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ABSTRACT
We conduct a detailed analysis of the photometric redshift requirements for the pro-
posed Dark Energy Survey (DES) using two sets of mock galaxy simulations and an
artificial neural network code - ANNz. In particular, we examine how optical photom-
etry in the DES grizY bands can be complemented with near infra-red photometry
from the planned VISTA Hemisphere Survey (VHS) in the JHKs bands in order to
improve the photometric redshift estimate by a factor of two at z > 1. We draw at-
tention to the effects of galaxy formation scenarios such as reddening on the photo-z
estimate and using our neural network code, calculate Av for these reddened galaxies.
We also look at the impact of using different training sets when calculating photomet-
ric redshifts. In particular, we find that using the ongoing DEEP2 and VVDS-Deep
spectroscopic surveys to calibrate photometric redshifts for DES, will prove effective.
However we need to be aware of uncertainties in the photometric redshift bias that
arise when using different training sets as these will translate into errors in the dark
energy equation of state parameter, w. Furthermore, we show that the neural network
error estimate on the photometric redshift may be used to remove outliers from our
samples before any kind of cosmological analysis, in particular for large-scale structure
experiments. By removing all galaxies with a 1σ photo-z scatter greater than 0.1 from
our DES+VHS sample, we can constrain the galaxy power spectrum out to a redshift
of 2 and reduce the fractional error on this power spectrum by ∼15-20% compared to
using the entire catalogue.

Output tables of spectroscopic redshift versus photometric redshift used to
produce the results in this paper can be found at www.star.ucl.ac.uk/ ∼

mbanerji/DESdata.
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1 INTRODUCTION

It is now widely accepted that dark energy is responsible
for driving the observed acceleration of the Universe. In re-
cent years, measuring and constraining the nature of this
dark energy has become a central focus of current studies in
cosmology. Several different methods have been developed
and shown to probe the nature of dark energy through its
effects on the geometry and structure of the Universe e.g.
Riess et al. (1998); Hu (1999); Blake & Glazebrook (2003).
Large-scale sky surveys such as the Sloan Digital Sky Sur-
vey have no doubt aided this kind of study (Tegmark et al.
2004; Spergel et al. 2007) and more such galaxy surveys are

⋆ E-mail: mbanerji@star.ucl.ac.uk

now being planned to exploit the different techniques that
will help us better understand the nature of dark energy.

The proposed Dark Energy Survey is one such exper-
iment. It will use four independant probes namely galaxy
clusters, galaxy power spectrum measurements, weak lens-
ing studies and a supernova survey to constrain the nature
of dark energy. Each of these methods relies on accurate
distance measurements extending over cosmological scales.
Given the wealth of data that will be available to us from
such surveys, measuring distances and redshifts for all the
objects using spectroscopic methods clearly becomes unfea-
sible. Hence the need for photometric redshifts.

Photometric redshift estimation methods have been
around since the 1960s but have undergone a recent revival
with proposals for a new generation of large-scale photo-
metric surveys such as the Dark Energy Survey. New algo-
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rithms have been developed for photo-z estimation and made
available to the community e.g. Collister & Lahav (2004);
Bolzonella et al. (2000); Beńıtez (2000); Feldmann et al.
(2006); Babbedge et al. (2004). Furthermore, there is cur-
rently a lot of emphasis on optimising the depth and number
of bands that will be used to image galaxies in future galaxy
surveys so as to obtain accurate photometric redshifts. It is
widely known that imaging in more bands can help reduce
errors on photometric redshifts but the costs of adding more
filters to planned surveys are significant. Given the plethora
of data that is now becoming available to us covering the
whole range of the electromagnetic bands and a large por-
tion of the observable sky, it is vital that we explore the
overlap between different surveys and fully exploit the data
sets available to us, in order to achieve the best compromise
between cost and science.

In this paper we analyse the prospect of combining op-
tical data from the Dark Energy Survey (DES) with near
infra-red data from the Vista Hemisphere Survey (VHS) in
order to obtain accurate photometric redshifts that will help
us better constrain the nature of dark energy. We begin with
a brief description of these two proposed surveys and a de-
scription of the method used to generate mock galaxy sam-
ples for both of these surveys. We then proceed to a full
photometric redshift analysis of simulated data from these
two surveys using artificial neural networks. We assess the
impact of reddening on our photometric redshift estimate as
well as the effects of removing outliers and using different
training sets. In each case, we present results obtained for
the optical data from DES only and for optical and near-
infra red data from DES and VHS. Finally, we look at the
implications of our results for cosmological constraints on
dark energy. In particular, we concentrate on the impact
of photometric redshift errors on constraints on dark energy
using galaxy power spectrum measurements. All magnitudes
quoted in this paper are in the AB system.

2 THE DARK ENERGY SURVEY (DES)

The Dark Energy Survey is a proposed ground-based photo-
metric survey that will image 5000deg2 of the South Galactic
Cap in the optical griz bands as well as the Y -band. The
survey will be carried out using the Blanco 4-m telescope
at the Cerro Tololo Inter-American Observatory (CTIO) in
Chile. The main objectives of the survey are to extract in-
formation on the nature and density of dark energy and
dark matter using galaxy clusters, galaxy power spectrum
measurements, weak lensing studies and a supernova sur-
vey. This will be achieved by measuring redshifts of some
300 million galaxies in the redshift range 0 < z < 2, tens
of thousands of clusters in the redshift range 0 < z < 1.1
and about 2000 Type 1a supernovae in the redshift range
0.3 < z < 0.75 (The Dark Energy Survey Collaboration
2005). Observations will be carried out over 525 nights
spread over five years between 2010 and 2014 and when com-
pleted, DES will provide a legacy archive of data extending
around two magnitudes deeper than the Sloan Digital Sky
Survey which is currently the largest existing CCD survey
of the Universe by volume. We have estimated the DES vol-
ume to be 23.74h−3Gpc3 in the range 0 < z < 2, about ten
times that of the SDSS LRG sample (Blake et al. 2007).

Survey Bands 10σ magnitude lims Area

DES g 24.6 5000deg2

r 24.1
i 24.3
z 23.9
Y 21.6

VHS-DES J 20.4 4500deg2

H 20.0

Ks 19.4

VIKING Z 22.4 1500deg2

Y 21.6
J 21.4
H 20.8
Ks 20.5

KIDS u′ 24.1 1500deg2

g′ 24.6
r′ 24.4
i′ 23.4

Table 1. Areas and 10σ magnitude limits for the surveys dis-
cussed in this work. The magnitudes are in the AB system.

The DES survey area overlaps with that of several other
important current and future surveys for example the south-
ern equatorial strip of the Sloan Digital Sky Survey and the
South Pole Telescope SZE cluster survey. The entire DES re-
gion will also be imaged in the near infra-red bands on two
public surveys being conducted on the Visible and Infra-Red
Survey Telescope for Astronomy (VISTA) at ESO’s Cerro
Paranal Observatory in Chile.

3 THE VISTA HEMISPHERE SURVEY (VHS)

Most of the time on the VISTA telescope has been ded-
icated to large-scale public surveys. Two of these surveys
that are relevant to cosmology are the Vista Hemisphere
Survey (VHS) and the Vista Kilo-Degree Infra-red Galaxy
Survey (VIKING) - (Arnaboldi et al. 2007).

