
rameters for r200, c200 and B, properly marginalized over
the nuisance parameters, are shown in Tables 6 and 7.
We show the values for mass and concentration converted
to other mass definitions in Tables 8 and 9. The method
of conversion is discussed in the Appendix.

Figure 10 shows the best-fit models over-plotted on
the inverted 3D mass profiles that were previously shown
in Figure 3. Because the mass profiles are less noisy,
they more clearly display the features in the data. The
one-halo to two-halo transition is most prominent in the
lowest richness and luminosity bins.

5.1. The mass–richness relation

Figure 11 shows the inferred central halo mass–richness
relations for both N200 and L200 richness measures. The
red line in each case shows the resulting power-law fit to
the relation. The fit to the mass–richness relation is

M200(N200) = M200|20(N200/20)αN (26)

with

M200|20 = (8.8 ± 0.4stat ± 1.1sys) × 1013h−1M⊙

αN = 1.28 ± 0.04.

The mass–luminosity relation is found to be

M200(L200) = L200|40(L200/40)αL (27)

with

M200|40 = (9.5 ± 0.4stat ± 1.2sys) × 1013h−1M⊙

αL = 1.22 ± 0.04.

The statistical error on the zero-point of both mass
richness relations is about 5%. This includes the full
marginalization over the other six model parameters. As
discussed in §4.6 we need to include systematic errors
due to shear calibration and possible photo-z biases as
well as any remaining systematic biases in our modeling.
We allow for a 3% shear calibration bias, a 7% photo-z
bias and 10% for modeling biases. so this increases the
error on the zero-point of the mass–richness relations to
about 13%.

To accommodate other conventions used in the litera-
ture, power-law fits to the mass and concentration data
for for alternate mass-scale definitions (see Tables 8 and
9) are shown in Tables 10 and 11.

While this seven-parameter model may appear overly
complicated, it is necessary in order to properly account
for the full uncertainty in modeling the cluster shear pro-
files. For example, if we were to ignore miscentering
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Fig. 6.— This shows the one-dimensional marginal posteriors for the 7 parameters for the seventh N200 richness bin. Most resemble a
normal distribution The red lines indicate the prior normal distribution for each (with arbitrary normalization). The first three lnR200,
ln c200 and B have uninformative priors whereas q, ln σS and ln VM . have constraining priors; i.e. the posterior resembles the prior so the
data are uninformative for these. The prior for M0 is constrained to be positive but is largely uninformative beyond that.

TABLE 6
Best Fit Parameters: N200 Bins

< N200 > M200 ( 1012h−1M⊙ ) r200 (h−1 Mpc) c200 B

3.00 6.37 ± 1.04 0.28 ± 0.015 5.78 ± 1.35 0.07 ± 0.03
4.00 9.77 ± 1.80 0.32 ± 0.020 6.17 ± 2.29 0.11 ± 0.04
5.00 14.63 ± 2.90 0.37 ± 0.024 4.45 ± 1.58 0.17 ± 0.05
6.00 21.35 ± 3.66 0.42 ± 0.024 4.33 ± 1.12 0.13 ± 0.06
7.00 23.31 ± 5.56 0.43 ± 0.034 5.77 ± 2.35 0.18 ± 0.07
8.00 27.86 ± 6.97 0.46 ± 0.038 2.34 ± 1.01 0.25 ± 0.09
9.82 44.14 ± 7.96 0.53 ± 0.032 3.97 ± 1.21 0.19 ± 0.07
13.91 60.01 ± 8.45 0.59 ± 0.028 4.22 ± 1.12 0.23 ± 0.08
20.78 95.96 ± 12.58 0.69 ± 0.030 5.82 ± 1.49 0.25 ± 0.10
31.09 167.76 ± 23.39 0.83 ± 0.039 2.95 ± 0.66 0.24 ± 0.13
50.27 252.06 ± 35.28 0.95 ± 0.044 4.01 ± 0.86 0.46 ± 0.20
92.18 568.81 ± 87.75 1.25 ± 0.064 2.92 ± 0.76 0.48 ± 0.36

Note. — This shows the best fit parameters of interest from the MCMC for the
N200 richness bins.We have marginalized over the four nuisance parameters.
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Fig. 7.— The results of the MCMC chain for the seventh N200 richness bin. This shows the marginal posterior distributions for all 21
pairs of parameters. The red region is the 68% (1 σ) confidence region; green is the 95% (2 σ) confidence region and blue is the 99% (3
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parameters might be biased if we have systematically misestimated our nuisance parameter priors.
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TABLE 7
Best Fit Parameters: L200 Bins

