

Distributed Data Acquisition and Storage
Architecture for the SuperNova Acceleration

Probe
Alan Prosser, Guilherme Cardoso, John Chramowicz, John Marriner, Ryan Rivera, Marcos Turqueti

Abstract— The SuperNova Acceleration Probe (SNAP)

instrument is being designed to collect image and spectroscopic
data for the study of dark energy in the universe. In this paper,
we describe a distributed architecture for the data acquisition
system which interfaces to visible light and infrared imaging
detectors. The architecture includes the use of NAND flash
memory for the storage of exposures in a file system. Also
described is an FPGA-based lossless data compression algorithm
with a configurable pre-scaler based on a novel square root data
compression method to improve compression performance. The
required interactions of the distributed elements with an
instrument control unit will be described as well.

Index Terms—Data acquisition, data compression, distributed
memories, space vehicle electronics.

I. INTRODUCTION
HE SuperNova Acceleration Probe (SNAP) is a proposal
for a satellite observatory being prepared for the Joint

Dark Energy Mission (JDEM) [1]. The observatory design
features a 2 meter telescope with a field of view of
approximately 0.7 square degrees. A half-billion pixel
imaging camera consisting of visible light CCD and near-
infrared (NIR) detectors provides imaging capabilities from
the visible to the near infrared portions of the spectrum. The
CCD imager provides coverage for wavelengths from 0.35 μm
to 1.0 μm. The NIR imager is a HgCdTe detector providing
coverage for wavelengths from 0.9 μm to 1.7 μm. Also

Manuscript received 11 May, 2007; revised 17 October, 2007. This work

was supported by Fermi National Accelerator Laboratory operated by Fermi
Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the
United State Department of Energy.

Alan Prosser is with the Fermi National Accelerator Laboratory, PO Box
500 Batavia, IL 60510 (e-mail: aprosser@fnal.gov).

John Chramowicz is with the Fermi National Accelerator Laboratory, PO
Box 500 Batavia, IL 60510 (e-mail: chramowicz@fnal.gov).

John Marriner is with the Fermi National Accelerator Laboratory, PO Box
500 Batavia, IL 60510 (e-mail: marriner@fnal.gov).

Ryan Rivera is with the Fermi National Accelerator Laboratory, PO Box
500 Batavia, IL 60510 (e-mail: rrivera@fnal.gov).

Marcos Turqueti is with the Fermi National Accelerator Laboratory, PO
Box 500 Batavia, IL 60510 (e-mail: turqueti@fnal.gov).

Guilherme Cardoso was with the Fermi National Accelerator Laboratory,
PO Box 500 Batavia, IL 60510. He is currently with Aguila Technologies,
310 Via Vera Cruz, Suite 107, San Marcos, CA 92069 (e-mail:
bcardoso@aguilatech.com).

included are spectrometers to support the identification of
Type IA supernovae. The mission includes a supernova
survey and a weak-lensing survey.

The instrument is being designed as a distributed readout
and memory system with multiple partitions called slices.
Each slice consists of non-volatile memories to store multiple
exposures in a distributed file system. A total of 36 slices will
be dedicated to the CCD imaging array. Each CCD slice will
support (3510)2 pixels. An additional 36 slices will be
dedicated to the NIR imaging array. Each NIR slice will
support (2048)2 pixels. Data are to be collected for exposures
of 300 seconds each. During each exposure period, there will
be no transfer of data to or from the front end electronics.
After each exposure, a readout period of approximately 30
seconds will occur during which the data collected during the
exposure are transferred to the slices for compression and
storage. The compressed data for each exposure will be stored
in a standard packet format in NAND flash memories on the
slices. The activities of data readout, compression, and file
storage are coordinated by a master flight computer called the
Instrument Control Unit (ICU). Approximately once a day, the
files representing the exposures are extracted from the flash
memories and transmitted to a ground station.

II. DATA ACQUISITION SYSTEM ARCHITECTURE
Figure 1 illustrates the key elements in the data acquisition

system. The front end electronics modules include detector
readout ICs that control the delivery of image data from the
detector elements. The data delivered from these readout ICs
are sent over 25 Mbps links to a slice unit. Independent slices
are dedicated to independent detector elements. This
independence is required to eliminate the possibility of a
failure in one slice causing another slice to malfunction. CCD
channels will deliver data from four pixels as a group framed
by start, stop, and a single parity bit. The data word for each
pixel is 16 bits long with the 2 most significant bits
representing a scale factor. The pixels are interleaved meaning
that, following the start bit, 16 bits representing the first pixel
are transmitted, followed by 16 bits each for the second, third,
and fourth pixels. This group of pixels is followed by a single
parity bit computed using all of the 64 bits followed by a stop
bit. When the channel is inactive, the channel is held high.