The VISTA Hemisphere Survey is a proposed
panoramic infra-red survey that will image the entire south-
ern sky (∼20000deg2) in the near infra-red Y JHKs bands
when combined with other public surveys. About 40% of the
total VHS time has been dedicated to VHS-DES, a 4500deg2

survey being carried out in the DES region over 125 nights in
order to complement the DES optical data with near infra-
red data. The initial proposal is for the survey to image in
the JHKs bands with 120s exposure times in each band
reaching 10σ magnitude limits of J = 20.4,H = 20.0 and
Ks = 19.4. A second pass may then be obtained with 240s
exposures in each of the three NIR filters in order to reach
the full-depth required by DES. The VHS-DES survey as-
sumes that Y -band photometry will come from the Dark
Energy Survey.

The remaining 500deg2 of the DES area not covered by
VHS-DES, will be imaged by VIKING which is a near infra-
red survey designed to provide an important complement to
the optical KIDS project being carried out on the VST. The
details for all these surveys are summarised in Table 1.
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4 SIMULATING MOCK DATA

In this work, we have used two sets of mock galaxy samples
as simulations of data from DES and VHS. In this section
we briefly describe the way in which these data samples
are generated. Both catalogues are generated using Monte
Carlo methods after assuming relevant redshift, magnitude
and type distributions.

4.1 DES5yr Sample

The first mock catalogue is that of Oyaizu et al. (2006)
and Lin et al. (2004) - DES5yr hereafter. It adopts the
galaxy magnitude-redshift distribution derived from the
luminosity functions of Lin et al. (1999) and Poli et al.
(2003) and a type distribution derived using data from
the GOODS/HDF-N field (Capak et al. 2004; Wirth et al.
2004; Cowie et al. 2004) and the CWW template SEDs
(Coleman et al. 1980). A flux-limited sample is constructed
with 0 < z < 2 and 20 < i < 24. The photometric errors on
each object are computed according to the DES 10σ griz
magnitude limits. Note, no attempt is made here to fit a
reddening value to each galaxy.

4.2 JPL Mock Catalogue

The second catalogue is described in Abdalla et al. (2007) -
JPLCAT hereafter. Templates constructed from broadband
photometry using a method similar to Budavári et. al
(1999) were fit to real objects from the GOODS-N spectro-
scopic sample (Cowie et al. 2004; Wirth et al. 2004) in order
to generate this catalogue. The templates were de-reddened
and at the time of fitting, the best fit SED and reddening
value were found simultaneously. A Calzetti reddening law
(Calzetti 1997) was used. Further details of the method
used to create photometric data for the catalogue with the
correct redshift distribution and luminosity evolution, can
be found in §2 of Abdalla et al. (2007). For the purposes of
this paper, however, the important difference between this
and the DES5yr sample is the fact that the galaxies are
reddened and corrected for dust extinction. The JPLCAT
sample also uses two more templates from Kinney et al.
(1996) to fit the galaxies in addition to the CWW templates
used for the DES5yr sample. For the work described in the
rest of this paper, the JPLCAT sample when used has been
cut so as to have the same magnitude and redshift limits
as the DES5yr sample. The redshift distribution for both
samples cut to include the same number of galaxies, as well
as the distribution of galaxies in the JPLCAT sample for
different values of the extinction parameter, Av, are shown
in Figure 1.

Note that the JPLCAT sample is more complex and
hence the results from it are likely to be more pessimistic
than those for the DES5yr sample. However, both catalogues
are generated by fitting models to real data and it is not
obvious which of these models captures the true colour vari-
ance best. Hence both can be taken as realistic possibilities
for modelling the DES and VHS data samples.

5 ESTIMATING PHOTOMETRIC REDSHIFTS
USING ARTIFICIAL NEURAL NETWORKS:
ANNZ

Methods of estimating photometric redshifts fall into two
broad categories, namely template fitting methods and em-
pirical methods. Template fitting methods use libraries
of galaxy spectral energy distributions such as the ob-
served Coleman, Wu & Weedman templates (Coleman et al.
1980) or synthetic templates e.g. Bruzual & Charlot (1993);
Fioc & Rocca-Volmerange (1997). The spectra are con-
volved with a filter transmission function in order to cal-
culate the flux through each filter in the filter set being used
to observe the object. The fluxes can then be matched to
the observed fluxes of different objects using a χ2 minimisa-
tion to output the best-fit redshift and type of the galaxy.
Popular photo-z codes that use this method include HyperZ
(Bolzonella et al. 2000), BPZ (Beńıtez 2000) and many oth-
ers.

Empirical methods on the other hand rely on the avail-
ability of a suitably representative training set that can be
used to determine the functional relation

z = z(m, w) (1)

where the redshift is some function of the magnitudes, m,
and some weights, w.

Once the redshift is known as a function of the mag-
nitude, this relation can be applied to a data set where
only the magnitude is known in order to determine the red-
shift. Examples of this method include polynomial fitting
(Connolly et al. 1995), nearest neighbours (Csabai et al.
2003) and artificial neural networks (Collister & Lahav
2004) among others.

Artificial Neural Networks have been shown to pro-
duce competitive results compared to other training set
methods (Firth et al. 2003) and we use the code ANNz
(Collister & Lahav 2004) to calculate photometric redshifts
in all the work that is described in this paper. The neural
network is made up of several layers, each consisting of a
number of nodes. The first layer receives the galaxy magni-
tudes in different filters as inputs and the last layer outputs
the estimated photometric redshift. All nodes in the hid-
den layers in between are interconnected and connections
between nodes i and j have an associated weight, wij .

ANNz, like all other empirical methods, requires a train-
ing set that is used to minimise the cost function, E (Eq. 2)
with respect to the free parameters wij .

E =
X

k

(zphot(wij , mk) − ztrain,k)2 (2)

The neural network setup is illustrated in Figure 2. If
the data is noisy, a validation set may be used in addition
to the training set to prevent over-fitting. During the initial
setup, one has to specify the architecture of the neural net-
work - the number of hidden layers and nodes in each hidden
layer. We choose this to be N:2N:2N:1 throughout this work
unless otherwise mentioned, where N is the number of filters
used for photometry.

The neural network code produces an estimate of the
error associated with each photometric redshift estimate in
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Figure 1. The distributions characterising our simulated catalogues for the DES and DES+VHS samples. The left-hand panel shows
the redshift distribution for ∼ 30000 galaxies in the DES5yr and JPLCAT simulations. All galaxies have 20 < i < 24 and 0 < z < 2. The
right-hand panel shows the distribution of galaxies as a function of the extinction parameter Av for the JPLCAT sample.

