
ar
X

iv
:0

70
8.

00
30

v1
  [

as
tr

o-
ph

] 
 3

1 
Ju

l 2
00

7
Draft version February 1, 2008
Preprint typeset using LATEX style emulateapj v. 11/26/04

A GALAXY PHOTOMETRIC REDSHIFT CATALOG FOR THE SLOAN DIGITAL SKY SURVEY DATA
RELEASE 6

Hiroaki Oyaizu1,2, Marcos Lima2,3, Carlos E. Cunha1,2, Huan Lin4, Joshua Frieman1,2,4, Erin S. Sheldon5

1Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637
2Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637

3Department of Physics, University of Chicago, Chicago, IL 60637
4Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510

5Center for Cosmology and Particle Physics and Department of Physics, New York University, New York, NY 10003

Draft version February 1, 2008

ABSTRACT

We present and describe a catalog of galaxy photometric redshifts (photo-z’s) for the Sloan Digital
Sky Survey (SDSS) Data Release 6 (DR6). We use the Artificial Neural Network (ANN) technique
to calculate photo-z’s and the Nearest Neighbor Error (NNE) method to estimate photo-z errors
for ∼ 77 million objects classified as galaxies in DR6 with r < 22. The photo-z and photo-z error
estimators are trained and validated on a sample of ∼ 640, 000 galaxies that have SDSS photometry
and spectroscopic redshifts measured by SDSS, 2SLAQ, CFRS, CNOC2, TKRS, DEEP, and DEEP2.
For the two best ANN methods we have tried, we find that 68% of the galaxies in the validation set
have a photo-z error smaller than σ68 = 0.021 or 0.024. After presenting our results and quality tests,
we provide a short guide for users accessing the public data.

Subject headings: photometric redshifts sdss – Sloan Digital Sky Survey

1. INTRODUCTION

While spectroscopic redshifts have now been measured
for over one million galaxies, in recent years digital sky
surveys have obtained multi-band imaging for of order
a hundred million galaxies. Deep, wide-area surveys
planned for the next decade will increase the number
of galaxies with multi-band photometry to a few billion.
Due to technological and financial constraints, obtain-
ing spectroscopic redshifts for more than a small fraction
of these galaxies will remain impractical for the foresee-
able future. As a result, over the last decade substan-
tial effort has gone into developing photometric redshift
(photo-z) techniques, which use multi-band photometry
to estimate approximate galaxy redshifts. For many ap-
plications in extragalactic astronomy and cosmology, the
resulting photometric redshift precision is sufficient for
the science goals at hand, provided one can accurately
characterize the uncertainties in the photo-z estimates.

Two broad categories of photo-z estimators are in
wide use: template-fitting and training set methods.
In template-fitting, one assigns a redshift to a galaxy
by finding the redshifted spectral energy distribution
(SED), selected from a libary of templates, that best
reproduces the observed fluxes in the broadband fil-
ters. By contrast, in the training set approach,
one uses a training set of galaxies with spectroscopic
redshifts and photometry to derive an empirical re-
lation between photometric observables (e.g., magni-
tudes, colors, and morphological indicators) and red-
shift. Examples of empirical methods include Polyno-
mial Fitting (Connolly et al. 1995), the Nearest Neigh-
bor method (Csabai et al. 2003), the Nearest Neighbor
Polynomial (NNP) technique (Cunha et al. 2007), Arti-
ficial Neural Networks (ANN) (Collister & Lahav 2004;
Vanzella et al. 2004; d’Abrusco et al. 2007), and Sup-
port Vector Machines (Wadadekar 2005). When a large
spectroscopic training set that is representative of the

photometric data set to be analyzed is available, train-
ing set techniques typically outperform template-fitting
methods, in the sense that the photo-z estimates have
smaller scatter and bias with respect to the true red-
shifts (Cunha et al. 2007). On the other hand, template-
fitting can be applied to a photometric sample for which
relatively few spectroscopic analogs exist. For a compre-
hensive review and comparison of photo-z methods, see
Cunha et al. (2007).

In this paper, we present a publicly available galaxy
photometric redshift catalog for the Sixth Data Release
(DR6) of the Sloan Digital Sky Survey (SDSS) imag-
ing catalog (Blanton et al. 2003; Eisenstein et al. 2001;
Gunn et al. 1998; Ivezić et al. 2004; Strauss et al. 2002;
York et al. 2000). We use the ANN photo-z method,
which we have shown to be a superior training set method
(Cunha et al. 2007), and briefly compare the results us-
ing different photometric observables. We also compare
the ANN results with those from NNP, an empirical
method which achieves similar performance to the ANN
method (Cunha et al. 2007). Since the SDSS photomet-
ric catalog covers a large area of sky, a number of deep
spectroscopic galaxy samples with SDSS photometry are
available to use as training sets, as shown in Fig. 1. In
combination, these spectroscopic samples cover the full
apparent magnitude range of the SDSS photometric sam-
ple.

The paper is organized as follows. In §2 we briefly
describe the SDSS DR6 photometric catalog and the se-
lection criteria used to obtain the galaxy photometric
sample from the catalog. In §3 we describe the spec-
troscopic catalogs used to construct the photo-z train-
ing and validation sets. In §4 we outline the photo-z
methods as well as the photo-z error estimator technique
applied to the galaxy sample. Statistical results for pho-
tometric redshift performance, errors, and redshift dis-
tributions are presented in §5. In §6 we make recom-
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mendations for possible additional cuts on the photo-z
catalog based on our own flags and those in the SDSS
database. In §7 we briefly describe how to access the
photo-z catalog from the public SDSS data server, and
in §8 we present our conclusions. For completeness, Ap-
pendix A provides the database query used to select the
photometric sample, Appendix B discusses issues of star-
galaxy separation, and Appendix C briefly describes an
earlier version of the photo-z algorithm used for SDSS
DR5 (Adelman-McCarthy et al. 2007a).

2. SDSS PHOTOMETRIC CATALOG AND GALAXY
SELECTION

The SDSS comprises a large-area imaging survey of
the north Galactic cap, a multi-epoch imaging survey
of an equatorial stripe in the south Galactic cap, and
a spectroscopic survey of roughly 106 galaxies and 105

quasars (York et al. 2000). The survey uses a dedi-
cated, wide-field, 2.5m telescope (Gunn et al. 2006) at
Apache Point Observatory, New Mexico. Imaging is
carried out in drift-scan mode using a 142 mega-pixel
camera (Gunn et al. 2006) that gathers data in five
broad bands, ugriz, spanning the range from 3,000 to
10,000 Å (Fukugita et al. 1996), with an effective ex-
posure time of 54.1 seconds per band. The images
are processed using specialized software (Lupton et al.
2001; Stoughton et al. 2002) and are astrometrically
(Pier et al. 2003) and photometrically (Hogg et al. 2001;
Tucker et al. 2006) calibrated using observations of a set
of primary standard stars (Smith et al. 2002) observed
on a neighboring 20-inch telescope.

The imaging in the sixth SDSS Data Release (DR6)
covers an essentially contiguous region of the north
Galactic cap, with only a few small patches remaining
to be observed. In any region where imaging runs over-
lap, one run is declared primary1 and is used for spec-
troscopic target selection; other runs are declared sec-
ondary. The area covered by the DR6 primary imaging
survey, including the southern stripes, is 8417 deg2, but
DR6 includes both the primary and secondary observa-
tions of each area and source (Adelman-McCarthy et al.
2007b).

The SDSS database provides a variety of measured
magnitudes for each detected object. Throughout this
paper, we use dereddened model magnitudes to perform
the photometric redshift computations. To determine
the model magnitude, the SDSS photometric pipeline fits
two models to the image of each galaxy in each passband:
a de Vaucouleurs (early-type) and an exponential (late-
type) light profile. The models are convolved with the
estimated point spread function (PSF), with arbitrary
axis ratio and position angle. The best-fit model in the
r band (which is used to fix the model scale radius) is
then applied to the other passbands and convolved with
the passband-dependent PSFs to yield the model magni-
tudes. Model magnitudes provide an unbiased color esti-
mate in the absence of color gradients (Stoughton et al.
2002), and the dereddening procedure removes the effect
of Galactic extinction (Schlegel et al. 1998).