T

FERMILAB-PUB-07-631-CD

mailto:aprosser@fnal.gov
mailto:chramowicz@fnal.gov
mailto:chramowicz@fnal.gov
mailto:chramowicz@fnal.gov
mailto:chramowicz@fnal.gov
mailto:bcardoso@aguilatech.com

Slice

Downlink
Control
Interface

ICU
Control

Interface

Data
Interface

With
Telemetry

System

LVDS Pairs

Slices

Front
End

Electronics

25 Mbps

25 Mbps

300 Mbps

Front
End

Fig. 1. DAQ System Architecture

25 Mbps

Control
Interface

With
ICU

NIR channels will deliver data on four separate connections

operating synchronously. The processing of NIR detector
pixels will be done in groups of four so that pixels are
compressed in blocks in which neighboring pixels are
compressed as a unit.

The slices and front end components are programmed and
controlled by the ICU. Each ASIC on the front end modules
and an FPGA on the slices are assigned a unique ASIC ID
code used to address the device to be programmed. Broadcast
write transmissions will be supported so that multiple targeted
ASICs may be commanded with the same command cycle.
Commands issued to a slice FPGA will be filtered from the
command stream so that they do not arrive at the ASICs of the
associated front end module.

The ICU issues commands and receives responses using a
controller interface that implements an SPI-like serial
protocol. The ICU interface controller is responsible for
decoding the slice channel address and routing the command
to the designated slice over a dedicated 25 Mbps link from the
controller. Responses from the slice will have the slice
channel address encoded in the bit stream returned to the ICU.

Figure 2 illustrates the major components of a slice.

SDRAM
(256 Mbit)

FPGA

File Downlink Data

ICU Control InterfaceFront End
Command

&
Response

Image
Data

25 Mbps

25 Mbps

25 Mbps

25 Mbps

Flash Memory Banks (4Gbit Total)

Fig. 2. Slice Hardware Architecture

At the heart of each slice is an FPGA which communicates

with the ICU via the ICU control interface. All
communications for the channel are processed by the slice
FPGA. The FPGA forwards only those commands issued to
front end module ASICs over a dedicated control interface to
the front end module. There is also a dedicated science data
interface over which the detector data are delivered to the slice
during front end readout operations. During the downlink
operations, the slice FPGA is commanded to extract stored
image files and transmit them to a downlink controller which
delivers the data for all slices to the spacecraft telemetry
system.
 The exposure files are stored in flash memory on the slice.
The flash memories are organized in two independent banks
(for a total of 4 Gbits) to prevent a failure on an I/O bus from
eliminating an entire slice channel. The location of file data in
the flash memory is coordinated with the ICU. The ICU can
maintain a file system in which the flash memory blocks used
to store the data for a given exposure is recorded.
 Slice channels which are serving NIR detector readout also
include a 256 Mbit Synchronous DRAM (SDRAM) to be used
as an intermediate storage device. Unlike the CCD detectors,
the NIR detectors can be read more than once per exposure so
that signal averaging can be applied to reduce the effects of
readout noise in the electronics. The SDRAM will be used to
hold sums of pixel data (one sum for each pixel) as multiple
readout cycles are processed for a single exposure. Then, after
a sufficient number of readout cycles have been accumulated,
the pixel data can be shifted to complete the averaging
process. The resulting pixel averages reside in the SDRAM.
Once the data have been processed in this manner, they can be
delivered to the data compression block in the FPGA. CCD
channels can be compressed on the fly as the data streams in
from the detector front end modules. Exposure data for the
NIR channels will be compressed during the following
exposure period.

III. FPGA FIRMWARE ARCHITECTURE
The functional blocks of the FPGA firmware are illustrated

in Figure 3. Commands from the ICU are decoded and routed
within the FPGA to the various programmable blocks by the
command processor. Responses to read and status requests
issued by the ICU are formatted in the output formatter.
Blocks are enabled for operation by setting a bit
corresponding to the respective blocks in the block enable
register.