Figure 2. Schematic diagram of neural network as implemented
by ANNz from Collister & Lahav (2004). The input layer consists
of nodes that take magnitudes in the different filters used for
photometry. A single hidden layer consisting of p nodes is shown
here although more hidden layers could be used. The output layer
has a single node that gives the photometric redshift. Once again
further nodes for more outputs such as spectral type could be
added to this layer. Each connecting line between nodes carries a
weight, wij . The bias node allows for an additive constant when
optimising weights.

addition to the photo-z estimate. This error depends on the
noise on the neural network inputs and not on the difference
between the spectroscopic and photometric redshifts. The
variance that this noise on the input would introduce into
the output of the network is given by a simple chain rule
expression as follows:

δz
2 =

X

i

„

∂z

∂mi

«2

δ2

mi
(3)

where the sum i is a sum over all the network inputs. The
derivative ∂z

∂mi
is obtained using the formalism described in

No. Filters Exposure Time 10σ magnitude limits

1 DES g 400s 24.6
DES r 400s 24.1
DES i 1200s 24.3
DES z 1600s 23.9

2 DES griz As in 1 As in 1

DES Y 400s 21.6

3 DES griz As in 1 As in 1
VHS J 120s 20.4
VHS H 120s 20.0
VHS Ks 120s 19.0

4 DES griz As in 1 As in 1
DES Y As in 2 As in 2

VHS JHKs As in 3 As in 3

5 DES griz As in 1 As in 1
DES Y As in 2 As in 2
VHS J 240s 21.2
VHS H 240s 20.8
VHS Ks 240s 20.2

Table 2. Summary of filter configurations of DES and VHS con-

sidered in §6.1.

Bishop (1995). This algorithm is fully implemented within
ANNz (Collister & Lahav 2004).

6 PHOTOMETRIC REDSHIFT ANALYSIS

6.1 Choice of Filters

In this section we look at the impact of different filter com-
binations and survey depths on the photometric redshift
estimate. We do this by running the neural network code
described in §5 on the DES5yr sample described in §4.

ANNz was run on the mock data for five different filter
configurations. These are summarised in Table 2.

We computed photometric redshifts for each of these
cases and from the available true redshifts, computed the
scatter on the photo-z estimate. The scatter is the rms pho-
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Figure 3. Scatter plots of photometric redshifts as a function of the true redshifts for each of the different survey configurations detailed
in §6.1 These plots are generated for a sample of 5000 galaxies.
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Figure 4. The 1σ scatter on the photometric redshift as a func-
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tions detailed in Table 2. Curves are labelled 1 to 5 corresponding
to the numbers in Table 2.

tometric redshift error around the mean and is defined in
the following way:

σz =
˙

(zspec − zphot)
2
¸

1

2 (4)

where the scatter is evaluated in a redshift bin between z1

and z2.
Figure 3 and Figure 4 show the results of this study.

We can see that inclusion of the NIR filters leads to an
improvement in σz by a factor of ∼ 2 for z > 1. In-
creasing the exposure time in the NIR also leads to im-
proved scatter on the photometric redshift. The scatter
is high at low redshifts due to lack of u-band imaging.
These results are consistent with those of Abdalla et al.
(2007),The Dark Energy Survey Collaboration (2005) and
Oyaizu et al. (2006).

6.2 Impact of Galactic Reddening

In this section, we look at the impact of reddening on the
photometric redshift estimate. We have already discussed
how the DES5yr and JPLCAT samples differ in their inclu-
sion of reddening in the galaxy samples. In order to assess
how this difference affects the photo-z estimate, we run our
neural network code on the JPLCAT sample with 5-band
DES optical photometry as well as 8-band DES+VHS pho-
tometry with an exposure time of 120s in the NIR. The
results are shown in Figure 5 where we plot the 1σ scatter
defined in Eq. 4 as a function of the spectroscopic redshift
for both the DES5yr and JPLCAT samples for each of the
two filter configurations. Note that before comparing the two
catalogues, the JPLCAT sample has been cut to have the
same magnitude and redshift limits as the DES5yr sample
i.e. 0 < z < 2 and 20 < i < 24.

Although the same improvement is noted with inclusion
of the NIR filters as discussed in §6.1, we find that the effects
of reddening worsen the photo-z scatter overall by ∼ 30% in
some regions. This can be explained by the fact that there
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Figure 5. The 1σ scatter on the photometric redshift for DES
with and without VHS NIR data for two different mock cata-
logues. The black lines are produced by DES5yr catalogues that
do not include the effects of reddening. The red lines are pro-
duced by the JPLCAT mocks which include the effect of redden-
ing. The solid lines show the scatter without VHS NIR data while
the dashed lines include VHS NIR data. For both sets of mocks,
the VHS NIR data improves the photo-z scatter by a factor of ∼2
at z> 1 In regions of interest, the photoz scatter is worsened by
∼30% when we include reddening in our mocks.

exists a degeneracy between redshift and galaxy reddening
which means that faint reddened galaxies at low redshift
can often appear to have the same colours as brighter galax-
ies at high redshift with no reddening (Abdalla et al. 2007).
However Figure 12 of Abdalla et al. (2007) shows that this
degeneracy is broken in the redshift range 1.1 < z < 1.5
and we can see that the reddened DES only catalogues have
a similar scatter to their unreddened counterparts in this
redshift range. These authors have also shown that galaxies
with small values of Av have relatively good photo-z esti-
mates whereas those with high Av are scattered towards
higher photometric redshifts. Figure 1 shows that most of
the galaxies in our JPLCAT sample have relatively small
values of Av and therefore while we need to be aware that
any amount of dust extinction is likely to affect our photo-z
estimate, this effect should only be small for the DES sam-
ple.

In order to account for this effect of the dust extinction
on the photometric redshift estimate, some authors attempt
to include the dust extinction, Av as a free parameter in
their codes (e.g. Rowan-Robinson (2003); Bolzonella et al.
(2000)) and simultaneoulsy solve for this and the photomet-
ric redshift. We have modified our neural network code to
produce estimates for the Av and SED type of the galaxy
using the JPLCAT sample with 8-band DES+VHS photom-
etry. We use a 8:16:16:2 architecture for the neural network
and marginalise over the redshift estimate.

The results are shown in Figure 6 where we plot density
plots of the true Av against the predicted Av and the true
type against the predicted type.

We find the rms scatter around the mean of the Av

estimate to be 0.27 and the bias to be 0.0031. The predicted
Av is found to be biased towards lower values of Av for
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Figure 6. Density plot of the ANNz output when the neural network code is used to simultaneously predict the Av and type of an
object. The left-hand plot shows the predicted dust extinction, Av as a function of the true Av. The right-hand plot shows the predicted
SED type of each galaxy as a function of the true type. The plots are colour-coded and the scale is exponential; a colour difference of
one is equivalent to the density being decreased by a factor of e. The solid black lines show where the true Av and true type are equal
to the predicted Av and predicted type.

galaxies with a high degree of reddening and towards higher
values of Av for galaxies with a low value of reddening. We
also find the scatter on the type to be 7.7 and the bias to be
-0.0048. The JPLCAT sample has been generated using six
SED templates - E, Sbc, Scd, Im (Coleman et al. 1980) and
SB2, SB3 (Kinney et al. 1996) corresponding to types 0, 10,
20, 30, 40 and 50. As the error on the type is smaller than
the difference between these templates, we can effectively
use ANNz to classify our galaxies into 50/7.7 =∼ six or
seven spectral types within the context of DES.

Note that in this work, we have made no attempt to
optimise our neural network for the calculation of the Av and
type. We simply note that it is possible to use our neural
network code to produce estimates for these quantities as
well as the redshift and that this may be useful for samples
where we know there is a high degree of reddening.