< L200 > M200 ( 1012h−1M⊙ ) r200 (h−1 Mpc) c200 B

5.59 7.87 ± 1.84 0.30 ± 0.023 5.31 ± 2.39 0.14 ± 0.04
6.97 9.19 ± 1.91 0.32 ± 0.022 5.21 ± 1.79 0.13 ± 0.04
8.69 13.62 ± 2.45 0.36 ± 0.022 6.86 ± 1.88 0.08 ± 0.04
10.84 18.23 ± 3.22 0.40 ± 0.023 4.20 ± 1.20 0.14 ± 0.05
13.53 29.65 ± 5.99 0.47 ± 0.031 4.77 ± 1.73 0.16 ± 0.06
16.89 37.44 ± 6.36 0.50 ± 0.029 5.20 ± 1.70 0.24 ± 0.07
21.06 41.79 ± 7.27 0.52 ± 0.030 3.88 ± 1.19 0.22 ± 0.07
26.31 59.58 ± 9.34 0.59 ± 0.031 4.99 ± 1.47 0.28 ± 0.09
32.89 78.32 ± 11.88 0.64 ± 0.033 6.01 ± 1.62 0.24 ± 0.10
40.95 97.25 ± 14.51 0.69 ± 0.034 5.41 ± 1.47 0.28 ± 0.11
51.19 141.43 ± 23.27 0.79 ± 0.043 4.16 ± 1.22 0.21 ± 0.12
64.08 204.05 ± 33.23 0.89 ± 0.048 2.67 ± 0.75 0.30 ± 0.18
79.89 210.75 ± 35.03 0.90 ± 0.050 4.09 ± 1.13 0.16 ± 0.12
98.69 235.24 ± 47.69 0.93 ± 0.063 4.11 ± 1.41 0.48 ± 0.27
124.59 327.90 ± 62.23 1.04 ± 0.066 3.75 ± 1.13 0.47 ± 0.31
184.65 610.42 ± 99.89 1.28 ± 0.070 3.45 ± 0.90 0.39 ± 0.31

Note. — This shows the best fit parameters of interest from the MCMC for the
L200 richness bins.We have marginalized over the four nuisance parameters.

TABLE 8
Mass Richness: N200 Bins

< N200 > M200 c200 M180b c180b Mvir cvir M500 c500

3.00 6.37 5.78 8.27 8.72 7.41 7.26 4.72 3.85
4.00 9.77 6.17 12.58 9.28 11.30 7.74 7.31 4.12
5.00 14.63 4.45 19.66 6.80 17.35 5.64 10.34 2.92
6.00 21.35 4.33 28.82 6.63 25.39 5.49 15.01 2.84
7.00 23.31 5.77 30.25 8.71 27.08 7.25 17.24 3.84
8.00 27.86 2.34 42.04 3.71 35.40 3.03 16.89 1.46
9.82 44.14 3.97 60.39 6.09 52.91 5.04 30.49 2.58
13.91 60.01 4.22 81.34 6.45 71.54 5.35 41.97 2.76
20.78 95.96 5.82 124.42 8.78 111.44 7.31 71.09 3.88
31.09 167.76 2.95 241.65 4.60 207.35 3.78 108.26 1.88
50.27 252.06 4.01 344.24 6.16 301.85 5.10 174.52 2.62
92.18 568.81 2.92 820.81 4.56 703.78 3.75 366.17 1.86

Note. — Maximum likelihood mean halo mass and concentration param-
eters for each richness bin converted from our 200ρc definition of virial mass
into three other common definitions. The unit of mass is 1012h−1M⊙.

TABLE 9
Mass Richness: L200 Bins

< L200 > M200 c200 M180b c180b Mvir cvir M500 c500

5.59 7.87 5.31 10.32 8.04 9.20 6.69 5.74 3.52
6.97 9.19 5.21 12.09 7.89 10.76 6.56 6.68 3.45
8.69 13.62 6.86 17.32 10.29 15.63 8.59 10.34 4.61
10.84 18.23 4.20 24.72 6.43 21.74 5.32 12.74 2.74
13.53 29.65 4.77 39.47 7.26 34.98 6.03 21.23 3.14
16.89 37.44 5.20 49.25 7.88 43.85 6.55 27.22 3.44
21.06 41.79 3.88 57.37 5.97 50.20 4.93 28.73 2.52
26.31 59.58 4.99 78.81 7.58 70.01 6.30 43.00 3.30
32.89 78.32 6.01 101.14 9.06 90.74 7.55 58.32 4.01
40.95 97.25 5.41 127.27 8.18 113.56 6.81 71.18 3.59
51.19 141.43 4.16 192.06 6.38 168.80 5.28 98.64 2.72
64.08 204.05 2.67 299.66 4.19 255.11 3.44 128.33 1.68
79.89 210.75 4.09 286.93 6.28 251.92 5.19 146.50 2.67
98.69 235.24 4.11 320.05 6.30 281.08 5.22 163.68 2.68
124.59 327.90 3.75 452.69 5.78 395.19 4.77 223.80 2.43
184.65 610.42 3.45 854.38 5.35 741.71 4.41 409.17 2.23

Note. — Maximum likelihood mean halo mass and concentration parame-
ters for each luminosity bin converted from our 200ρc definition of virial mass
into three other common definitions. The unit of mass is 1012h−1M⊙.
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Fig. 8.— Model fits to ∆Σ(R) for the 12 N200 richness bins The model components are the NFW halo profile (green), miscentered halo
component (orange), the central BCG (red), neighboring halos (blue); the non-linear contribution (purple dashed). The magenta curves
show the sum of these components for the best-fit models in each bin.
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Fig. 9.— Model fits to ∆Σ(R) for the 16 L200 luminosity bins. The model components are the NFW halo profile (green), miscentered
halo component (orange), the central BCG (red), neighboring halos (blue); the non-linear contribution (purple dashed). The magenta
curves show the sum of these components for the best-fit models in each bin.