To construct the photometric sample of galaxies
for which we wish to estimate photo-z’s, we ob-

1 For the precise definition of primary objects see
http://cas.sdss.org/dr6/en/help/docs/glossary.asp#P

Fig. 1.— Normalized r magnitude distributions for various cat-
alogs. Top three rows: the distributions of the spectroscopic cata-
logs used for photo-z training and validation are shown for 2SLAQ,
CFRS, CNOC2, TKRS, DEEP and DEEP2, and the SDSS spec-
troscopic sample. Ntot denotes the total number of galaxy mea-
surements used from each catalog; for galaxies in regions with re-
peat SDSS imaging, each independent photometric measurement
is counted separately. Bottom row: (left)—the distribution of the
combined spectroscopic sample; (right)—the distribution for the
SDSS photometric galaxy sample, where objects were classified as
galaxies according to the photometric TYPE flag (see text).

TABLE 1
Photometric Sample Properties

AB magnitude limits RMS photometric
calibration errors

u 22.0 r 2%
g 22.2 u − g 3%
r 22.2 g − r 2%
i 21.3 r − i 2%
z 20.5 i − z 3%

Note. — Magnitude limits are for 95% com-
pleteness for point sources in typical seeing; 50%
completeness numbers are generally 0.4 mag fainter
(Adelman-McCarthy et al. 2007a). The median seeing for
the SDSS imaging survey is 1.4′′.

tained a catalog drawn from the SDSS CasJobs web-
site http://casjobs.sdss.org/casjobs/. We checked
some of the SDSS photometric flags to ensure that we
have obtained a reasonably clean galaxy sample. In par-
ticular, we selected all primary objects from DR6 that
have the TYPE flag equal to 3 (the type for galaxy)
and that do not have any of the flags BRIGHT, SATU-
RATED, or SATUR CENTER set. For the definitions of
these flags we refer the reader to the PHOTO flags entry
at the SDSS website2 or to Appendix A. We also took
into account the nominal SDSS flux limit (see Table 1)
by only selecting galaxies with dereddened model magni-
tude r < 22.0. The full database query we used is given

2 http://cas.sdss.org/dr6/en/help/browser/browser.asp

http://cas.sdss.org/dr6/en/help/docs/glossary.asp#P
http://casjobs.sdss.org/casjobs/
http://cas.sdss.org/dr6/en/help/browser/browser.asp
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Fig. 2.— Distribution of g − r and r − i colors for different
SDSS samples. Top row: the color distributions for galaxies in the
SDSS spectroscopic sample. Middle row: the color distributions for
galaxies in the other (non-SDSS) spectroscopic training samples.
Bottom row: the color distributions for galaxies in the photometric
sample. As above, galaxy/star classification used the photometric
TYPE flag.

in Appendix A.
The photometric galaxy catalog we have selected suf-

fers from impurity and incompleteness at some level,
since the photometric pipeline cannot separate stars from
galaxies with 100% success at faint magnitudes. We
describe some of our tests of star/galaxy separation in
Appendix B, where we show that the SDSS TYPE flag
provides star/galaxy separation performance similar to
other methods.

The final photometric sample comprises 77, 418, 767
galaxies. The r magnitude distribution of this sample
is shown in the bottom right panel of Fig. 1; the g − r
and r − i color distributions are shown in the bottom
panels of Fig. 2.

3. SPECTROSCOPIC TRAINING AND VALIDATION SETS

Since our methods to estimate photo-z’s and photo-z
errors are training-set based, we would ideally like the
spectroscopic training set to be fully representative of
the photometric sample to be analyzed, i.e., to have sim-
ilar statistical properties and magnitude/redshift distri-
butions. Training-set methods can be thought of as in-
herently Bayesian, in the sense that the training-set dis-
tributions form effective priors for the analysis of the
photometric sample; to the extent that the training-set
distributions reflect those of the photometric sample, we
may expect the photo-z estimates to be unbiased (or at
least they will not be biased by the prior). Given the
practical difficulties of carrying out spectroscopy at faint
magnitudes and low surface brightness, such an ideal gen-
erally cannot be achieved. Realistically, all we can hope
for is a training set that (a) is large enough that sta-
tistical fluctuations are small and (b) spans the same
magnitude, color, and redshift ranges as the photometric
sample. Fortunately, our tests indicate that the esti-

mated photo-z’s depend only weakly on the shape of the
redshift and magnitude distributions of the training set
for the SDSS.

We have constructed a spectroscopic sample consisting
of 639, 911 galaxies that have SDSS photometry measure-
ments (counting repeats; see below) and that have spec-
troscopic redshifts measured by the SDSS or by other
surveys, as described below. We imposed a magnitude
limit of r < 23.0 on the spectroscopic sample and ap-
plied additional cuts on the quality of the spectroscopic
redshifts reported by the different surveys. Since we im-
pose a limit of r < 22.0 for the SDSS photometric sam-
ple, the fainter limit chosen for the spectroscopic train-
ing sample accommodates the full photometric range of
interest without creating boundary effects for photo-z’s
of galaxies with magnitudes near the photometric sam-
ple limit of r = 22. Each survey providing spectro-
scopic redshifts defines a redshift quality indicator; we
refer the reader to the respective publications listed be-
low for their precise definitions. For each survey, we
chose a redshift quality cut roughly corresponding to
90% redshift confidence or greater. The SDSS spec-
troscopic sample provides 531, 672 redshifts, principally
from the MAIN and Luminous Red Galaxy (LRG) sam-
ples, with confidence level zconf > 0.9. The remaining
redshifts are: 21, 123 from the Canadian Network for
Observational Cosmology Field Galaxy Survey (CNOC2;
Yee et al. 2000), 1, 830 from the Canada-France Redshift
Survey (CFRS; Lilly et al. 1995) with Class > 1, 31, 716
from the Deep Extragalactic Evolutionary Probe (DEEP;
Davis et al. 2001) with qz = A or B and from DEEP2
(Weiner et al. 2005)3 with zquality ≥ 3, 728 from the
Team Keck Redshift Survey (TKRS; Wirth et al. 2004)
with zquality > −1, and 52, 842 LRGs from the 2dF-SDSS
LRG and QSO Survey (2SLAQ; Cannon et al. 2006)4

with zop ≥ 3.
We positionally matched the galaxies with spectro-

scopic redshifts against photometric data in the SDSS
BestRuns CAS database, which allowed us to match
with photometric measurements in different SDSS imag-
ing runs. The above numbers for galaxies with red-
shifts count independent photometric measurements of
the same objects due to multiple SDSS imaging of the
same region; in particular SDSS Stripe 82 has been im-
aged a number of times. The numbers of unique galax-
ies used from these surveys are 1, 435 from CNOC2,
272 from CFRS, 6, 049 from DEEP and DEEP2, 389
from TKRS, and 11, 426 from 2SLAQ. The SDSS spec-
troscopic samples were drawn from the SDSS primary
galaxy sample and therefore are all unique. The spectro-
scopic sample obtained by combining all these catalogs,
including the repeats, was divided into two catalogs of
the same size (∼ 320, 000 objects each). One of these cat-
alogs was taken to be the training set used by the photo-z
and error estimators, and the other was used as a valida-
tion set to carry out tests of photo-z quality (see §4.1).
Our tests indicate that this procedure of treating differ-
ent images of the same training/validation set galaxies
as independent objects leads to good results, provided
all the photometric measurements for a given object are
confined to either the training set or the validation set

3 http://deep.berkeley.edu/DR2/
4 http://lrg.physics.uq.edu.au/New dataset2/

http://deep.berkeley.edu/DR2/
http://lrg.physics.uq.edu.au/New_dataset2/
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Fig. 3.— A simple FFMP network with 3 layers and configuration 2 : 1 : 1. The inputs are the two magnitudes, m1 and m2. Ix denotes
the input from node x, and Ox is the corresponding output of this node. The weights w associated with each connection are found by
training the network using training and validation sets (see text).

and not mixed. By contrast, excluding such multiple im-
ages from the spectroscopic sample would result in much
smaller training and validation sets; these would be very
sparse at faint magnitudes, leading to much diminished
photo-z quality there. On the other hand, splitting the
repeat images of a given object between the training and
validation sets may result in “over-fitting” of the derived
photo-z’s (see §4.1).