Through the rest of this work, we have used the DES5yr
sample for all the analysis.

6.3 Clipped Catalogues

In the previous sections we have seen that catastrophic er-
rors in the photometric redshift estimate can arise depending
on the exact filter configuration and the galaxy formation
science encoded within mock catalogues. Given that there
are likely to be a host of different reasons why the photo-
metric redshift estimate may be prone to large errors, a lot
of which we do not fully understand, it seems sensible to
devise some way of clipping a sample by removing galax-
ies with large errors before using the photo-z estimate for
cosmological analysis. In most situations where photometric
redshift analysis is particularly powerful, we do not know the
spectroscopic redshift of the galaxies and therefore have no
way of using this information to assess whether the photo-z
estimate is accurate. However, the photo-z prediction will
depend strongly on the errors in the photometry and this
information could potentially be used to clip our sample
as in Abdalla et al. (2007). In order to assess the intrinsic

scatter in the photo-z estimate once the outliers have been
removed, a quantity called σ68 is often used. This is the in-
terval in which 68% of galaxies have the smallest difference
between their spectroscopic and photometric redshifts.

In this section, we extend the work of Abdalla et al.
(2007) and look at how the scatter on the photo-z esti-
mate varies with different clipping thresholds. Galaxies with
photo-z errors larger than the clipping threshold are re-
moved from the sample.

Figure 7 illustrates the results of this study. In this fig-
ure we also plot the fraction of galaxies that remain in the
sample once the clipping thresholds are applied. In each case,
we plot results using a 5-band DES optical grizY catalogue
as well as an 8-band DES+VHS optical and NIR catalogue.

As expected, applying smaller threshold errors at which
to cut our sample results in a fall in the 1σ scatter for the
entire sample. σ68 also decreases as we reduce the threshold
error although this decrease is less steep than the decrease
in σz. Both the scatter and σ68 are larger for the DES sam-
ple compared to the DES+VHS sample. We can see that
applying a fairly conservative cut of 0.1 to our mock sam-
ples results in a reduction in σz of a factor of ∼ 1.5 for both
the DES and DES+VHS samples. In both cases we retain
about 80% of our original sample after this cut.We can ap-
ply smaller threshold errors in order to reduce the scatter on
our photometric redshift estimate further. However, as we
do this, we lose more galaxies from our original sample and
at some point the number of galaxies remaining will prove
insufficient for statistical analysis. We examine this point in
more detail later in §7.1.

6.4 Impact of Training Sets

6.4.1 Effect on the Photo-z Scatter

All the photometric redshift analysis carried out in the pre-
vious sections assume that the training set used to train the
neural network is totally representative of the testing set.
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Figure 7. The left hand plot shows the scatter, σz , and σ68 as a function of the clipping threshold. The right-hand plot shows the
fraction of galaxies remaining in the sample after the cuts are applied as a function of the clipping threshold. Galaxies with ANNz errors
above the clipping threshold are removed from our sample.

However in reality, this may not always be the case. In this
section, we look at the impact of using different training
sets with different imposed colour and magnitude cuts on
the photometric redshift estimate.

The Dark Energy Survey region overlaps with that of
several other current and future photometric and spectro-
scopic surveys thereby providing it with a fairly complete
sample of training set galaxies. Some of these are detailed in
Table 3. Here we consider two of the deeper surveys, namely
DEEP2 and VVDS-Deep and model our training sets on the
redshift distributions of these surveys before performing the
usual photometric redshift analysis. As the DES5yr sample
is magnitude limited as described in §4, we do not consider
the SDSS and 2dFGRS training sets as these objects are
brighter than the mocks considered.

DEEP2 is an ongoing spectroscopic survey being carried
out by the DEIMOS spectrograph on the Keck II telescope.
On completion, it will have obtained spectroscopic redshifts
for ∼ 54000 objects over an area of 3.5deg2. The survey has
been designed to sample the redshift range of 0.75 < z <
1.5 and the spectrograph is capable of obtaining moderately
high resolution spectra between 6300Å and 9100Å. Targets
are pre-selected using BRI imaging on the CFH12k camera
on the Canada-France-Hawaii Telescope with a magnitude
limit of RAB < 24.1 and the colour cuts detailed in Table 3
imposed in order to sample the redshift range of interest.

In this study, we use 4681 objects with spectra from
DEEP2 DR1 (Davis et al. 2003) to construct the normalised
redshift distribution for the DEEP2 survey. This is plotted
in Figure 8. As can be seen, there are very few objects with
redshifts less than ∼ 0.7 and greater than ∼ 1.4. This is
because the wavelength range for the spectrograph has been
chosen such that the strong [OII] doublet which has a rest-
frame wavelength of 3727Å lies outside these wavelengths for
all other redshifts. Note that we have not included data from
the Groth Survey Strip region in this study. This survey field
has no imposed colour cuts and therefore may be useful for
sampling the low-redshift range of DES.

The VVDS spectroscopic surveys are being carried out
using the VIMOS spectrograph on the Very Large Telescope

(VLT). There is a shallow survey out to IAB = 22.5 planned
in 5 fields and a deeper survey out to IAB = 24 in a single
field. Targets are pre-selected using magnitudes from the
imaging survey being carried out in the UBV RI bands using
the CFH12k camera on the CFHT.

The latest catalogue contains 8981 objects upto IAB =
24 in the redshift range 0 < z < 5.228 (Le Fèvre et al. 2005,
2004) and has been used to construct the normalised VVDS-
Deep redshift distribution plotted in Figure 8. We can see
that the DEEP2 sample has many more galaxies at inter-
mediate redshifts whereas the VVDS-Deep survey samples
the low and high redshift regimes better than DEEP2. Note
that for both the DEEP2 and VVDS-Deep samples, we have
removed stars and other objects with very low redshifts as
well as high-redshift objects with z > 2 before plotting the
redshift distributions so as to match the redshift range of
the DES5yr sample.

Having obtained the redshift distributions for both
DEEP2 and VVDS-Deep, we proceed to construct accurate
training sets that simulate these surveys to be used when
running our neural network code. This is done as follows. We
first seperate our DES5yr sample of 1 million objects into
two equal sized training and testing sets. We then divide the
training set into 20 redshift bins and from the DEEP2 and
VVDS-Deep redshift distributions, calculate Ni, the number
of galaxies from these surveys that would be present in each
redshift bin, i once the survey is complete and has obtained
spectra for the number of objects given in Table 3. We then
randomly choose Ni galaxies from the DES5yr training set
to be put into redshift bin i and in this way we construct a
new training set of galaxies that have the same redshift dis-
tribution as our real spectroscopic surveys. The new training
sets are then split further in order to create validation sets
for ANNz to run on. This is done for a DES catalogue with
optical grizY photometry as well as a DES+VHS catalogue
with 8-band optical and NIR JHKs photometry.