The science data front end processor is responsible for
serial to parallel conversion of incoming image data during an
exposure readout period. In CCD slice channels, the parallel
data words are passed directly to the data compression block.
In NIR slice channels, the parallel data words are first
processed by the accumulation and SDRAM controller blocks
before they are passed to the data compression block.

ICU
Control

Interface

Front End
Control

Interface

Front End
Data

Interface

Flash
Memory
Interface

Downlink
Control
Interface

Command
Processor
Output
Formatter

Front
End
Data
Processing

Data
Compress

Flash
Control

SDRAM
Control

and
Accumulator

Data
Output
Control

FPGA Boundary

SDRAM Interface

Control
Interface

File
Output
Data
Interface

Flash Controller
Control Interface

Block Enable Register

Enable

Enable

Enable

Control
Interface

Fig. 3. Slice FPGA Firmware Architecture

The science data compression block consists of a strictly

lossless data compression algorithm that is based on a subset
of the CCSDS Lossless Data Compression recommendation
[1]. This lossless block is preceded by an optional pre-scaling
block that is not strictly lossless but truncates low order bits
that contain little useful information because they are
dominated by detector noise [2]. The lossless compression
component is implemented as a parallel algorithm in the
FPGA firmware. The algorithm concurrently evaluates the
resulting sequence lengths for fourteen different compression
options. The option selected is the one which results in the
shortest compressed sequence length. An option code is
included in the compressed file bit stream for each block of
processed data. This option code identifies the selected option
used to encode the block of data. If no option results in a
sequence shorter than the length of the original, uncompressed
data, the data words are not compressed and are labeled with
an option code indicating “no compression”.

The optional pre-scaler, which is used to map data words
into shorter code words, is implemented in firmware as a
lookup table and binary search which iteratively refines the
estimation of the code word to represent the data. Pixel data
are compared against the contents of a lookup table which
represent ranges over which the data may be represented by a
compressed word of shorter length. The final compressed
value is determined through a binary search of the contents in
the lookup table. The number of steps is bounded by log2(N)
where N is the number of code words in the approach. Like
the CCSDS algorithm, this pre-scaler can be applied in real
time to the data arriving from CCD channels.

The compressed data will be passed out from the
compression block as CCSDS source packets [3]. Each packet
will include data from a fixed number of pixels to make
packet decoding straightforward. These source packets are
delivered to page buffers and written to the flash memory. A
count of the number of bytes is recorded for each exposure
file on each slice. After a readout cycle is completed, the
number of compressed bytes is read from each slice by the
ICU and recorded. The byte counts will be used during
downlink operations so that only the required number of bytes
will be transmitted to the ground.

IV. DATA COMPRESSION AND STORAGE
Figure 4 illustrates the data compression architecture

implemented in the FPGA.

Pixel
Output

.

.

.

Input
FIFO
#2

FIFO
Control

Flash
Page
Buffers

Page
Buffer
Output
Control

Sequence
Length
Evaluation
(Parallel)

Option
Voting
Tree

Compressed
Data
Sequence
Construction

Output
Data
(to

Flash)

Pre-
scaler

PEM*

*Prediction Error Mapper

Packet
Formation

Input
FIFO
#1

FIFO
Control

Fig. 4. Data Compression Architecture

Data will be delivered to this block either directly from the

CCD readout chip or from the SDRAM of a NIR channel. The
data may be passed through the optional pre-scaler, followed
by the lossless data compression block. An option to force no
compression is included in the lossless compression block.
The data values are assembled into blocks corresponding to a
fixed number of pixels and the best choice among the options
is evaluated by comparing resulting sequence lengths in
parallel as the block data accumulates. Once the sequence
lengths have been determined, a binary voting tree is used to
declare the best option. This option code is then fed forward
so that the pixel data corresponding to the block just evaluated
can be compressed into the output bit stream according to the
rules of the lossless data compression algorithm. Because data
for four channels from the CCD detector are interleaved, input
FIFO #1 is present to accumulate four full compression blocks
prior to the evaluation of data. This accumulation represents a
fixed FIFO start up latency. Once the best option is declared
by the voting block, the pixels in the input FIFO #2 are
extracted and, using the chosen option, assembled one bit at a
time into the compressed data sequences. These bits are
passed out of the sequence construction block as bytes where
they are input to the CCSDS Source Packet formation block.
This block assembles the compressed data corresponding to a
fixed number of detector pixels into source packets with a
primary header and an optional secondary header. The
secondary header will contain a packet ID, an exposure ID,
and a state description of the conditions under which the data
were taken. Included in the state description would be
application specific parameters such as the selected
compression technique (no compression, lossless compression
with pre-scaler, lossless compression without pre-scaler).
Packets will be assembled in two packet buffers which will be
alternated by the firmware. When one buffer is being written
with data, the other buffer can be passing the data for a