The r-magnitude and color (g − r and r − i) distri-
butions for the spectroscopic samples and for the pho-
tometric sample are shown in Figs. 1 and 2. While the
magnitude and color distributions of the combined spec-
troscopic sample are not identical to those of the photo-
metric sample, the spectroscopic sample does span the
range of apparent magnitude and color of the photomet-
ric sample. To test the impact of having a training set
that is not fully representative of the photometric sam-
ple, we divided the spectroscopic sample into smaller,
alternate training and validation sets. For instance, to
test the effect of the training-set magnitude distribu-
tion on the photo-z estimates, we created a training set
with a flat r magnitude distribution and another with
an r magnitude distribution similar to that of the pho-
tometric sample. Our tests indicated that the photo-z
quality is not strongly affected by the magnitude distri-
bution of the training set. The changes in the photo-
z performance metrics (the rms scatter and the 68%
CL region, defined below in §5) were smaller than 10%
when the training-set magnitude distribution was varied
between these different choices. Since using the entire
spectroscopic sample for the training and validation sets
produced marginally better results than all other cases
tested, we have adopted this as our final choice. In ad-
dition, we tested the effect of the size of the training set
on our photo-z calculations. We found that the photo-z
performance metrics defined in §5.1 are degraded by no
more than 10% when the training set is artificially re-
duced to 10% of its original size. Even when the training
set is reduced to ∼ 1% of its original size, the photo-
z performance metrics are degraded by less than 25%.
This gives us confidence that the spectroscopic training
set size used here is sufficient for extracting nearly opti-
mal photo-z estimates.

4. METHODS

4.1. ANN and NNP Photometric redshifts

The ANN method that we use to estimate galaxy
photo-z’s is a general classification and interpolation tool
used successfully in an array of fields such as hand writ-
ing recognition, automatic aircraft piloting5, detecting
credit card fraud6, and extracting astronomically inter-
esting sources in a telescope image (Bertin & Arnouts
1996).

We use a particular type of ANN called a Feed For-
ward Multilayer Perceptron (FFMP) to map the rela-
tionship between photometric observables and redshifts.
An FFMP network consists of several input nodes, one or
more hidden layers, and several output nodes, all inter-
connected by weighted connections (see Fig. 3). We fol-
low the notation of Collister & Lahav (2004) and denote
a network with Ni input nodes, Nhj

nodes in hidden layer
j, and No output nodes as Ni : Nh1

: Nh2
: ... : Nhm

: No.
For each input object, the input photometric data (e.g.,
magnitudes, colors, concentrations, etc.) are fed into the
input nodes of the FFMP, which fire signals according
to the values of the input data. Each node in a hidden
layer receives a total input which is a weighted sum of
the outputs from the nodes in the previous layer, i.e.,
node i in a hidden layer receives an input Ii given by

Ii =
∑

j

wijOj , (1)

where Oj is the output of the jth node of the previous
layer and wij is the weight of the connection between
node i in the hidden layer and node j in the previous
layer. Given the input Ii, the output Oi of node i is a
function f of the input,

Oi = f(Ii), (2)

where f is the activation function. Repeating this pro-
cess, signals propagate up to the output nodes. The ac-
tivation function is typically a sigmoid function:

f(Ii) =
1

1 + e−Ii
. (3)

5 http://www.nasa.gov/centers/dryden/news/NewsReleases/2003/03-49.html
6 http://www.visa.ca/en/about/visabenefits/innovation.cfm

http://www.nasa.gov/centers/dryden/news/NewsReleases/2003/03-49.html
http://www.visa.ca/en/about/visabenefits/innovation.cfm
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However, there are various alternatives, such as step
functions and hyperbolic tangents. Vanzella et al. (2004)
show that the choice of activation functions makes no sig-
nificant difference in the result.

We use X :20:20:20:1 networks to estimate photo-z’s,
where X is the number of input photometric parame-
ters per galaxy. The corresponding number of degrees
of freedom (the number of weights) is roughly 1,000, de-
pending on the actual value of X . We use hyperbolic
tangent functions as the activation function of the hid-
den layers and a linear activation function for the output
layer.

Despite the occasional aura of mystery surrounding
neural networks, an FFMP is nothing more than a com-
plex mathematical function; in fact, one can always write
down the analytic expression corresponding to a neural
network function.

Once the network configuration is specified, it can be
trained to output an estimate of redshift given the input
photometric observables. The training process involves
finding the set of weights wij that minimize a score func-
tion E, chosen here to be

E =
1

2

∑

i

(zi
spec − zi

o)
2 , (4)

where zspec is the measured spectroscopic redshift, zo is
the output redshift of the output node, and the sum is
over all galaxies in the training set. Note that the choice
of score function is not unique, and different choices will
in general lead to different photo-z estimates. The min-
imization of this score function can be done efficiently
because its derivatives with respect to the weights are
available analytically. We use a Variable Metric method
as described in Press et al. (1992) for the minimization.

In machine learning, over-fitting refers to the tendency
of an algorithm with many adjustable parameters to fit to
the noise in the training set data. In order to avoid over-
fitting, we use the technique of early stopping. The spec-
troscopic sample is divided into two independent subsets,
the training and validation sets, and the formal mini-
mizations are done using the training set. After each
minimization step, the network is evaluated on the vali-
dation set, and the set of weights that performs best on
the validation set is chosen as the final set. Another is-
sue in machine learning is that minimization procedures
that start at different initial choices of weights generally
end at different local minima of the score function. To
reduce the chance of ending in a less-than-optimal local
minimum, we minimize five networks starting at differ-
ent positions in the space of weights. Among these, we
choose the network that gives the lowest photo-z scatter
(cf. Eq. 4) in the validation set. For more details of
our implementation of the ANN and its performance on
mock catalogs and real data, see Cunha et al. (2007).

The ANN photo-z algorithm is very flexible in the sense
that it is easy to change the input parameters, the train-
ing set, and the network configurations. We tried a vari-
ety of combinations of possible input photometric observ-
ables to see their effects on photo-z quality. We calcu-
lated photo-z’s using galaxy magnitudes, colors, and the
concentration indices for some or all of the passbands.
The concentration index ci in passband i is defined as the
ratio of PetroR50 and PetroR90, which are the radii that

encircle 50% and 90% of the Petrosian flux, respectively.
Early-type (E and S0) galaxies, with centrally peaked
surface brightness profiles, tend to have low values of the
concentration index, while late-type spirals, with quasi-
exponential light profiles, typically have higher values
of c. Previous studies (Morgan 1958; Shimasaku et al.
2001; Yamauchi et al. 2005; Park & Choi 2005) have
shown that the concentration parameter correlates well
with galaxy morphological type, and we used it to help
break the degeneracy between redshift and galaxy type.
We present the photo-z results for different combinations
of input parameters in §5.