We then run our neural network code on the two DES
catalogues using three different training sets each time - a
training set with a DES redshift distribution, one with a
DEEP2 redshift distribution and one with a VVDS-Deep
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REDSHIFT SURVEY SELECTION CRITERIA NO.OF REDSHIFTS

SDSS Stripe 82 r < 20 70000
2dFGRS bJ < 19.45 90000
VVDS Shallow IAB < 22.5 ∼ 26000
VVDS Deep IAB < 24 ∼ 60000
DEEP2 (B − R) < 0.4 ∼ 54000

(R − I) > 1.25
(B − R) < 2.35(R − I) − 0.54

Table 3. Summary of some of the spectroscopic surveys that will provide useful training sets for DES along with their imposed colour
and magnitude cuts and the number of redshifts they are expected to obtain on completion.
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Figure 8. The normalised redshift distributions for DES, VVDS-
Deep and DEEP2 surveys between 0 < z < 2. As can be seen,
the DEEP2 colour cuts mean that most objects lie in the redshift
range 0.7 < z < 1.4. VVDS-Deep on the other hand effectively
samples the entire DES redshift range although it has fewer galax-
ies at intermediate redshifts.

redshift distribution. The results are shown in Figure 9
where we plot the scatter on the photometric redshift as
a function of the spectroscopic redshift for all these cases.

At low redshifts, the scatter is large for all three train-
ing sets due to lack of u-band data. At intermediate redshifts
of 0.75 < z < 1.4, the DEEP2 sample does better than the
other training sets by ∼ 40% as all its galaxies are concen-
trated in this region. As we move to even higher redshifts,
the DEEP2 sample gives very poor results due to a lack of
training set galaxies in this redshift range whereas the DES
and VVDS-Deep samples perform better. For 1.4 < z < 2,
the DEEP2 scatter is worse by a factor of ∼2 compared to
the VVDS-Deep and DES training sets. As expected, the
scatter is smaller overall when we include NIR photometry
for all three training set scenarios. The improvement is par-
ticularly noteworthy in the high redshift regime. Here, the
scatter is reduced more for the VVDS-Deep and DES train-
ing sets with the addition of the NIR and not as much for
the DEEP2 training set.

We can therefore clearly see that using a combination
of DEEP2 and VVDS-Deep data to calibrate our DES pho-
tometric redshifts, is already as good as having a complete
training set for DES.

Number of Galaxies Colour Cuts

SET1 50000 None
SET2 50000 Same as DEEP2
SET3 70000 None
SET4 200000 None
SETa 250000 None

SETb 250000 None
SETc 102643 Same as DEEP2
SETd 102589 Same as DEEP2
SETe 500000 None

Table 4. Summary of training and testing sets used to quantify
differences in estimates of the photometric redshift bias.

6.4.2 Effect on the Photo-z Bias

The bias on the photometric redshift estimate, bz, is given
by:

bz = 〈zspec − zphot〉 (5)

This bias can arise from various sources. The perfor-
mance of the neural network will introduce some difference
between the photometric and spectroscopic redshifts. Fur-
thermore, having an incomplete training set or a cosmic
variance limited sample also leads to biases in the photo-
metric redshift estimate. In this section, we quantify the
systematic errors in the bias that arise from using different
training and testing sets. In particular we look at the effects
of size and incompleteness of both the training and testing
sets on this bias. All the analysis carried out here is for the
DES+VHS dataset and we model the incomplete training
sets by imposing the DEEP2 colour cuts detailed in Table 3
on galaxies from the DES5yr catalogue.

The standard deviation on the bias in each bin can be
defined as follows assuming Poisson statistics:

rms(z̄) =
σz√
Ns

(6)

where σz is the 1σ scatter on the photometric redshift given
by Eq. 4 and Ns is the number of spectroscopic training set
galaxies. Throughout this work, we have assumed that this
is the only systematic error on the bias and therefore given
a suitable number of training set galaxies we can reduce this
systematic to almost zero. In this section, we look at some
of the other sources of systematic errors in the bias. In order
to do so, we study the samples detailed in Table 4.

We first quantify the difference in the bias when using
different numbers of training set galaxies to calculate photo-
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Figure 9. The scatter on the photometric redshift as a function of the spectroscopic redshift when the DES, DEEP2 and VVDS-Deep
redshift distributions are used to construct the training set used by the neural network. The left-hand plot shows the scatter for a
catalogue with optical grizY photometry and the right-hand panel shows the scatter for a catalogue with 8-band optical and NIR JHKs

photometry. The scatter is big at low redshifts for all three training sets due to a lack of u-band photometry. At intermediate redshifts,
the DEEP2 sample performs best as all its galaxies are concentrated in this redshift range. Both the DES and VVDS-Deep training sets
produce considerably less scatter than the DEEP2 training set at high redshifts.

metric redshifts for the same sample of testing set galaxies.
Note that the differences in the bias calculated here are used
as empirical estimators of the systematic shift one would get
when dealing with data. SET3 and SET4 are used as training
sets to calculate photometric redshifts for SETe. All three
samples are complete and have no imposed colour cuts. In
Figure 10 we plot the biases obtained for each of the two
cases and the difference between these. This shows us that
changing the size of our training set by a factor of ∼ 3 leads
to a difference in the biases of the order of 10−3.

We proceed now to look at effects of incomplete train-
ing sets on the photometric redshift bias. To do this, we use
SET1 and SET2 as training sets to calculate the photometric
redshifts for samples SETa, SETb, SETc and SETd. SET1
is a complete training set while SET2 has been cut to reflect
the colour cuts of the DEEP2 survey. SETa and SETb are
both complete testing sets with different galaxies in them
from the DES5yr mock catalogue, while SETc is generated
by imposing the DEEP2 colour cuts on SETb and SETd by
imposing the DEEP2 colour cuts on SETa. The biases on
the photo-z estimate obtained for each of the different con-
figurations of training and testing sets, are shown in Figure
11. Note that throughout this analysis, we use bins of width
0.04 in redshift space.

From Figure 11 we can draw the following general con-
clusions. Changing the galaxies that are present in the test-
ing set when training with a complete and fully representa-
tive training set, leads to a change in the bias of the order
10−3. Using an incomplete training set on these samples
also leads to the same difference in the bias between them
(Figure 11 - right panel, broken line). When using an in-
complete training set such as that provided by the DEEP2
survey (SET2) on a testing set of galaxies with no imposed
colour cuts (SETa and SETb), the bias in the photometric

redshift is worsened as expected. However, if we impose the
same colour cuts as DEEP2 on our testing set (SETc), the
bias is improved by ∼20% for z < 0.7 and by ∼40% for
z > 1.4 - i.e. in the redshift ranges where the training set is
incomplete. The difference in the bias when using a testing
set with no colour cuts and one with imposed colour cuts to
match those of the incomplete training set, is of the order
of 5 × 10−3 and always smaller than 10−2 in the redshift
range of the incomplete training set - inset, left-hand panel
of Figure 11.

In §7.2, we will briefly comment on how the systematics
on the photometric redshift bias propagate into the system-
atics on the calculation of the dark energy equation of state
parameter, w.

7 IMPLICATIONS FOR COSMOLOGY

7.1 Optimal Estimation of the Galaxy Power
Spectrum

In this section, we look at the impact of photometric redshift
estimation on dark energy science. In particular, we concen-
trate on the measurement of dark energy using galaxy power
spectra and baryon acoustic oscillations.