and shear non-linearity and include only the three pa-
rameters c200, M200, and B in the model fits, then the
statistical uncertainty in the calibration of the cluster
mass–richness relation would be only 3% instead of 5%.
However, the halo mass estimates would be biased low
by a factor of ∼ 1.4. This factor arises because M200

is determined mostly by the amplitude of ∆Σ on scales
R . 1 h−1 Mpc, where the smoothed ∆Σs

NFW (R) makes
very little contribution; as a result, ignoring miscentering
in fitting to the shear on small scales leads to an under-

estimate of the mass by a factor of ∼ pc. From the mock
catalogs, we find 〈pc〉 ∼ 0.7, or 1/〈pc〉 ∼ 1.4. Therefore,
halo miscentering has a large systematic effect on the es-
timated halo masses and concentrations and so must be
included.

5.2. Halo concentration scaling relations

Figure 12 shows the scaling of the mean concentra-
tion c200 with halo mass. We have combined the re-
sults from both richness (red points) and luminosity bins
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Fig. 10.— The model fits of Fig. 8 and 9 over-plotted on the inverted 3D mass profiles for the 12 N200 richness (left panel) and 16 L200

luminosity bins (right panel).
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Fig. 11.— The inferred mean halo mass vs. richness (left panel) and mass vs. luminosity (it right panel) relations from the model fits to
the lensing profiles. The red lines show the best-fit power-law relations (see text).

(black points) on the same plot — these are not indepen-
dent, since the same clusters are used for both. The blue
curve shows the best-fit power law,

c200(M200) = c200|14(M200/1014h−1M⊙)βc (28)

c200|14 = 4.1 ± 0.2stat ± 1.2sys

βc = −0.12 ± 0.04.

The fit is performed with all data points from both bin-
nings but the errors are adjusted upward by

√
2 so that

they are not treated as independent data points. These
results indicate that the halo concentrations, with typical
values c200 ≃ 5, depend only weakly on halo mass, as has
been suggested by previous observational and theoretical
results. Note that ignoring the parameters pc, σs and M0

in the model fits would lead to a (biased) underestimate

of the halo concentration parameter c200 by about a fac-
tor of 3, as well as to unrealistically small error estimates
on the concentration.

For comparison with the lensing results, the green
curve in Fig. 12 shows the predicted concentration
vs. mass relation from the halo formation model of
Bullock et al. (2001). Note that Bullock et al. (2001) use
a different definition of halo mass Mvir and concentration
cvir, so we have converted their predictions to our param-
eters M200 and c200 following the translation given in the
Appendix. In their model, the halo concentration is given
by cvir = K (a/ac), where a = 1/(1 + z) and ac is the
collapse epoch of the halo; the time at which the typical
collapsed mass, M∗, is a fixed fraction F of the halo mass,
M∗(ac) = F Mvir. This model is defined by the two pa-
rameters K and F , which are assumed to be independent
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TABLE 10
Mass Richness Power-law Fits: N200 Bins

Mass type M200|20 αN c200|20 βN

M200 8.794E+13 1.28 3.99 -0.15
M180b 1.204E+14 1.30 6.14 -0.14
Mvir 1.055E+14 1.29 5.08 -0.15
M500 6.069E+13 1.25 2.60 -0.16

Note. — Coefficients and exponents
of the power-law fits of mass and concen-
tration versus richness for the different virial
mass definitions. The mass–richness relation
and concentration–richness relation is of the
form M = M200|20 (N200/20)αN and c =

c200|20 (N200/20)βN . The relative errors on pa-

rameters are the same as the M200 versions (see
text).

TABLE 11
Mass Richness Power-law Fits: L200 Bins

Mass type M200|40 αL c200|40 βL

M200 9.504E+13 1.23 4.37 -0.15
M180b 1.284E+14 1.25 6.68 -0.14
Mvir 1.131E+14 1.24 5.54 -0.14
M500 6.672E+13 1.20 2.86 -0.16

Note. — Coefficients and exponents of
the power-law fits of mass and concentra-
tion versus luminosity for the different virial
mass definitions. The mass–luminosity relation
and concentration–luminosity relation are of the
form M = M200|40 (L200/40)αL and c =

c200|40 (L200/40)βL . The relative errors on pa-

rameters are the same as the M200 versions (see
text).