For comparison, we also computed photo-z’s for the
validation set using another empirical method, the Near-
est Neighbor Polynomial (NNP) technique (Cunha et al.
2007). In NNP, to derive a photo-z for a galaxy in the
photometric sample, we look for its training-set nearest
neighbors in the space of photometric observables (mag-
nitudes, colors, etc.). Suppose we have ND photometric
data entries for each galaxy. The data vector for the
galaxy of interest in the photometric sample is denoted
by Dµ = (D1, D2, ..., DND), while the data vector for the

ith galaxy in the training set is Dµ
i = (D1

i , D2
i , ..., D

ND

i ).
The distance di between the photometric object and the
ith training set galaxy is defined using a flat metric in
data space,

d2
i =

ND
∑

µ=1

(Dµ − Dµ
i )2 . (5)

The nearest neighbors are the training-set objects for
which di is minimum. Once the nearest neighbors for a
given galaxy are identified, they are used to fit the coef-
ficients of a local, low-order polynomial relation between
photometric observables and redshift. The galaxy photo-
z is then obtained by applying the derived relation to the
photometric object.

For the NNP method employed in this work, we take
the photometric data Dµ in Eq. (5) to be the four “ad-
jacent” galaxy colors u − g, g − r, r − i, i − z; we
found that this choice produces results marginally better
than using the galaxy magnitudes. We use the near-
est 1000 neighbors to fit a quadratic polynomial relation
between redshift and the photometric data, here chosen
to be the five magnitudes in each passband (ugriz) and
their corresponding concentration indices. We note that
Wang et al. (2007) used a similar technique to estimate
photo-z’s for a small sample of SDSS spectroscopic galax-
ies. They applied the Kernel Regression method of order
0, weighting the training-set neighbors and computing
photo-z’s by using the weighted average of the neighbors’
redshifts. Our NNP method is closer to a Kernel Regres-
sion of order 2, since we perform quadratic fits; however,
we do not apply variable weights to the neighbors but
treat them equally in the fit.

Whereas the ANN method provides a single, nonlinear,
global fit using the whole training set and applies the
derived photo-z relation to all photometric objects, the
NNP method yields a separate, linear (in parameters),
local fit for each photometric object using its neighbors.
If the galaxy magnitude-concentration-redshift hypersur-
face is a differentiable manifold, i.e., if it can be locally
approximated by a hyperplane even though it is glob-
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ally curved, then these two photo-z methods should be
roughly equivalent. Indeed, as we show in §5, their per-
formance is very similar.

4.2. Photometric redshift errors

We estimated photo-z errors for objects in the photo-
metric catalog using the Nearest Neighbor Error (NNE)
estimator (Oyaizu et al. 2007). The NNE method is
training-set based, with a neighbor selection similar to
the NNP photo-z estimator; it associates photo-z errors
to photometric objects by considering the errors for ob-
jects with similar multi-band magnitudes in the valida-
tion set. We use the validation set, because the photo-z’s
of the training set could be over-fit, which would result
in NNE underestimating the photo-z errors.

The procedure to calculate the redshift error for a
galaxy in the photometric sample is as follows. We find
the validation-set nearest neighbors to the galaxy of in-
terest. In contrast to NNP, where the distance in Eq. (5)
was defined in color space, the NNE distance is defined in
magnitude space, since photo-z errors correlate strongly
with magnitude. Since the selected nearest neighbors are
in the spectroscopic sample, we know their photo-z er-
rors, δz = zphot−zspec, where zphot is computed using the
ANN or the NNP method. We calculated the 68% width
of the δz distribution for the neighbors and assigned that
number as the photo-z error estimate for the photomet-
ric galaxy. Here we selected the nearest 200 neighbors
of each object to estimate its photo-z error. In stud-
ies of photo-z error estimators applied to mock and real
galaxy catalogs, we found that NNE accurately predicts
the photo-z error when the training set is representative
of the photometric sample (Oyaizu et al. 2007).

4.3. Estimating the Redshift Distribution

As we shall see in §5.1, estimates for galaxy photo-z’s
suffer from statistical biases that in general cannot be
completely removed on an object-by-object basis. How-
ever, we can seek an unbiased estimate of the true red-
shift distribution for the photometric sample that is in-
dependent of individual galaxy photo-z estimates. For
some statistical applications, the redshift distribution of
the photometric sample, as opposed to individual galaxy
photo-z’s, is all that is required. One way to estimate
this distribution is to assign a weight to every galaxy in
the spectroscopic sample such that the weighted spectro-
scopic sample has the same distributions of magnitudes
and colors as the photometric sample. The zspec distri-
bution of this weighted spectroscopic sample provides an
estimate of the true, underlying redshift distribution of
the photometric sample.

The weight Wα of the αth spectroscopic galaxy is cal-
culated by comparing the local density around the galaxy
in the spectroscopic sample with the density of the cor-
responding region in the photometric sample. The local
density is evaluated by counting the number of nearest
neighbors using the distance measured in the space of
photometric observables, as in Eq. (5). We fix the num-
ber of spectroscopic neighbors, NS, which determines the
distance dmax to the N th

S -nearest spectroscopic neighbor.
We then find the number of neighbors NP in the pho-
tometric sample within the same distance dmax of the
spectroscopic galaxy. Up to an arbitrary normalization
factor, the weight is defined as

Wα ∼
NP

NS
. (6)

For our estimates, we chose NS = 20, which provides a
good match of the weighted spectroscopic distributions
of magnitudes and colors to those of the photometric
sample. We note that if additional cuts in magnitude or
color are applied to the photometric sample, then this
procedure must be repeated for the newly selected pho-
tometric sample. More details and tests of this method
and comparisons with other methods for estimating the
underlying redshift distribution (e.g., deconvolving the
error distribution from the zphot distribution) will be pre-
sented separately (Lima et al. 2007).

5. RESULTS

5.1. Photometric redshifts

The photo-z precision (variance) and accuracy (bias)
are limited by a number of factors. There are intrinsic de-
generacies in magnitude-redshift space: low-luminosity,
intrinsically red galaxies at low redshift can have ap-
parent magnitudes similar to those of high-luminosity,
intrinsically blue galaxies at high redshift. This natu-
ral degeneracy is amplified by photometric errors, since
magnitude uncertainties propagate to photo-z errors. In
addition to these observational limitations, which are de-
termined by the photometric precision and the number
of passbands of a survey, the photo-z estimator itself may
have inherent limitations. For example, for training set
methods, the size and representativeness of the training
set are important factors, as are the number of parame-
ters or weights in the fitting functions.

To test the quality of the photo-z estimates, we use
four photo-z performance metrics. The first two metrics
are the photo-z bias, zbias, and the photo-z rms scatter,
σ, both averaged over all N objects in the validation set,
defined by

zbias =
1

N

N
∑

i=1

(

zi
phot − zi

spec

)

, (7)

σ2 =
1

N

N
∑

i=1

(

zi
phot − zi

spec

)2
. (8)

The third performance metric, denoted by σ68, is the
range containing 68% of the validation set objects in the
distribution of δz = zphot − zspec. This metric is useful
because the probability distribution function P (δz) is in
general non-Gaussian and asymmetric (for a Gaussian
distribution, σ and σ68 coincide). Explicitly, σ68 is de-
fined by the value of |zphot − zspec| such that 68% of the
objects have |zphot − zspec| < σ68. We also use the 95%
region σ95, defined similarly. In addition to these global
metrics, we also define local versions of them in bins of
redshift or magnitude.

To search for an optimal photo-z estimator, we com-
puted photo-z’s using the ANN method with different
combinations of input photometric observables. Five of
these combinations are listed in Table 2. In the first case,
dubbed O1, the training and photo-z estimation are car-
ried out using only the five magnitudes ugriz. In case
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Fig. 4.— zphot versus zspec for the validation set for different ranges of r magnitude and for different photo-z techniques. Left column:
objects with r < 20; middle column: objects with r > 20; right column: all objects. Top row: ANN case D1, where the input photometric
data comprise the 5 magnitudes (ugriz) and the 5 concentration parameters, and the training is split into 5 bins of r magnitude Middle
row: ANN case CC2, where the input data are the 4 colors u − g, g − r, r − i, i − z, and 3 concentration parameters cgcrci. Bottom row:
results for the NNP method, where the input data are the 5 magnitudes and 5 concentration parameters. In all cases, the photo-z methods
used a training set with ∼ 320, 000 objects, and the derived solutions were applied to an independent validation set with ∼ 309, 000 objects
and r < 22, reflecting the magnitude limit of the photometric sample. The solid line in each panel indicates zphot = zspec; the dashed and
dotted lines show the 68% and 95% confidence regions as a function of zspec. The points display results for a random 10% subset of the
validation set in each magnitude range.