The galaxy angular power spectrum is a measure of the
clustering in the galaxy population within time bins extend-
ing from the present to a time when the Universe was only
a third of its present age. Large-scale surveys like DES pro-
vide ideal data sets for studying the clustering properties
of galaxies and therefore the clustering properties of their
underlying dark matter distribution and hence are useful
probes for mapping how the dark matter distribution evolves
with time. Furthermore, many other characteristic features
appear in the power spectrum which provide standard rulers
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Figure 10. The bias on the photometric redshift estimate when using a training set of 70000 galaxies (SET3) and when using a training
set of 200000 different galaxies (SET4) on the same testing set. The right hand panel plots the difference between the two biases. We
can see that increasing the number of training set galaxies by a factor of ∼ 3 leads to a change in the bias of the order of 10−3.
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Figure 11. The left-hand panel shows the biases on the photometric redshift estimate when using each of the different configurations
of training and testing sets detailed in Table 4. In the right-hand panel, we plot the difference in the bias when using two different sets
of DES5yr galaxies with an incomplete training set (broken line), two different sets of DEEP2 galaxies with an incomplete training set
(green solid line) and the difference in the bias when using a complete testing set and a testing set with the same colour cuts as the
incomplete training set (black solid line).

that can be used to determine the angular diameter distance,
DA, as a function of redshift. Baryon acoustic oscillations are
one such feature of interest which appear as wiggles on the
power spectrum. The position of the peaks and troughs of
these wiggles in Fourier space can be used to determine a set
of cosmological parameters e.g. Blake & Glazebrook (2003)
and Seo & Eisenstein (2003).

The accuracy with which we can measure this typical
acoustic scale is proportional to the average fractional error
in the power spectrum, δP/P . The fractional error on the

power spectrum arises from two sources. Firstly, the num-
ber of independant spatial modes that we can measure in a
given volume is finite and this will lead to errors in the power
spectrum that are proportional to 1/

√
V . This is known as

cosmic variance. Secondly, there is a contribution from shot
noise due to imperfect sampling of the fluctuations as we
only have a finite number of tracers of these fluctuations
within a given volume. If we assume a density field that fol-
lows Gaussian statistics, we can follow Feldman et al. (1994)
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and assume the error on the power spectrum measurement,
P is weighted in the following way:

δP

P
∝ 1√

V

„

1 +
1

nP

«

(7)

where n is the mean number density in a given volume as
seen by an observer and can be written in terms of the galaxy
redshift distribution as follows:

dN

dz
= fsky

dV

dz
n(z) (8)

where fsky is the fraction of the sky covered by the survey
and dV/dz is the comoving volume element.

The first term in Eq. 7 denotes the effect of cosmic
variance while the second term is the contribution from shot
noise. In order to minimise the error on the power spectrum,
one has to design a survey with maximum volume provided
there are enough sources within this volume for the shot
noise contribution to be minimal. If nP > 3 the power spec-
trum is well estimated and there is no significant advantage
to be gained with more galaxies (Seo & Eisenstein 2003).
In this work, we assume that to obtain a reasonable esti-
mate of the power spectrum we need to satisfy the condition,
nP & 1. Taking into account the galaxy bias, b that scales
the galaxy power spectrum to the matter power spectrum,
and including the scaling of the matter power spectrum with
redshift as a linear growth factor, D(z) we get the following
expression for nPgal:

n(z)Pgal(k∗) = n(z)b2(z)D2(z)P (k∗) (9)

We have used the formalism for the transfer function
set out in Eisenstein & Hu (1998) to calculate our power
spectrum at k∗ = 0.1hMpc−1 as this is well within the linear
regime of the power spectrum. At larger values of k, non-
linearities due to clustering and other structure formation
start to dominate and make it harder to detect the BAO
signal.

We assume a survey with 0 < z < 2 and fsky = 0.119.
The bias is assumed to be 1.2 1. In Figure 12, we plot nPgal

as a function of the redshift. This is done for the entire
catalogue and for clipped catalogues with different clipping
thresholds. We perform the same analysis for optical only
DES data as well as optical and NIR data from DES+VHS.
The results are summarised in Table 5 and Figure 12.

From these results we can see that applying a thresh-
old error at which to cut our photometric redshift catalogue
proves effective in removing outliers from our sample before
performing any kind of cosmological analysis on it. For the
DES catalogue of redshifts obtained using grizY photome-
try, we can remove all galaxies with a threshold error of more
than ∼ 0.03 in order to obtain an accurate measurement of
the galaxy power spectrum out to a redshift of 1. This leaves
us with only 10% of our original sample but this sample has
a scatter on its photometric redshift that is a factor of ∼ 2.7

1 While we are aware of the dependance of our results on this
bias, it is difficult at this point to make an educated guess of what
b will be for DES galaxies. We have therefore used a reasonable
scale independant bias in our calculations.

times better than that of the original sample and is therefore
more effective in constraining the cosmology. For the DES
+ VHS catalogue, a threshold error of 0.025 can be applied
to effectively constrain the galaxy power spectrum to red-
shift 1. This leaves us with only 3% of our original sample,
but the overall scatter on the photometric redshift has been
reduced by a factor of ∼ 2.75. This is equivalent to perform-
ing an LRG selection on our survey as these galaxies have
more accurate large-scale structure signals and more accu-
rate photometric redshifts due to the prominence of their
4000Å break (Blake et al. 2007; Padmanabhan et al. 2005).

In order to provide a reasonable measurement of the
galaxy power spectrum for the entire DES redshift range of
0 < z < 2, we can apply a threshold error cut of > 0.1 to
the DES only sample and use most of the galaxies in our
analysis. When we add NIR photometry from VHS to our
sample, a less conservative clipping cut of 0.05 can be applied
and only 37% of the galaxies used to reduce the scatter on
the photometric redshift by a factor of ∼ 2. Note that σ68 is
also reduced in these cases although not to the same extent
as the reduction in σ. A reduction in σ68 corresponds to a
reduction in the intrinsic scatter of our sample minus the
outliers.

By clipping our catalogues in this way before perform-
ing any kind of cosmological analysis on them, we have ef-
fectively managed to reduce the errors in our measurement
of the galaxy power spectrum without compromising on
the precision with which this measurement has been made.
Adding NIR data from VHS to our DES photometry has also
allowed us to clip our catalogues more effectively and there-
fore make more precise measurements of the galaxy power
spectrum out to higher redshifts.

We now follow Blake et al. (2006) and Blake & Bridle
(2005) and take into account the photometric redshift er-
rors explicitly in our galaxy power spectrum analysis. These
authors have shown that the fractional error on the galaxy
power spectrum is related to the photometric redshift error
as follows:

δP

P
∝ √

σr (10)

where σr is the rms error in comoving coordinates in units
of h−1Mpc. We can relate this to the redshift error already
introduced in §4 as follows:

σr = σz
c

H(z)
=

σzc

H0

p

(Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ)
(11)

As we can see, decreasing the threshold error at which to
limit the sample reduces the scatter on the photometric red-
shift leading to smaller fractional errors on the power spec-
trum but it also reduces nP , thereby increasing the shot-
noise contribution to the error in the power spectrum due
to a lack of sufficient galaxies in the sample. Clearly, there
is a threshold error that needs to be determined and this is
what we proceed to do next.