of cosmological parameters. Here M∗ is the non-linear
mass scale at scale factor a in Press-Schechter theory, i.e.,
the mass for which D(a)σ(M∗(a)) = δc, where the linear
growth factor D(a) is given by Eqn. 13, δc=1.686 is the
critical density in the spherical collapse model, and σ(M)
is the variance of the linear density field smoothed on the
scale that on average encloses mass M . We choose the
parameter values K = 2.9 and F = 0.001 (different from
the original Bullock numbers), which have been demon-
strated to reproduce the measured halo concentrations
in a more recent set of LCDM dark matter simulations
(Wechsler et al. 2006). With those choices, the predicted
concentrations of this galaxy formation model, shown as
the green curve in Figure 12, fit those inferred from the
lensing data fairly well. The χ2 between the two is 8 (for
12 degrees of freedom) for the N200 richness binning and
12 (for 16 degrees of freedom) for the L200 binning. In
making this comparison, we have used the fiducial cosmo-
logical parameters given at the end of §1. Furthermore,
if we keep the Bullock F parameter and cosmological pa-
rameters fixed we can determine the best fit Bullock K
parameter from our data: Kfit = 3.00 ± 0.24 (assuming
our fiducial cosmology with σ8 = 0.8).

Recently, Neto et al. (2007) studied the concentra-
tions of halos identified from the Millennium Simu-
lation (Springel et al. 2005) and found a power-law
relation for the average halo concentration, c200 =
5.26(M200/1014h−1M⊙)−0.1. The Millennium simulation

1013 1014
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 −1 MO · )

1

10

c 2
00

Best fit power−law
Neto et al. 2007
Bullock et al. 2001

Buote et al. 2007
Comerford & Nat. 2007

Fig. 12.— The mean NFW halo concentration parameter c200
versus halo mass M200. Black points are from the shear profile
fits for the L200 luminosity bins and the red points are from the
N200 richness bins. The blue curve shows the best-fit power law
to the data (see text). The green curve shows the prediction from
the Bullock et al. (2001) model with F = 0.001, K = 2.9, and
our fiducial cosmology. The magenta curve shows the result from
Neto et al. (2007) for the Millennium Simulation (adjusted to z =
0.25). Note that this was fit to a cosmology with a slightly higher
normalization (σ8 = 0.9 vs. σ8 = 0.8) and is thus expected to
have slightly higher concentrations. The purple dashed curve is a
result from Buote et al. (2007) on X-ray clusters; the red dashed
line shows a result from a compilation of X-ray and strong-lensing
clusters (Comerford & Natarajan 2007)

uses a flat LCDM cosmology with Ωm = 0.25, Ωb =
0.045, h = 0.73, ns = 1, σ8 = 0.9 and z = 0.
Bullock et al. (2001) found that halo concentration scales
as 1/(1 + z), which is consistent with recent observa-
tional results from X-ray clusters ; c ∝ (1 + z)−0.71±0.52

(Schmidt & Allen 2007). We thus shift the Neto et al.
(2007) relation by 0.8 to put it at our median cluster
redshift of z = 0.25; this is shown as the magenta curve
in Fig. 12. This result for dissipationless halos agrees
very well with both the Bullock et al. (2001) model and
our data (χ2 = 8). Note that because the Neto et al.
(2007) results are calculated for a cosmology with slightly
higher normalization (σ8 = 0.9 vs. σ8 = 0.8) they are
expected to have slightly higher concentrations and the
agreement between the two models is even better than
it looks in the figure. The large difference shown in the
Neto et al. (2007) paper between their results and the
results of Bullock et al. (2001) are due to the fact that
these authors used the original Bullock et al. (2001) val-
ues for K and F , instead of the updated ones that we
use here; with this change the two theoretical models
are virtually indistinguishable, and are both in excellent
agreement with our results.

Buote et al. (2007) have recently presented a deter-
mination of the concentration–mass relation as mea-
sured by a set of 39 clusters with X-ray measurements,
finding cvir(1 + z) = (9.0 ± 0.4)(Mvir/M14)

−0.172±0.026.
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This is plotted as the purple-dashed line on Fig.
12. Comerford & Natarajan (2007) also recently com-
piled several concentration measurements from individ-
ual strong-lensing and X-ray clusters (including those of
Buote et al. 2007 and Schmidt & Allen 2007), and found
cvir(1 + z) = (14.5 ± 6.4)(Mvir/M∗)

−0.15±0.13, where
M∗ = 1.23 1012h−1M⊙ at z = 0.25 for our fiducial cos-
mology with σ8 = 0.8. This is plotted as the red dashed
line on Fig. 12.

In the figure, each of these relations is converted to our
M200 system for comparison. Both results thus have a
mass scaling that is consistent with results; although note
that Schmidt & Allen (2007) have seen some indication
for a steeping of this power at the highest masses from a
sample of X-ray systems.

These results all have a somewhat higher normaliza-
tion than our data; there are many possibilities for this
discrepancy. At least some of the discrepancy is likely
due to selection effects between the samples. It is likely
that X-ray clusters and strong-lensing clusters are more
concentrated than average red-sequence clusters. In the
X-ray case, they are chosen to be relaxed systems, which
likely have higher concentrations (Wechsler et al. 2002).
This effect has been estimated to be of the order ∼ 10–
20% (Buote et al. 2007; Schmidt & Allen 2007) , but is
still somewhat uncertain. Very concentrated clusters will
be also more likely to produce strong-lensing features.
Also, the X-ray flux is proportional to the square of the
gas density and so X-ray selection also favors more con-
centrated clusters. It is also possible that our model
for miscentering is underestimated, which would reduce
our modeled concentrations compared to the true halo
concentrations. We may be able to better constrain the
miscentering the future, and are also working towards
measurements with a clearly well-centered cluster sam-
ple to further investigate these effects.

