
DRAG AND DROP DISPLAY & BUILDER*

Timofei B. Bolshakov, Andrey D. Petrov, FNAL, Batavia, IL 60510, U.S.A.

Abstract
The Drag and Drop (DnD) Display & Builder is a

component-oriented system that allows users to create
visual representations of data received from data
acquisition systems. It is an upgrade of a Synoptic
Display mechanism used at Fermilab since 2002.
Components can be graphically arranged and logically
interconnected in the web-startable Project Builder.
Projects can be either lightweight AJAX- and SVG-based
web pages, or they can be started as Java applications.
The new version was initiated as a response to discussions
between the LHC Controls Group and Fermilab.

OBJECTIVES
Synoptic Displays, first introduced at Fermilab in 2002,

were aimed to become the main presentation tool for
monitoring of accelerator parameters. The system had a
component-based design, an AJAX-based web
representation layer, and a convenient Project Builder. It
was an illusion that such a combination of modern
technologies would make the Synoptic Displays a “killer
application” in the ACNET–based control system at
Fermilab.

The reality, however, was different. Synoptic Displays
become the main presentation tool only in one (though
important) department, for the Cryogenic control system.
It also did not make its way out of Fermilab.

In Autumn 2006, a LAFS (“LHC at Fermilab Software)
collaboration was formed to participate in the design of
software for LHC. Besides helping CERN to with
software development and sharing out experience in
controlling the Fermilab collider complex, the group
members had an goal to learn new trends and ideas from
CERN. Also, we wanted to reassess our older projects for
future use in the Fermilab control system.

Synoptic Displays is one of these projects. It was
renamed into “Drag and Drop Builder” and was being
greatly refactored.

ARCHITECTURE
The Drag and Drop architecture consists of 4 parts:

● Project Builder,
● Repository of components and projects,
● Runtime Project Engine
● Web tier.

Our goal was to break this architecture into
independent parts, an base them on standard software
components as much as possible. As a result, some of

those pieces can now be used separately from DnD.

The low-level interfaces and the XML file formats were
also changed to accommodate new experience acquired
since 2002.

Project Builder
Project Builder is a client-side application dedicated to

create and modify DnD projects. It is a special-purpose
graphical editor that allows the users to define logical
flows of information from data sources to data consumers
through data handlers and pipes. The second function of
the builder is defining static visual components, such as
immutable lines, geometrical shapes, and texts.

In the older version, the Project Builder got
descriptions of atomic common-purpose components
from the Repository of Components. Projects were stored
either in the Project Repository or in local files.

Now, we eliminated the separate Repositories (as
described below), and the Project Builder was changed
accordingly.

Repositories
The old architecture of Synoptic Displays had two

repositories, Repository of Projects and Repository of
Components. Both of them were server-side processes. In
DnD, the Repository of Components is replaced by a jar
file containing all component libraries. The Repository of
Projects is replaced by CVS.

Runtime Project Engine
The Runtime Project Engine (RPE) is a central part of

the system. It downloads project files from a repository,
parses them, creates sets of data acquisition jobs, and
builds the resulting images. RPE may be started either
locally, or on the server side. In the first case, the result is
rendered on a canvas of the application; otherwise a web-
tier is used to represent the image on the client side in a
browser. Because of security precautions, the system
allows device settings only if RPE is started locally inside
a specific computer network.

WFD – Web Fixed Displays
The former Synoptic Display web-tier was refactored

into a general purpose Web Fixed Display. WFD may be
used independently, as a general purpose software tool. Its

Figure 1: DnD Architecture.

__

*Fermilab is operated by Fermi Research Alliance, LLC., under Contract
No. DE-AC02-07CH11359 with the U.S. Department of Energy.

FERMILAB-PUB-07-696-AD

Operated by Fermi Research Alliance, LLC
under contract No. DE-AC02-07CH11359
with the U.S. Dept. of Energy

goal is to represent any arbitrary Java AWT- or Swing-
based applications remotely in standard web browser.
Modern AJAX and SVG technologies are used to suffice
that goal. XMLHttpRequest and SVG implementation are
greatly available now – both of them are natively
supported by popular Firefox web browser.

IMPLEMENTATION

Components
DnD projects are built from components. Component is

a simple Java Interface extending Runnable.
So, each component can accept and produce

timestamped data and can communicate with other
components using BlockingQueues. Components can be
classified into several groups:

● Active Components – those actually accepting
and/or producing data

● Producers – interfaces to underlying control
system. Usually invisible.