We calculate the fractional error in the power spectrum
as given by Eq. 12 for different values of the clipping thresh-
old. This is done for an optical DES sample as well as an
optical and NIR DES+VHS sample. We assume a DES sur-
vey volume, V of 23.7h−3Gpc3.
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DES grizY photometry

Threshold Error Redshift Range for nP & 1 σ σ68 Fraction of Galaxies Remaining

None 0 < z < 2 0.128 0.08 1
0.100 0 < z < 1.7 0.084 0.065 0.79
0.050 0 < z < 1.3 0.058 0.052 0.38
0.040 0 < z < 1.1 0.055 0.047 0.24
0.030 0 < z < 1.05 0.048 0.044 0.095
0.025 0 < z < 0.95 0.047 0.043 0.035
0.020 0 < z < 0.8 0.047 0.045 0.007

DES grizY + VHS JHKs photometry

Threshold Error Redshift Range for nP & 1 σ σ68 Fraction of Galaxies Remaining

None 0 < z < 2 0.11 0.074 1
0.100 0 < z < 1.9 0.074 0.062 0.80
0.050 0 < z < 1.4 0.054 0.048 0.37
0.040 0 < z < 1.3 0.049 0.043 0.22
0.030 0 < z < 1.1 0.043 0.039 0.09
0.025 0 < z < 1.0 0.041 0.037 0.03
0.020 0 < z < 0.65 0.041 0.037 0.005

Table 5. Summary of the redshift ranges over which we can obtain optimal measurements of the power spectrum for different clipping
threshold errors and the corresponding values of σ, σ68 and the fraction of galaxies remaining in our sample for each of these cases. The
top table is for DES grizY photometry and the bottom table for DES+VHS JHKs photometry.
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Figure 12. nP as a function of the redshift for different levels of clipping. The left-hand plot is generated using DES grizY photometry
only whereas the right-hand plot is produced from a catalogue with 8-band DES+VHS photometry. For the same clipping threshold
error, the DES+VHS power spectrum is greater than 1 over a larger redshift range compared to the DES only case. This means that we
can obtain an optimal measurement of the power spectrum out to higher redshifts if we use the full 8-band DES + VHS photometry.
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The results are shown in Figure 13 and Table 6 where we
plot the fractional error in the power spectrum for different
levels of clipping divided by the fractional error in the power
spectrum obtained using the entire sample. We only do this
for clipping thresholds greater than or equal to 0.03 as below
this, shot noise is dominant across the entire redshift range.
If the plotted quantity is less than one for a given clipping

threshold, cutting the sample using this threshold improves
our constraints on the galaxy power spectrum.

From these results we can clearly see that there exists
a trade-off between the shot-noise contribution to the error
on the power spectrum and the contribution from cosmic
variance. At high values of the threshold error, most of the
galaxies in the sample are used for analysis and shot-noise is
not a problem. However, the scatter on the photometric red-
shift is large leading to larger errors in the power spectrum
measurement. At very low values of the threshold error, the
photo-z scatter is reduced but there are too few galaxies in
the sample and shot noise begins to dominate. There is an
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Figure 13. δP/P for different levels of clipping divided by δP/P for no clipping as a function of the redshift. The left-hand plot
is generated using DES grizY photometry only whereas the right-hand plot is produced from a catalogue with 8-band DES+VHS
photometry. At small threshold errors, the power spectrum measurement is shot-noise dominated whereas at large threshold errors, large
photo-z errors result in large positional uncertainties.

DES grizY photometry

Redshift Range Optimum Clipping Threshold Fraction of galaxies used Improvement in δP/P

0 < z < 0.1 0.025 4% 75%
0.1 < z < 0.9 0.03 10% 20-30%
0.9 < z < 1.0 0.04 24% 35%
1.0 < z < 1.2 0.05 38% 10-15%
1.2 < z < 1.4 0.1 79% 4%
1.4 < z < 2 None 100% None

DES grizY + VHS JHKs photometry

Redshift Range Optimum Clipping Threshold Fraction of galaxies used Improvement in δP/P

0 < z < 1 0.03 8% 30%
1 < z < 1.3 0.05 37% 10-15%
1.3 < z < 2 0.1 80% 15-20%

Table 6. Summary of the optimum threshold error to be applied in different redshift ranges in order to minimise the fractional error on
the power spectrum. The top table is for DES grizY photometry and the bottom table for DES+VHS JHKs photometry.

optimum value of the threshold error at which the fractional
errors in the power spectrum are at a minimum. This value
is different for different redshift ranges as well as for the two
different catalogues.

When we add the VHS NIR data to the DES optical cat-
alogue, we can apply a smaller clipping threshold out to the
same redshift range compared to the DES only case in order
to minimise the error in the power spectrum. This means
we remove more outliers from the DES+VHS catalogue and
thereby reduce our photometric redshift errors without com-
promising on the precision with which we can do cosmology.
Also, we can see that using the DES only catalogue, we are
unable to clip in the highest redshift bin of 1.4 < z < 2 as
this increases the shot noise errors in our power spectrum.
However, if we add the VHS NIR photometry, we can re-
move ∼20% of our galaxies in this bin and produce a power

spectrum that is 15-20% more accurate than that obtained
using all the galaxies.

We can conclude that in the absence of large
spectroscopic surveys like the proposed WFMOS survey
(Bassett et al. 2005), photometric surveys could prove com-
petitive in constraining dark energy through galaxy power
spectrum measurements if the outliers were effectively re-
moved.

It is worth noting though that when applying this clip-
ping procedure to a real survey, one would choose the opti-
mal clipping threshold based on the training sets available
and not from simulations.



Photo-z from DES and VISTA VHS 15

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Spectroscopic Redshift

∆
 w

Different Size DES Training Sets
Different DES Testing Sets
Incomplete vs Complete Testing Sets
Different DEEP2 Testing Sets

0.5 1 1.5 2
−0.05

0

0.05

Figure 14. The error in w as a function of redshift due to the
photometric redshift bias.

7.2 Effect of Photometric Redshift Bias on Dark
Energy Equation of State

In this section we look at the effect of the photometric red-
shift bias on the dark energy equation of state parameter,
w. We have already seen in §6.4.2 that systematic errors in
the photometric redshift bias can arise when we use different
numbers of galaxies in our training and testing sets and also
when one or both of these samples is in some way incom-
plete. We can translate the errors in the bias given by the
right hand panels of Figure 10 and Figure 11 into an error on
the the value of w calculated using baryon acoustic oscilla-
tions as a probe. The position of the BAO peaks can be used
to find the angular diameter distance, DA which in turn tells
us about the expansion history of the Universe and hence
w. If there is a systematic uncertainty on the photometric
redshift bias, ∆b, this can be related to the uncertainty in w
using the angular diameter distance, in the following way:

∆w =
∂DA

∂z

∂w

∂DA

∆b (13)

By assuming that ∆b is given by the difference curves
plotted in the right hand panels of Figure 10 and Figure
11, we can find ∆w for each of the cases investigated in
§6.4.2. This is shown in Figure 14. Note that throughout
this calculation we keep all other cosmological parameters
contant and use a standard cosmology with Ωm=0.3,ΩΛ=0.7
and h=0.7.