Mandelbaum et al. (2006) constrains the concentra-
tion of typical halos containing SDSS luminous red galax-
ies with galaxy-galaxy lensing. They find c180b = 5.6±0.6
which is c200 = 3.8 ± 0.4, consistent with our results.

5.3. Bias scaling relations

Figure 13 shows the scaling of the mean effective bias
parameter B as a function of halo mass. The lensing
results are well fit by a power law, indicated by the blue
solid curve,

B(M200) = B200|14 (M200/1014h−1M⊙)αB (29)

B200|14 = (0.26 ± 0.02stat ± 0.02sys)

αB = 0.38 ± 0.02

The fit is performed with all data points from both bin-
nings but the errors are adjusted upward by

√
2 so that

they are not treated as independent data points. As the-
oretically expected, the clustering strength, i.e., the bias,
increases with halo mass.

As above, it is of interest to compare these results with
the predictions of structure formation models. The halo
bias can be computed using the “peak-background split”
(Mo et al. 1996; Sheth & Tormen 1999). We consider the
model of Sheth et al. (2001), which is derived from the
elliptical collapse model and calibrated with N-body sim-
ulations. In their bias relation, the halo mass is defined
in terms of the region within which the mean density

1013 1014

M200  ( h
 −1 MO · )

0.1

1.0

B
 =

 b
(M

) Ω
M
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82  D
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Fig. 13.— The effective bias parameter (the coefficient of the
two-halo term) B = b(M200)Ωmσ2

8
D2(z) versus M200: black points

show lensing results in luminosity bins, red in N200 bins. The blue
curve is the best-fit power law (see text). The three dotted curves
show the predictions from the Sheth et al. (2001) elliptical collapse
model for three values of σ8: (1.0, 0.8, 0.6), from top to bottom.

is 180 times the mean density of the Universe at red-
shift z, M180b = M(r180b) = 4/3πr3

180b180ρ̄(z). Using
the formulas of the Appendix, we convert between this
definition and our expression for M200 given in Eqn. 4.
The Sheth et al. (2001) halo bias relation is given by

b(ν) = 1 +
1√
aδc

×
[√

a(aν2) + b
√

a(aν2)1−c − (aν2)c

(aν2)c + b(1 − c)(1 − c/2)

]

(30)

where δc = 1.686 and ν = δc/(D(z)σ(M)). Sheth et al.
(2001) chose parameters a = 0.707, b = 0.5, and c =
0.6 to agree with N-body simulations. However, both
Seljak & Warren (2004b) and Tinker et al. (2005) deter-
mined that this relation over-estimates the bias at fixed
halo mass by about 20%, especially for masses less than
the non-linear mass scale M∗. Tinker et al. (2005) find
that this expression gives a better fit to the simulations
for a = 0.707, b = 0.35, and c = 0.8, and we adopt these
parameter values to compare with the lensing results.

One effect that needs to be included is that we are not
measuring B(M200) exactly but rather 〈B(M200)〉 where
the average is over the log-normal distribution of mass.
Similarly, we are plotting these versus 〈M200〉. There-
fore, to compare the theoretical predictions to the data
we need to multiply the theoretical predictions at 〈M200〉
by 〈B〉 /B(〈M200〉) which is exp(VM αB(αB − 1)/2) for
a log-normal distribution. Here, αB = 0.38, is the loga-
rithmic slope B(M200) ∼ MαB

200 and VM is the variance of
lnM200. This correction varies with richness but is typi-
cally about 10% and adds about 5− 10% uncertainty to
the predictions depending on the width of the prior dis-
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tribution for VM . With our (probably overly generous)
prior of 0.6 for lnVM , this uncertainty is 10%.

The resulting theoretical expressions for B are plot-
ted as the dashed lines (black, magenta, and green) in
Fig. 13 for three values of σ8: 0.6, 0.8, and 1.0. These
correspond to non-linear masses, M∗: 0.43, 1.23, and
5.26 × 1012h−1M⊙ at z = 0.25. Although the predic-
tions for all three choices are within ∼ 30% of the best-
fit relation from lensing, the data appear to prefer lower
values of σ8. The χ2s are acceptable for both σ8 = 0.6
(χ2

N = 7, χ2
L = 12) and σ8 = 0.8 (χ2

N = 15, χ2
L = 20) but

formally unacceptable for σ8 = 1 (χ2
N = 32, χ2

L = 36).
The number of degrees of freedom is 12 and 16 for χ2

N

and χ2
L respectively. These χ2 numbers do not include

the above mentioned VM uncertainty and so can be re-
duced by another 10-20%. We refrain from drawing cos-
mological conclusions from this comparison for several
reasons. First, in fitting the halo model to the lensing
results, we assumed particular values for the cosmologi-
cal parameters (except σ8) when we calculated the linear
correlation function ξl (Eqn. 14) for the two-halo term.
For a self-consistent cosmological constraint, we would
need to float the cosmological parameters in calculating
the two-halo term for the lens model fit. It would also
be desirable to allow for possible scale-dependent bias,
since the predicted non-linear correlation function at the
largest scales we probe, 25− 40 h−1 Mpc, differs slightly
from the linear theory prediction (Smith et al. 2007). We
would also want to consider halo-exclusion effects (Zheng
2004). We believe that precise prediction of the bias in-
volving all of these effects at these intermediate scales is
not yet possible but clearly the quality of data is improv-
ing to the point where such study is now warranted.