TABLE 2
Summary of ANN cases

Case Inputs/Description σ σ68

O1 ugriz 0.0525 0.0229
C1 ugriz + cucgcrcicz 0.0519 0.0224
D1 ugriz + cucgcrcicz . Split training 0.0519 0.0209
CC1 u − g, g − r, r − i, i − z 0.0668 0.0272
CC2 u − g, g − r, r − i, i − z + cgcrci 0.0593 0.0245

Note. — Photo-z performance metrics σ and σ68 for the vali-
dation set using different input parameters (magnitudes, colors,
and concentration indices) and training procedures.

C1, we use the five magnitudes and the five concentra-
tion indices cucgcrcicz as the input parameters. In case
CC1, we use only the four colors u − g, g − r, r − i, and
i − z. In case CC2, we combine the four colors with the
concentration indices cgcrci in the gri filters. Finally, in

case D1, we use the ugriz magnitudes and the cucgcrcicz

concentration indices, but we split the training set and
the photometric sample into 5 bins of r magnitude and
perform separate ANN fits in each bin. In all five cases,
we use an ANN with three hidden layers and tune the
number of hidden nodes to keep the total number of de-
grees of freedom of the network roughly the same for all
cases.

Table 2 provides a summary of the performance results
of the different ANN cases. We find that using concentra-
tion indices in addition to magnitudes (C1 vs. O1) helps
break some degeneracies and reduces the photo-z scatter
by a few percent. Using only colors (CC1) degrades the
photo-z performance by as much as 20%, mostly because
the degeneracy between intrinsically red, nearby galax-
ies and intrinsically blue, distant galaxies (with red ob-
served colors) cannot be broken. Adding concentration
indices to color-only training (CC2) helps break such a
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Fig. 5.— The performance metrics zbias, σ, and σ68 for the ANN
D1 and CC2 validation sets are shown as a function of r magnitude.
CC2 performs relatively poorly for bright objects (r < 16), where
the color-redshift relation is contaminated by faint objects with
similar colors. In D1, this problem is alleviated by the effective
magnitude prior imposed by the training set. At faint magnitudes,
the performance degrades as the photometric errors increase.

degeneracy, because the concentration index correlates
with galaxy type and hence intrinsic color. Of the five,
case CC2 also yields the most realistic photometric red-
shift distribution for the photometric sample (see §5.2).
Finally, splitting the training set and photometric sam-
ple into magnitude bins (D1) produces results with the
best performance metrics (σ and σ68) of all the ANN
cases we have tested. We choose D1 and CC2 as the
best ANN cases and describe their results in more de-
tail below; their outputs for the photometric sample are
included in the public DR6 database.

In Fig. 4, we plot photometric redshift, zphot, for all
objects in the validation set vs. true spectroscopic red-
shift, zspec, for the different photo-z methods and cases
and in different ranges of r magnitude. The top row
shows results for ANN case D1, the middle row shows
the performance of ANN case CC2, and the bottom row
shows results for the NNP method using magnitudes and
concentration indices as the input parameters. In each
panel, the values of the corresponding global photo-z per-
formance metrics σ and σ68 are shown. The redshift bias
zbias is typically much smaller than σ or σ68, since the
photo-z methods are designed to minimize it (see Fig. 5).
In each panel of Fig. 4, the solid line traces zphot = zspec,
i.e., the line for a perfect photo-z estimator. The dashed
and dotted lines show the corresponding 68% and 95%
regions, defined as above but in zspec bins. Although
each photo-z method probes the hypersurface defined by
the photometric observables and redshift in a different
way, they produce very similar results, suggesting that
our results are limited not by the photo-z technique em-
ployed but by the intrinsic degeneracies in magnitude-
concentration-redshift space and by the photometric er-
rors.

In Figs. 5 and 6, we show the performance metrics

zbias, σ, and σ68 as a function of r magnitude and zspec

for the validation set for the two preferred ANN cases.
We see that the photo-z precision degrades considerably
for objects with r > 20. This increased scatter is ex-
pected, since the relative photometric errors increase as
the nominal detection limit of the SDSS photometry is
approached (see Table 1). While the bias for CC2 in-
creases at r < 17, we note that the fraction of objects
in the photometric sample which are that bright is very
small. As a function of redshift, σ and σ68 increase dra-
matically beyond z ∼ 0.6 for the validation set. For the
r < 20 part of the sample, the number of spectroscopic
objects with z > 0.6 is simply too small to characterize
the redshift-magnitude surface, as shown in the left panel
of Fig. 7. For the faint objects (r > 20), the scatter is
low for z between 0.4 and 0.6 and increases outside of
that range. It’s important to note that the photo-z per-
formance metrics were calculated independently of spec-
tral type. Since the the neural network and the training
set were not optimized for any specific galaxy popula-
tion (e.g., galaxies in clusters) it is possible that certain
galaxy types may have photo-z’s with worse (or better!)
biases and dispersion.

In Figure 7, we plot g−r color versus spectroscopic red-
shift for the validation set for both bright (r < 20) and
faint (r > 20) galaxies. The 2SLAQ and DEEP2 galaxies
are highlighted by different colors (shades of grey), and
the expected color-redshift relations for the four spec-
tral templates from Coleman et al. (1980) (from early
to late types) are indicated by the solid lines. We see
that for the faint sample, in the range 0.4 < z < 0.6,
the galaxies come mostly from the 2SLAQ survey, which
used specific color cuts to select early-type galaxies at
z ∼ 0.5. Because early-type galaxies have a well-defined
4000 Å break feature, their photo-z’s are well determined
and their photo-z scatter is low. Outside of the range
0.4 < z < 0.6, the validation set at faint magnitudes
is dominated by bluer galaxies that do not have strong,
broad spectral features, resulting in the larger photo-z
scatter seen in Fig. 6.

Fig. 6 shows that the common assumption that the
photo-z scatter scales as (1 + z) is not consistent with
our estimates for the SDSS sample. The functional form
of the scatter versus redshift depends strongly on the
underlying galaxy type distribution.

5.2. Redshift Distributions

So far, we have considered the scatter and bias of
photo-z estimates. As discussed in §4.3, it is also of in-
terest to consider the predicted photo-z distribution as
a whole. Different photo-z estimators may achieve sim-
ilar values for the metrics zbias, σ, and σ68, but predict
different forms for the photo-z distribution of the photo-
metric sample. As we shall see, this is the case with the
two ANN cases D1 and CC2. We therefore define two
additional performance metrics to quantify the quality
of the predicted photo-z distribution. The first metric,
σdist, measures the rms difference between the binned
zphot and zspec distributions of the validation set,

σ2
dist =

1

Nbin

Nbin
∑

i=1

(

P i
phot − P i

spec

)2
, (9)
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Fig. 6.— Performance metrics zbias, σ, and σ68 for the ANN D1 and CC2 validation sets are shown as a function of zspec for r < 20 and

r > 20. The increased scatter for objects with z > 0.6 is due to the 4000 Å break shifting out of the r passband at around z = 0.7; beyond
that redshift, the estimator effectively relies on only two passbands (i and z) to determine the photo-z’s. Note that faint objects (r > 20)
have worse scatter at low redshifts for both cases. This is likely due to the fact that the faint, low-redshift objects in the validation set are
predominantly blue dwarf or irregular galaxies that do not have strong 4000 Å breaks; in this case, the photo-z estimator must rely on less
pronounced spectral features, resulting in larger photo-z scatter.