For interest, we also plot the product of the two deriva-
tives in Eq. 13 for four different cosmologies in Figure 15
as this is what links the error in the photometric redshift
to the error on w. We assume a flat universe and change
Ωm in order to get four different cosmologies with different
amounts of matter and dark energy.

We can see that using different size training sets or dif-
ferent testing sets leads to an error in w at a given redshift
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∂DA
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∂DA
for four different cosmologies with Ωm =

0.1, Ωm = 0.3, Ωm = 0.5 and Ωm = 0.9. All models assume a flat
universe.

2 that is of the order of 0.01 for z > 0.5. The error in w is of
the order of 0.08 for 0.5 < z < 1 and z > 1.5 when we use an
incomplete testing set with an incomplete training set as op-
posed to a complete testing set with an incomplete training
set. The error is smaller - around 0.01 in the redshift range
1 < z < 1.5. The error in all cases is very large at z < 0.5.
As using different training and testing sets is equivalent to
having a cosmic variance limited sample, we conclude that
systematics on the photo-z bias due to cosmic variance do
not hinder the calibration of w to a percent level. However,
the black solid line of Figure 14 shows us that using an in-
complete training set to calibrate photometric redshifts for
DES would lead to large uncertainties in w unless the sam-
ple being tested was cut to match the training set. These
results are relatively insensitive to the clipping procedure
introduced in § 6.3 and therefore have been carried out in
all cases for the umclipped catalogues of galaxies.

Although this is a rough calculation, it gives us a feel for
the uncertainties in calculating the dark energy equation of
state that can arise due to the differences in the photometric
redshift bias. In order to get the exact uncertainty on w due
to uncertainties in the photometric redshift, one would have
to conduct a full Fisher matrix analysis applied to baryon
acoustic oscillations such as that done by Ma et al. (2006)
for weak lensing. This involves translating the error on the
bias and scatter in the photometric redshift to an error on
w by marginalising over all other cosmological parameters.

From this work, we can conclude that although we can
use neural networks reasonably successfully to obtain photo-
metric redshifts by extrapolating from an incomplete train-
ing set, if this is done with a survey such as DES it will
create systematic errors on w of the order of ∼10%. The

2 This does not correspond to the error one would get from fitting
a constant w but rather the error of measuring w at that given
redshift.
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possibility of using a template-fitting method to calculate
photometric redshifts in regions where the training set is
incomplete should be further investigated.

8 CONCLUSIONS

In this work we have shown the role of near infra-red pho-
tometry from the VISTA Hemisphere Survey in constrain-
ing photometric redshifts for the Dark Energy Survey. We
find that including the NIR data reduces the scatter on the
photometric redshift at z > 1. We have also examined the
effects of galaxy reddening and training sets on the photo-z
estimate. We find that a reddened galaxy catalogue pro-
duces photo-z estimates that are worse in some regions than
those produced by an unreddened catalogue. We ascribe this
to the degeneracy between redshift and reddening that ex-
ists in some redshift ranges. We also find that the ongo-
ing DEEP2 and VVDS-Deep spectroscopic surveys, when
combined, could provide effective training sets for DES and
could be used to calibrate photometric redshifts across the
entire redshift range of interest. We have also examined the
biases in the photometric redshift estimate when using train-
ing and testing sets with different sizes and levels of com-
pleteness and quantified the error in the dark energy equa-
tion of state parameter, w that arises from differences in
these biases.

A method of clipping our galaxy catalogues by remov-
ing outliers based on the ANNz error estimate on the photo-
metric redshift has been presented. By applying a threshold
error to our catalogues and rejecting all objects with errors
bigger than this threshold error, we can effectively reduce
the overall scatter on the photometric redshifts of our sam-
ple.

Finally, we have conducted a full galaxy power spec-
trum analysis using our DES and DES+VHS catalogues and
looked at how our clipping method can improve the uncer-
tainties on our galaxy power spectrum measurements. We
find that there is an optimum threshold error at which we
should clip our catalogues. If we use a high value for the
threshold error, the scatter on our photometric redshift es-
timate is high leading to large positional uncertainties and
therefore large errors in the power spectrum due to cos-
mic variance. However, if we adopt a very low value for our
threshold error, we remove most of the galaxies from our
sample before calculating the power spectrum and the re-
sulting uncertainties in the power spectrum are dominated
by shot noise. We find that the optimum threshold error
is smaller for the DES+VHS catalogues compared to the
DES only catalogues in the same redshift range and hence
more outliers are removed from this sample before analy-
sis. Adding the VHS NIR data thus helps us to compute
the galaxy power spectrum more accurately out to higher
redshifts than for the DES only case.

In summary, our main conclusions are:

• NIR data from VISTA VHS helps to reduce the scatter
on DES photometric redshifts by a factor of ∼ 2 for z > 1.

• Reddening the galaxies can increase the photo-z scatter
of DES by ∼ 30% in some redshift ranges. However, this
is unlikely to be a major issue as most of our mock DES
galaxies do not suffer from heavy extinction.

• ANNz can be used to predict the Av of DES galaxies
to an accuracy of 0.27 and to classify them into six spectral
types - E, Sbc, Scd, Im, SB2 and SB3.

• The VVDS-Deep and DEEP2 spectroscopic surveys,
when finished will provide a very complete training set for
DES out to a redshift of 2.

• Using different numbers of training set galaxies can lead
to a difference in the photometric redshift bias of the order
of 10−3.

• If we have an incomplete training set, we can improve
the photometric redshift estimate by imposing the same
colour cuts on the testing set as are applied to the training
set. When this is done, the improvement in the photometric
redshift bias is of the order of 10% compared to if we used
a complete testing set with no imposed colour cuts.

• The clipping method introduced by Abdalla et al.
(2007) can be effectively applied to the DES+VHS sample
and applying a threshold error of 0.1 at which to cut our
sample, reduces the scatter on the photometric redshift by
∼50% by removing ∼ 20% of the galaxies.

• A clipping threshold of 0.1 is optimal for calculating the
DES power spectrum out to a redshift of 1.4. Applying this
clipping threshold reduces δP/P by ∼20%. When the VHS
NIR data is added to the DES sample, the optimal clipping
threshold in the same redshift range is 0.05 and this reduces
the fractional error in the power spectrum by ∼20-30%. In
order to calculate the power spectrum out to a redshift of
2, the addition of VHS NIR data is crucial. In this redshift
range, applying the optimal clipping threshold of 0.1 results
in an improvement in δP/P by ∼15-20%.

• Systematic errors on the photometric redshift bias aris-
ing from cosmic variance lead to uncertainties in the dark
energy equation of state parameter, w, of about a percent.

• However if we use an incomplete training set to deter-
mine photometric redshifts on a testing set that hasn’t been
cut to match the training set, the resulting uncertainties in
the photometric redshift bias can lead to errors in w of the
order of ∼10% if we keep all other cosmological parameters
as constant.

In the absence of large spectroscopic surveys, the DES
and VHS datasets, when combined, will prove extremely ef-
fective in constraining dark energy through large scale struc-
ture signals like baryon acoustic oscillations. By clipping
photometric redshift catalogues and carefully removing a
suitable number of outliers, one can achieve reasonably pre-
cise measurements of the galaxy power spectrum out to a
redshift of 2.
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Le Fèvre et al. 2004, A&A, 428, 1043
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