It would be better to extend the lensing measurements
to slightly larger scales (≥ 50 h−1 Mpc comoving) in
order to reduce this effect and, more importantly, to iso-
late the large-scale bias measurements from degeneracies
with the NFW halo parameters. Finally, to reliably es-
timate cosmological parameters we would require data
with better signal-to-noise ratios as well as more pre-
cise shear and photometric redshift calibration. In future
wide-area, deeper lensing surveys, these conditions will
all be met, and constraints on cosmology from lensing
measurements of the halo bias will be possible.

5.4. BCG–halo mass scaling relation

We have included this point mass term in our model
mostly to allow enough freedom so that the concentra-
tion measurements would not be overly influenced by the
first few data points. This is especially important when
non-linear shear is considered. However, the relation be-
tween the BCG mass and the central halo mass may be
of interest in itself. Figure 14 shows the point mass
term, M0, plotted versus the mean central halo mass,
M200. The point mass increases with central halo mass
but seems to plateau at an asymptotic mass of about
1.3 × 1012h−1M⊙. The blue curve is simply a fitting
function: M0 = p0/(1 + (M200/p1)

p2) with best fit val-
ues p0 = 1.334 × 1012h−1M⊙, p1 = 6.717 × 1013h−1M⊙

and p2 = −1.380. These masses are consistent with
the expected masses of galaxy halos. Strong-lensing
constrains (e.g. Rusin et al. (2003)) show that nearly
every strong lens is well fit by an singular isothermal
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Fig. 14.— The BCG point mass vs. mean central halo mass
for both richness bins: N200 (red) L200 (black). The point mass
term increases with central halo mass at low halo mass but flattens
out at about 1012h−1M⊙. The blue curve is a fitting function:
M0 = p0/(1 + (M200/p1)p2 ) with p0 = 1.334 1012h−1M⊙, p1 =
6.717 1013h−1M⊙ and p2 = −1.380. The point mass is roughly
consistent with the masses of luminous red galaxies from strong-
lensing constraints.

sphere out to at least 100h−1 kpc. The 3D mass of
a singular isothermal sphere is given by MSIS(r) =
4.64 × 1012 h−1M⊙ (σs/100 km/s)2 (r/Mpc) which at
25h−1 kpc gives 1.2×1011, 4.6×1011 and 1×1012h−1M⊙

for stellar velocity dispersions, σs =100, 200 and 300
km/s respectively. This mass range agrees well with our
point-mass values. This comparison is inexact since SISs
and point masses have different shear profiles. A precise
measurement of the mass density of the central BCG
would be better suited to a combination of strong and
weak lensing (e.g. Gavazzi et al. (2007)) and is beyond
the scope of this paper.

6. COMPARISON OF LENSING AND DYNAMICAL MASS
MEASUREMENTS

Becker et al. (2007) have recently estimated statisti-
cal masses of MaxBCG clusters from the Koester et al.
(2007b) catalog from stacked velocity dispersion mea-
surements. Using galaxies near each BCG with measured
spectroscopic redshifts, they build a richness-dependent
histograms of velocity differences and fit the shape to
a summed, log-normally distributed, set of Gaussians.
Results show that the geometric mean velocity disper-
sion scales as a power law, σv ∼ N0.436±0.015

200 , with
a log-normal dispersion that declines from 0.40 ± 0.02
at N200 = 10 to 0.15 ± 9 at N200 = 88. Al-
though the typical maxBCG cluster contains few galax-
ies with spectroscopic redshifts, it is the case that, as
with cross-correlation lensing, the velocity histograms
can be stacked from many clusters within a rich-
ness bin to build a high signal-to-noise histogram of
the average velocity differences. The best-fit veloc-
ity dispersion implies a mass, M200, derived from the
dark matter virial relation, σDM(M200, z) = (1082.9 ±
4.0 km/s)(h(z)M200/1015M⊙)0.3361±0.0026, calibrated re-
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Fig. 15.— Mean halo mass vs. richness from the lensing profiles
(black points, the same as those shown in Fig. 11) and from dy-
namical galaxy velocity dispersion measurements (red points) from
the same cluster sample (Becker et al. 2007). The two scaling rela-
tions are in good agreement, although the lensing data provides a
tighter relation. Black curve shows the best-fit power-law relation
from the lensing data.