Fig. 7.— g−r color vs spectroscopic redshift for galaxies in the validation set: left panel: galaxies with r < 20; right panel: galaxies with
r > 20. The solid curves show expected color-redshift relations of galaxies with different SED types, calculated using the Coleman et al.
(1980) spectral templates. The different colors (shades of grey) indicate galaxies from the different spectroscopic surveys contributing to
the validation set. The 2SLAQ objects, denoted by red triangles, were selected to be mostly early-type galaxies. They are responsible for
the minimum in σ vs. zspec for the r > 20 subsample in Fig. 6.

where P i
phot is the height of the ith redshift bin of the

zphot distribution, P i
spec is the height of the same redshift

bin of the zspec distribution, and Nbin is the total number
of redshift bins used. Here we use Nbin = 120 equally
spaced redshift bins running from z = 0 to z = 1.2.

The second redshift distribution metric we employ is
the KS statistic D, the maximum value of the absolute

difference between the two (zphot and zspec) cumulative
redshift distribution functions. An advantage of the KS
statistic is that it does not require binning the data in
redshift. However, our use of the KS statistic to quantify
the difference between the zphot and zspec distributions of
the validation set likely does not adhere to formal statis-
tical practice, since it turn outs that the probability for
the KS statistic for both cases we consider is very close
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TABLE 3
σdist and KS statistic for Redshift distribution

σdist KS statistic
r-mag bin CC2 D1 CC2 D1

r < 18 0.0392 0.0330 0.0632 0.0391
18 < r < 19 0.0390 0.0430 0.0520 0.0533
19 < r < 20 0.0391 0.0399 0.0366 0.0413
20 < r < 21 0.0403 0.0471 0.0363 0.0665
21 < r < 22 0.0652 0.0702 0.1051 0.1306

All 0.0383 0.0338 0.0485 0.0307

Note. — σdist and KS statistic results for CC2 and D1
ANN photo-z’s for the validation set.

to zero (Press et al. 1992).
Table 3 shows the values of σdist and of the KS statistic

D for the validation set for the D1 and CC2 ANN photo-
z’s, for different ranges of r magnitude. Although the
CC2 photo-z distribution is a worse overall match to the
zspec distribution for the validation set, it works better
than D1 for r > 18. Since the photometric sample is
dominated by objects at r > 20 (see Fig. 1), these results
suggest that CC2 should do a better job in estimating
the redshift distribution of the photometric sample, even
though D1 performs better by the standards of zbias and
σ.

The redshift distributions for the validation set are
shown in Fig. 8 for the same bins of r magnitude as in
Table 3. The D1 and CC2 zphot distributions are shown
in color, and the solid curves correspond to the zspec dis-
tributions. The similarities between the zphot and zspec

distributions are consistent with the results of Table 3.
In §4.3, we noted that the zspec distribution of the spec-

troscopic sample, weighted to reproduce the color and
magnitude distributions of the photometric sample, pro-
vides an estimate of the unknown redshift distribution of
the photometric sample. The zphot distribution for the
photometric sample, computed using ANN D1 or CC2,
provides another estimate of the true redshift distribu-
tion for the photometric sample, but one that we know
suffers from bias (e.g., Fig. 5). While we have not shown
that the weighted zspec estimate of the redshift distri-
bution is unbiased, it has the advantage that it makes
direct use of the statistical properties of the photometric
sample, and we believe it is our best estimate of the pho-
tometric sample redshift distribution. Our final test of
photo-z performance therefore compares the zphot distri-
bution for the photometric sample for the two ANN cases
with the weighted zspec distribution of the spectroscopic
sample. Agreement between the weighted zspec distribu-
tion and either one of the zphot distributions does not
guarantee that they are correct, but it at least provides
a useful consistency check.

In Fig. 9 we show the estimated redshift distributions
of a random subsample containing ∼ 1% of the objects in
the DR6 photometric sample for both the CC2 and D1
ANN cases. The colored regions correspond to the zphot

distributions, and the solid lines indicate the weighted
zspec distribution of the spectroscopic sample. The zphot

distributions for CC2 are closer matches to the weighted
zspec distributions for r > 18, and they do not show
the peculiar features that the D1 photo-z distributions
display, particularly at faint magnitudes. By the crite-
rion of producing a more realistic redshift distribution

for the photometric sample, the CC2 ANN estimator is
preferred.

5.3. Photo-z Errors

In order to test the quality of our photo-z error esti-
mates calculated with the NNE method, we introduce
the concept of empirical error. For a set of objects
(within the validation set) with similar NNE error, σNNE

z ,
the empirical error is defined as the 68% width of the
|zphot − zspec| distribution for the set. If the NNE es-
timator works properly, objects with similar NNE error
should have similar underlying error distributions, i.e.,
the NNE error should correlate well with the empirical
error.

Fig. 10 shows the performance of the photo-z error es-
timator by plotting the computed NNE error σNNE

z as a
function of the corresponding empirical error for the val-
idation set. Results are shown for the D1 and CC2 ANN
photo-z’s. The empirical error was calculated for bins
containing 100 objects with similar σNNE

z . As expected,
faint objects (r > 20) have larger errors than bright ob-
jects (r < 20). The NNE estimated error correlates well
with the empirical error even for the faint objects, in-
dicating that the error estimator works properly for all
magnitudes. The bulk of the bright objects have σNNE

z

in the range 0.01 − 0.04, consistent with the overall rms
photo-z scatter of σ ∼ 0.03 indicated in Fig 4. Likewise,
faint objects have σNNE

z in the range 0.02 − 0.3, while
σ ∼ 0.13 for those objects. The NNE error is therefore
a robust indicator of an object’s photo-z quality. In par-
ticular, we have carried out tests in which we cut objects
with large NNE error from the sample and found that the
remaining sample has smaller photo-z scatter and fewer
catastrophic outliers. For applications in which photo-
z precision is more important than completeness of the
photometric sample, this can be a useful procedure.

In Fig. 11, we plot the normalized error distribution,
i.e., the distribution of (zphot−zspec)/σNNE

z , for objects in
the spectroscopic sample, using the D1 ANN estimator.
The solid black lines are the data, and the dotted red
lines show Gaussian distributions with zero mean and
unit variance. The upper panels show results for the
galaxies in the SDSS Main and LRG spectroscopic sam-
ples. The lower panels show results for all validation-set
galaxies, divided into bright (r < 20) and faint (r > 20)
samples. These plots indicate that, averaged over the
bulk of the spectroscopic sample, the photo-z estimates
are nearly unbiased, the NNE error provides a good esti-
mate of the true error, and the NNE error can be approx-
imately interpreted as a Gaussian error in this average
sense. Note that this does not imply that the photo-z
error distributions in bins of magnitude or redshift are
unbiased Gaussians: Figs. 5 and 6 show that they are
not.

6. QUERY FLAGS AND CAVEATS

When querying the SDSS data server to produce the
photometric sample for which we estimated photo-z’s,
we set the most relevant flags needed to produce a clean
galaxy sample. However, some applications may require
more stringent selection of objects. We advise users of
the catalog to read the documentation about producing
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Fig. 8.— Redshift distributions for the galaxies in the validation set for different r magnitude bins. Left panels: ANN D1; right panels:
ANN CC2. The colored regions indicate the ANN photo-z distributions, while the lines are the spectroscopic redshift distributions. By
eye, both ANN cases recover the true redshift distributions of the validation set well, except in the faintest magnitude bin, where the
photometric errors become large.

Fig. 9.— Estimated redshift distributions for a random subsample of 1% of the galaxies in the DR6 photometric sample in different
r-magnitude bins. Left panels: ANN D1; right panels: ANN CC2. Colors show the zphot distributions. The lines show the estimated
redshift distributions from the spectroscopic sample weighted to match the magnitude and color distributions of the photometric sample.
Even though the two ANN cases correctly recover the validation set redshift distribution (Fig. 8), their photo-z distributions for the
photometric sample disagree. The photo-z distribution for D1 shows a peak at z ∼ 0.4 that results mainly from the 20 < r < 21 bin. The
CC2 distribution does not show such strong features, and in general it matches the weighted zspec distribution better.

a clean galaxy sample on the SDSS website7. In partic-
ular, users should consider requiring the BINNED1 (ob-
ject detected at > 5σ) flag and removing objects with the
NODEBLEND (object is a blend but deblending was not
possible) flag. The various PHOTO flags are described in
more details at the above website as well as in Appendix
A.