● Pipes – data processing components, they read
data from one or several input queues and
writing them to one or several output queues.
Usually invisible.

● Presentation components – can represent
graphically data.

● Passive Components
● Immutable SVG elements
● “Self–contained” components, those

representing it's own data.
When underlying data acquisition system is changed

only one library should be reimplemented. Invisible
producers and pipes simplifies implementation. Legacy
components can be packaged as self-contained
components.

BlockingQueues are serving as links between
components, defining data flow in runtime.

Data format
XML has been chosen for projects and components

descriptions. XML provides a handy way to keep, convey,
and process complex ordered data; it is
platform-independent, open, and human readable. In
general, projects can be created and modified without
Project Builder: for instance, by using custom software

for project generation (and that was implemented and
used in Synoptic Display) , migration from another
system, or with a text editor. Thus, XML makes Runtime
Project Engine and Project Builder completely
independent.

Project Builder
Project Builder is a graphical editor designed to create

and edit DnD Projects.
Builder’s graphical user interface is based on Swing

classes. Virtually all operations which are usual for
graphical editors are supported. In addition, the Builder
provides editing of a component’s properties, operations
with inputs/outputs and logical links (future runtime
blocking queues).

Since static components are described as Scalable
Vector Graphics elements, a custom SVG rendering
module is implemented. This module supports a subset of
SVG elements and commands. The same module is used
by RPE to show the immutable lines, shapes and texts.

Refactoring of Project Builder was done to
accommodate new components description format and to
make possible to read components description from
component libraries jar files.

The default set of atomic components is loaded from
classpath of the builder at program startup and is
represented in the tree. Project Builder has a file browser
to load DnD projects from the server-side repository, and
to save them. In addition, projects can be stored in local
files.

Repository of Projects
Repository of Projects is server-side interfaces to CVS,

where project files are kept. Repository of components
was eliminated – all the necessary component
descriptions suppose to be kept in component library jar
files.

WFD – Web Fixed Displays
WFD is a Java web application. WAR file containing

complete version of WFD can be download from [3].
It includes several Java classes: ApplicationManager,

SVGServlet, SVGGraphics2D and several auxiliary
classes, couple JavaScript AJAX scripts and html files.

 WFD can work independently of DnD. In this mode at
the start of this web application ApplicationManager
(AM) read properties file and starts client applications
described there (with the complete class path). X Virtual
Frame Buffer (xvfd) is used on Linux machines or
application is started as “headless” on Windows based
servers to avoid unnecessary windows on the server
environment. AM creates and stores SVG representation
of every window created by client applications. AM keeps
about 30-60 latest SVG images in round-robin buffers.
SVG is created by painting client windows on
SVGGraphics2.

When user loads application web-page in browser
AJAX Javascript download latest SVG image through
SVGServlet and start to update browser picture requesting
differences between its current SVG image and latest
SVG image available in AM. Because SVG is an XML

Figure 2: RuntimeComponent interface

that difference is sent as XML, as text. That leads to small
network traffic.

CONCLUSION
At the current time refactoring of Synoptic Display is

still not completed, but WFD [3,4] is already finished.
Refactoring is planned to be finished in December 2007,
but that depends on CERN discussion about Drag and
Drop implementation details, that is going on around [5].

REFERENCES
[1] T.b Bolshakov, A. D. Petrov, S. Lackey, Synoptic

Display — A client-server system for graphical data
representation, ICALEPCS 2003, Gyenongju.

[2] Synoptic web-site http://synoptic.fnal.gov
[3] WFD web-site http://www-bd.fnal.gov/wfd
[4] T. B. Bolshakov, E. McCrory, J. Wozniak “Web Fixed

Display Requirements” – CERN, EDMS, LHC-C-
ES-0009

[5] T. B. Bolshakov , E. McCrory , A. D. Petrov , E.
Roux , J. Wozniak “The Drag and Drop Display and
Builder Requirements” – CERN, EDMS, LHC-C-ES-
0011

	Drag and Drop Display & Builder*
	Objectives
	Architecture
	Project Builder
	Repositories
	Runtime Project Engine
	WFD – Web Fixed Displays

	Implementation
	Components
	Data format
	Project Builder
	Repository of Projects
	WFD – Web Fixed Displays

	Conclusion
	References