cently from a suite of N-body simulations (Evrard et al.
2007). Galaxy and dark matter dynamics may differ,
and this potentiality is approximately treated as a con-
stant velocity bias parameter, bv ≡ σv/σDM. Figure 15
shows the mean virial mass estimates from the dynamical
measurements in red and the lensing halo masses (from
Fig. 11) in black. The line shows the best-fit, power-
law relation from the lensing masses. The Becker et al.
(2007) error bars include systematic errors inherent in
their method, and are correlated. The statistical lensing
and dynamical mass estimates appear in very good agree-
ment, but systematic uncertainties in bv remain to be un-
derstood. When Becker et al. (2007) tested their virial
mass estimator on mock SDSS maxBCG catalogs, they
found it to systematically underestimate halo masses by
25%. This correction factor has not been applied to the
estimates in Fig. 15. Including it would elevate b3

vMvir

above the lensing masses, suggesting a positive velocity
bias, bv ≃ 1.1. The current level of agreement indicates
that the velocity bias parameter is not significantly dif-
ferent from unity. We defer a more formal analysis of
these issues to future work.

7. DISCUSSION

In Paper I of this series, we demonstrated that cross-
correlation weak lensing can be measured around clus-
ters of galaxies out to large radii, R ∼ 30 h−1 Mpc. In
this work, we have shown that these mean shear profiles
are well described by realistic models derived from N-
body simulations. Our primary results are the lensing
calibration of the cluster halo mass–richness and mass–
luminosity relations and measurements of the scaling re-
lations between the mass, bias, and concentration of ha-
los. We also show that lensing-inferred masses are consis-
tent with estimates from stacked velocity dispersion mea-
surements (Becker et al. 2007) as long as the velocity bias

parameter is not significantly different from unity. The
scaling relation between halo concentration and mass
that we derive from lensing agrees well with the results
of N-body simulations (e.g., the model of Bullock et al.
2001 as updated by Wechsler et al. 2006, or the recent
results of Neto et al. 2007). The scaling between halo
bias and mass from lensing is in agreement with the
simulation-calibrated predictions of (Sheth et al. 2001).

In this work, we have limited the analysis to the mod-
eling of the lensing profiles. However, for completeness
we now describe some cosmological applications of these
results that are now possible. We then conclude by sug-
gesting some applications of these methods that will be
possible with the ambitious wide-field surveys now being
planned.

Perhaps the most obvious application of the mea-
sured halo mass–richness relation is to measurement of
the mass function of clusters. Previously, Rozo et al.
(2007b) completed a first analysis constraining cosmol-
ogy through the cluster mass function using the same
SDSS cluster catalog. They modeled the mass–richness
relation using the Halo Occupation Distribution (HOD)
model, without a strong observational prior on the
mass–richness relation itself. In this model, one adopts
a parametrized mass–richness relation, and Rozo et al.
(2007b) employed tight cosmic microwave background
and SN Ia priors on cosmological parameters except for
σ8, for which only a non-informative prior was used.
They found σ8 = 0.92 ± 0.1 and derived constraints on
the HOD model parameters. This method (Rozo et al.
2007a) employs marginalization over a generous supply
of nuisance parameters that connect the observables to
mock catalog predictions (Wechsler et al. in prepara-
tion). While Rozo et al. (2007b) represents one of the
more robust measurements of σ8 from the cluster mass
function, an update to this work using the mass–richness
relation derived from lensing is in progress. This should
allow for tighter constraints on σ8, a tight constraint on
Ωm, as well as a more precise measurement of the HOD
parameters.

Mandelbaum & Seljak (2007) have put a lower bound
on σ8(Ωm/0.25)0.5 > 0.62 at 95% C.L. by employing
a method simpler than full modeling of cluster number
counts. They argue that the lensing signal around a sam-
ple of isolated luminous red galaxies in the SDSS could
not be produced by low values of σ8 since too few clusters
would have formed. Interpretational complications such
as incompleteness of the cluster sample or miscentering
would only decrease the predicted signal, so their bound
should be robust.

There are several ways in which measurements of
stacked lensing profiles around clusters can be used to
derive entirely new constraints on cosmology. The am-
plitude of the linear galaxy or cluster auto-correlation
function measures the combination b2σ2

8D2(z), whereas
lensing measures bσ2

8D
2(z)Ωm. Combining both galaxy

or cluster auto-correlations with lensing will thus allow
one to measure the two combinations Ωmσ8D(z) and
b/Ωm. By combining these two measurements into an
estimate of Ωmσ8D(z), it is possible to directly probe
the growth of structure. The linear growth factor is sen-
sitive to cosmological parameters affecting the Hubble
parameter, such as Ωm, as well as to dark energy and
spatial curvature. This growth measurement would com-
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plement geometric probes of dark energy such as type Ia
supernovae and baryon acoustic oscillations. In addition,
this measurement of the growth factor would complement
cluster number counts since it extracts information from
much larger scales. Measuring dark energy through this
direct measurement of the growth factor would have very
different systematics from both cosmic shear and cluster
number counts. This measurement will most likely re-
quire lensing measurements extending to slightly larger
scales, 50−100h−1 Mpc, to better tie down the B param-
eter, as well as more attention to systematic errors such
as shear calibration and photo-z biases. Since it relies
on large-scale information, it will require a deep survey
over a large fraction of the sky to reduce the cosmic vari-
ance to a small enough level to compete with the other
methods.