7 http://cas.sdss.org/dr6/en/help/docs/algorithm.asp

Finally, we note that the training of the photo-z es-
timators included only galaxies, not stars. As a result,
photo-z estimates for stars that contaminate the pho-
tometric sample will be wrong, and cutting objects with
low zphot will not remove them. Our tests on star/galaxy
separation in the photometric sample are briefly de-
scribed in Appendix B.

7. ACCESSING THE CATALOG

http://cas.sdss.org/dr6/en/help/docs/algorithm.asp
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Fig. 10.— The estimated error from the NNE method, σNNE
z , is shown against the empirical error for objects in the validation set. Left

panel: D1 ANN; right panel: CC2 ANN. Each point corresponds to a bin of 100 objects with similar σNNE
z . The black squares show results

for bright objects (r < 20), the red triangles for faint objects (r > 20). As expected, faint objects have larger errors, but the NNE error
correlates well with the empirical error over the full magnitude range.

Fig. 11.— Distributions of (zphot − zspec)/σNNE
z for objects in

the spectroscopic sample, with photo-z’s calculated using ANN D1;
the results for ANN CC2 are very similar. The solid black lines are
the data, and the dotted red lines are Gaussians with zero mean
and unit variance. Top left: SDSS Main spectroscopic sample; top
right: SDSS LRG sample; bottom left: validation-set galaxies with
r < 20; bottom right: validation-set galaxies with r > 20. In all
cases the photo-z errors are reasonably well modeled by Gaussian
distributions.

The photo-z catalog can be accessed from the photoz2
table in the DR6 context on the SDSS CasJobs site, at
http://casjobs.sdss.org/casjobs/. A query similar
to the one in the Appendix provides all objects for which
we computed photo-z’s. Alternatively, one can simply
perform a query that searches for objects with a photoz2
entry.

In addition to the photoz2 table in the SDSS
CAS, an independent photoz table is also available,
for which the photo-z’s have been computed using
a template-based technique; see Csabai et al. (2007);
Adelman-McCarthy et al. (2007a).

8. CONCLUSIONS

We have presented a public catalog of photometric red-
shifts for the SDSS DR6 photometric sample using two
different photo-z estimates, CC2 and D1, based on the
ANN method. As a consistency check, we have also
calculated photo-z’s using the NNP method, a nearest
neighbor approach, which gives very good agreement
with the ANN results. The CC2 and D1 photo-z results
are comparable. For the validation set, the D1 photo-z
estimates have lower photo-z scatter for bright galaxies
(r < 20), and scatter similar to but slightly smaller than
that of CC2 for objects with r > 20. Our tests indicate
that the SDSS photo-z estimates are most reliable for
galaxies with r < 20 and that the scatter increases signif-
icantly at fainter magnitudes. For faint galaxies (r > 20),
we recommend using the CC2 photo-z estimate, since the
CC2 zphot distribution most closely resembles the zspec

distribution for the validation set and the weighted zspec

estimate for the redshift distribution of the photometric
sample. For users who wish to use, for simplicity, a sin-
gle photo-z estimator over the full magnitude range, we
recommend using CC2.

Finally, we have demonstrated that the NNE error esti-
mator, included in the public catalog, provides a reliable
measure of the photo-z errors and that the overall scaled
photo-z errors are nearly Gaussian.

Funding for the DEEP2 survey has been provided by
NSF grant AST-0071048 and AST-0071198. The data
presented herein were obtained at the W.M. Keck Ob-
servatory, which is operated as a scientific partnership
among the California Institute of Technology, the Uni-

http://casjobs.sdss.org/casjobs/


13

versity of California and the National Aeronautics and
Space Administration. The Observatory was made pos-
sible by the generous financial support of the W.M. Keck
Foundation. The DEEP2 team and Keck Observatory
acknowledge the very significant cultural role and rev-
erence that the summit of Mauna Kea has always had
within the indigenous Hawaiian community and appre-
ciate the opportunity to conduct observations from this
mountain.

Funding for the SDSS and SDSS-II has been pro-
vided by the Alfred P. Sloan Foundation, the Partic-
ipating Institutions, the National Science Foundation,
the U.S. Department of Energy, the National Aeronau-
tics and Space Administration, the Japanese Monbuka-
gakusho, the Max Planck Society, and the Higher Educa-
tion Funding Council for England. The SDSS Web Site
is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research

Consortium for the Participating Institutions. The Par-
ticipating Institutions are the American Museum of Nat-
ural History, Astrophysical Institute Potsdam, Univer-
sity of Basel, University of Cambridge, Case Western
Reserve University, University of Chicago, Drexel Uni-
versity, Fermilab, the Institute for Advanced Study, the
Japan Participation Group, Johns Hopkins University,
the Joint Institute for Nuclear Astrophysics, the Kavli
Institute for Particle Astrophysics and Cosmology, the
Korean Scientist Group, the Chinese Academy of Sci-
ences (LAMOST), Los Alamos National Laboratory, the
Max-Planck-Institute for Astronomy (MPIA), the Max-
Planck-Institute for Astrophysics (MPA), New Mexico
State University, Ohio State University, University of
Pittsburgh, University of Portsmouth, Princeton Uni-
versity, the United States Naval Observatory, and the
University of Washington.

APPENDIX

DATA QUERY CODE

Here we provide the SDSS database query used to obtain part of the catalog containing the photometric sample
used in this paper. Notice that the query requires the TYPE flag to be set to 3 (galaxies) and selects objects with
dereddened model magnitude r < 22.0 to reflect the SDSS nominal detection limit. The query to obtain objects with
Right Ascension (RA) in the range [0, 170) is

declare @BRIGHT bigint set @BRIGHT=dbo.fPhotoFlags(’BRIGHT’)
declare @SATURATED bigint set @SATURATED=dbo.fPhotoFlags(’SATURATED’)
declare @SATUR CENTER bigint set @SATUR CENTER=dbo.fPhotoFlags(’SATUR CENTER’)

declare @bad flags bigint set @bad flags=(@SATURATED|@SATUR CENTER|@BRIGHT)

select
objID, ra, dec,type,dered u,dered g,dered r,dered i,dered z,
petroR50 u, petroR50 g, petroR50 r, petroR50 i, petroR50 z,
petroR90 u, petroR90 g, petroR90 r, petroR90 i, petroR90 z

into MyDb.all ra 0 170
FROM PhotoPrimary
WHERE ((flags & @bad flags)) = 0 AND (dered r<=22.0) AND (ra>=0.0) AND (ra<170.0)
AND (type = 3)

Here we provide a brief description of the flags used in the query: BRIGHT indicates that an object is a duplicate
detection of an object with signal to noise greater than 200σ; SATURATED indicates that an object contains one
or more saturated pixels; SATUR CENTER indicates that the object center is close to at least one saturated pixel.
Note that in selecting PRIMARY objects (using PhotoPrimary), we have implicitly selected objects that either do not
have the BLENDED flag set or else have NODEBLEND set or nchild equal zero. In addition, the PRIMARY catalog
contains no BRIGHT objects, so the cut on BRIGHT objects in the query above is in fact redundant. BLENDED
objects have multiple peaks detected within them, which PHOTO attempts to deblend into several CHILD objects.
NODEBLEND objects are BLENDED but no deblending was attempted on them, because they are either too close
to an EDGE, or too large, or one of their children overlaps an edge. A few percent of the objects in our photometric
sample have NODEBLEND set; some users may wish to remove them.

We also suggest that users require objects to have the BINNED1 flag set. BINNED1 objects were detected at ≥ 5σ
significance in the original imaging frame.