Seljak et al. (2005) employed a similar technique to
constrain σ8 by using lensing to constrain halo masses so
that halo biases could be predicted and used to “de-bias”
the galaxy power spectrum. This however requires the
complication of HOD modeling to connect galaxies to the
halos that they occupy. It could be simpler to apply this
idea directly to clusters, since this requires only large-
scale auto-correlation function (or power spectrum) mea-
surements and does not require large-scale lensing mea-
surements. This approach does, however, rely on mod-
els for the bias prediction (e.g. Sheth & Tormen 1999;
Seljak & Warren 2004b), so direct measurement of the
bias would be preferred as long as the errors are suffi-
ciently small.

Future weak lensing surveys such as SNAP
(SNAP Collaboration 2005), DUNE (Réfrégier et al.
2006), LSST (Tyson et al. 2002) and DES
(Dark Energy Survey Collaboration 2005). would

be ideal for these types of measurements. The statistical
errors on the average shear in a radial bin should be
at the percent level for these surveys, compared to
50% for the SDSS cluster data for identical binning.
Since the dark energy constraints from measurement
of the shear power spectrum will already require shear
calibration and photo-z biases below the percent level,
this would suggest that these surveys should be able
to measure halo masses, concentrations, and biases at
about the percent level for perhaps hundreds of richness
bins. Entirely new ways of using lensing to constrain
cosmology may be possible. For example, baryon
acoustic oscillations should leave their imprint on the
∆Σ profile at comoving scales of 100h−1 Mpc and will
be detectable with surveys such as these. Determining
how to extract the most information from such a data
set should remain a fruitful area of study.
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APPENDIX

“Virial-type” mass definitions all have the form

Ma = M(ra) =
4π

3
r3
a ∆a ρa , (1)

where M(r) is the mass profile. The number ∆a may be a function of cosmology and redshift. Typical choices for
∆a are 200 and 180. The density ρa is always some variation of the critical density, ρcrit, but it may be ρcrit(z)
or ρ̄(z) = ρcrit(z = 0) (1 + z)3. Let us define Da ≡ ∆a ρa, since the conversion between different conventions only
depends on this product.

For any two choices of Da, there is a conversion between them for the mass Ma, (or equivalently ra) and the NFW
concentration parameter ca. Ma and ca (unlike rs and ra) are independent of the choice between physical and comoving
units.

Hu & Kravtsov (2003) discuss this issue but we will review the conversion again here.
The NFW form for the density profile is given by

ρ(r) =
ρs

(r/rs) (1 + r/rs)2
. (2)

Under this assumption, the mass profile for some choice of mass definition is given by

M(r) = 4πρsr
3
a f(rs/ra) , (3)

where

f(x) = x3
[
ln(1 + x−1) − (1 + x)−1

]
, (4)

and the concentration is defined as ca = ra/rs. The parameters rs and ρs are independent of the choice of Da, so
for any other choice Db we have 3ρs = Da/f(1/ca) = Db/f(1/cb). Therefore we have the conversion between the two
concentrations,
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1/cb = f−1

(
Db

Da

f(1/ca)

)
. (5)

Similarly, rs = ra/ca = rb/cb, so the conversion for these “virial” radii is rb = racb/ca, and the conversion between
masses is

Mb = Ma

Db

Da

(
cb

ca

)3

. (6)

The inverse function of f needs to be computed with a look-up table and interpolation since a simple closed-form
expression does not exist. However, the conversion simply depends on the ratio Db/Da.

An as example, we consider the two most common choices, D200c = 200ρcrit(z) = 200ρcrit(0)H2(z)/H2
0 =

200ρcrit(0)[Ωm(1 + z)3 + (1 − Ωm)] (in a flat LCDM universe) and D180b = 180ρ̄(z) = 180ρcrit(0)(1 + z)3 Ωm.
The ratio of these is

D180b

D200c

=
9

10
Ωm(z) =

9

10

Ωm (1 + z)3

Ωm (1 + z)3 + (1 − Ωm)
(7)

We use this formula to convert our measured masses M200c to M180b, using z = 0.25 and Ωm = 0.27, which gives
D180b/D200c = 0.377. We use this conversion to compute the halo bias, since it has been shown to be nearly universal
when expressed in the D180b mass definition.

Similarly, to calculate the halo concentration using the Bullock et al. (2001) model, we need to convert M200 to
Mvir. This conversion uses (Bryan & Norman 1998)

∆vir ≡ 18π2 + 82x − 39x2

1 + x
, (8)

with x ≡ Ωm(z) − 1. This results in

Dvir

D200c

≡ 18π2 + 82x − 39x2

200
. (9)
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Bradač, M., Clowe, D., Gonzalez, A. H., Marshall, P., Forman,

W., Jones, C., Markevitch, M., Randall, S., Schrabback, T., &
Zaritsky, D. 2006, ApJ, 652, 937
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