The SDSS webpage8 provides further recommendations about flags, which we strongly recommend that users read.

TESTS ON STAR-GALAXY SEPARATION

We used the SDSS database TYPE flag to select the galaxy photometric sample for our photo-z catalogs. To study
the robustness of the TYPE flag in separating galaxies from stars, we also carried out tests using an independent

8 http://cas.sdss.org/dr5/en/help/docs/algorithm.asp?key=flags

http://www.sdss.org/
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star-galaxy classifier. Here we briefly describe both of these techniques and show the results obtained on photometric
and spectroscopic samples.

The TYPE flag is based on the star-galaxy separator in the SDSS PHOTO pipeline, described in Lupton et al. (2001)
and updated in Abazajian et al. (2004). For a given object, the pipeline computes the PSF and cmodel magnitudes in
each passband9, where the cmodel magnitude is a measure of the flux using a composite of the best-fit de Vaucouleurs
and exponential models of the light profile. If the condition

mPSF − mcmodel > 0.145 (B1)

is satisfied, type is set to GALAXY for that band; otherwise, type is set to STAR. The object’s global TYPE is
determined by the same criterion, but now applied to the summed PSF and cmodel fluxes from all passbands in which
the object is detected. Lupton et al. (2001) show that an earlier version of this simple cut works at the 95% confidence
level for SDSS objects brighter than r = 21.

The second star-galaxy separator we tested is the galaxy probability defined in Scranton et al. (2002). The galaxy
probability (hereafter probgals) is a Bayesian probability estimate that an object is a galaxy (and not a star), given
the object’s magnitudes and concentration parameter. Here the concentration parameter is not the ratio of Petrosian
radii but is defined as the difference between an object’s PSF and exponential-model r magnitudes. This concentration
parameter is close to zero for stars, is positive for bright galaxies, and approaches zero as galaxies become fainter.

We conducted some simple tests to compare these classification schemes. If we set the Bayesian probgals threshold
to a value between 0.5 and 0.9, then both methods agree on the classification of more than 90% of the objects for a
random 1% subset of the SDSS photometric sample. We also tested the methods on a spectroscopic sample of 29,229
galaxies and stars (counting independent photometric measurements of each object) from the 2SLAQ and DEEP2
catalogs with r < 22. Defining stars as objects with zspec < 0.01, the sample contains 24,541 galaxies and 4,688 stars.
We wish to compare this spectroscopic “truth table” with the photometric classification of the two methods and with
a combined method that classifies an object as a galaxy if and only if both separators classify it as a galaxy. For the
purposes of this test, we say that the Bayesian scheme classifies an object as a galaxy if probgals > 0.5. We define
galaxy completeness as the ratio of correctly identified galaxies to the total number of galaxies in the spectroscopic
sample. Purity is defined as the ratio of correctly identified galaxies to the number of objects identified (correctly
or not) as galaxies by the classifier. The purity depends in part on the relative numbers of galaxies and stars in the
spectroscopic sample.

Fig. B1 shows the completeness and purity of the resulting galaxy catalogs in bins of r magnitude for this spec-
troscopic sample. Overall, the Bayesian separator and PHOTO TYPE produce similar results for galaxy purity and
completeness. Moreover, the agreement between the two classification methods is quite good on an object-by-object
basis. The Bayesian separator with probgals ≥ 0.5 achieves slightly higher completeness and slightly lower purity. By
varying the probgals boundary, we could improve the purity of the Bayesian galaxy sample at the expense of degrading
its completeness. We note that the best value of probgals to use in defining a galaxy photometric sample depends
on the scientific applications of the sample, i.e., on whether completeness or purity is the more important feature. In
statistical applications, instead of defining a galaxy sample one can also choose to weight objects by their Bayesian
probability (Scranton et al. 2002).

Based on this test, we conclude that the photometric sample for which we have estimated photo-z’s has better than
90% galaxy purity.

PHOTOMETRIC REDSHIFTS FOR SDSS DR5

An earlier version of the photo-z catalog, produced for SDSS Data Release 5 (DR5), is publicly available on the
SDSS DR5 website (and is also called photoz2). The methods used to construct that photo-z catalog were similar to
the ones employed here for DR6, but the latter incorporates a number of important improvements. Here we briefly
outline the differences between the two. We strongly recommend use of the DR6 photo-z catalog instead of the DR5
catalog.

The photometric galaxy sample selection has improved from DR5 to DR6, because we used more stringent cuts
in defining the DR6 sample. The DR6 sample selection is described above in Appendix A. The DR5 photometric
galaxy sample selection required the cmodel and model r magnitudes to lie in the ranges rcmodel ∈ (14.0, 22.0) and
rmodel ∈ (13.5, 22.5), and also required the value of the smear polarizability (Sheldon et al. 2004) to be mr > 0.8. Also,
for DR5, star-galaxy separation used the Bayesian estimator (see Appendix B) with the value probgals > 0.8, while
for DR6 we used PHOTO TYPE. The additional cuts used for the DR6 catalog have produced a cleaner and more
reliable galaxy sample.

The DR5 photo-z catalog included a number of flags describing the expected photo-z quality, shown in Table C1.
These flags were based on the detection or non-detection of the object in all passbands and on the value of the r model
magnitude. An object was classified as bright (faint) if r < 20 (r > 20). An object was flagged as “incomplete” if it
was not detected in all five SDSS passbands. Table C1 shows the corresponding flag values and the number of objects
assigned each flag value. For the DR6 sample, given the stricter sample selection, a very small number of objects
would have been classified as incomplete by the definition above, and they have been removed from the sample. As a
result, for DR6, we only supply the bright/faint flag, as shown in Table C2.

9 http://www.sdss.org/dr5/algorithms/photometry.html
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Fig. B1.— Top panel: completeness and bottom panel: purity for the Bayesian and PHOTO TYPE galaxy classifications as well as for a
combination of the two, using a sample of galaxies with spectroscopic classification. Results for the Bayesian separator have the probgals
lower bound set to 0.5.

TABLE C1
DR5 Catalog flag

flag No
¯ of Galaxies Object Description

- 86.1 million All
0 12.6 million Complete & bright
1 0.6 million Incomplete & bright
2 59.0 million Complete & faint
3 13.9 million Incomplete & faint

Note. — The flag scheme for the DR5 cata-
log is based on object detection in some/all pass-
bands and the r magnitude. Incomplete objects
are undetected in at least one of the passbands
(ugriz) and faint objects have r > 20.

TABLE C2
DR6 Catalog flag

flag No
¯ of Galaxies Object Description

- 77.4 million All
0 11.5 million bright
2 65.9 million faint

Note. — The flag scheme for the DR6 cat-
alog is based solely on the on the r magnitude:
faint objects have r > 20.

The spectroscopic training set used for the DR6 photo-z catalog has important additions compared to the one used
for the DR5 catalog. In particular, for DR6 we added the DEEP2 spectroscopic catalog (which became publicly
available), which made the training set more complete at faint magnitudes. We also implemented more stringent
spectroscopic quality cuts to the training set used for DR6.

Unlike the DR5 training set, the DR6 training set does not contain objects from the SDSS “special” plates, extra
spectroscopic observations designed to target specific objects for various scientific studies (Adelman-McCarthy et al.
2006). In our tests, we find that the lack of special plates does not result in any degradation of the photo-z quality.

The photo-z algorithm also changed from DR5 to DR6: we increased the number of hidden-layer nodes in the ANN
and we added the concentration indices to the data inputs. Our tests indicated that this leads to improved photo-z
performance according to our metrics. In addition, the CC2 method differs from DR5 photo-z’s further in that CC2
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uses only the color information and not the raw magnitudes. For general purpose, full sample photo-z’s, we recommend
using CC2 photo-z’s over both DR5 and D1 photo-z’s. Finally, we have carried out more extensive tests of the DR6
photo-z’s than were done for DR5, increasing our confidence in the robustness of the photo-z estimates.
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