previously constructed packet forward to one of two receiving
page buffers. A page buffer is designed to contain the same
number of bytes as a page in the flash memory architecture.
The transfer of data in page-sized units is the most efficient
way of utilizing the flash memories.

Although the packets are constructed from data with a fixed
number of pixels, the size of the packets will vary due to the
application of compression. However, the packet specification
was defined such that even the longest possible packet must
have a length less than or equal to the size of a page buffer.
Restricting packets to this size prevents a bottleneck in the
transfer from packet buffers to page buffers.

V. CCD CHANNEL OPERATION SEQUENCE
The sequence of events for processing exposure data

includes the following activities:

1. Exposure readout set up – this is the configuration of

each slice to prepare it to accept image data and to
compress and store the image data in allocated flash
memory blocks. The process of setting up an exposure
read out will take place during the time in which an
exposure is actually taking place, while the shutter on
the focal plane of the imager is open.

2. Exposure readout – this is the actual process of
transferring the data from the detector to the slice
FPGA. During this time, data words are delivered to the
slice FPGA and either compressed in real time (for
CCD slice channels) or averaged and stored in the
SDRAM for compression after the readout period (for
NIR slice channels).

3. File downlink set up – this is the process of configuring
each slice to prepare for extracting file data from the
flash memories.

4. File downlink – this is the process in which previously
stored file data are extracted from the flash memory
and forwarded to a downlink controller for
transmission to a ground station.

To set up an exposure, the ICU will provide a list of

available flash memory blocks (including a chip ID targeting
the specific flash devices on the slice) and write these to a
flash block ID RAM on the slice FPGA. The ICU also
provides the count of the number of such blocks provisioned.
After the flash memory blocks have been provisioned, the
ICU will configure the programmable blocks in the FPGA
including the data compression blocks (pre-scaler and
lossless), and the flash controller. The flash controller will be
programmed with a “data readout” command code. Once the
controller and compression blocks have been configured, the
ICU will issue a command to the front end to begin the
delivery of data. The slice is required to accept the incoming
data fast enough to prevent any bottlenecks. The compressed
packet data will fill the flash memory page buffers. Each byte
written to the page buffers is counted. Once a page buffer is

filled, the flash controller will retrieve the ID of the first
allocated flash memory block from the flash block ID RAM
and use this to construct a command sequence to be issued to
the flash memory for executing a page program operation
(which commits a page consisting of 2048 bytes of data to the
designated flash block). At the end of a page program
operation, a program status operation is executed. If the
operation is errored, the location of the bad block is recorded
by the slice FPGA. This information will be read by the ICU
after the readout is completed so that the ICU can update a list
of bad blocks, removing them from the list of blocks available
for file storage.

Each time a filled page buffer is written to the designated
block, a page counter in the flash controller is incremented.
When the number of pages in a block is reached, the block is
full. This causes the flash controller to retrieve the next
allocated block from the flash block ID RAM. The number of
blocks in use is counted. This process continues as long as the
flash controller is enabled (by the enabling bit assigned to the
controller in the block enable register). If the number of
blocks consumed is greater than the number allocated by the
ICU, the flash controller writes a “block overflow” code to its
internal error register. It also suspends the acceptance of any
further data from the front end. Once the block is disabled, the
ICU can read the error code register to determine if the
readout was successful. The ICU can also read the count of
bytes that were written to the flash and the identities of any
errored blocks observed during the process.

The file downlink process is set up by having the ICU write
the identities of flash blocks that have been used to store a
specific file. The file to be downlinked may be requested from
the ground individually or as part of a group of files. The ICU
retains the list of flash blocks in which the data resides. The
ICU writes the block locations to the flash block ID RAM and
the number of blocks for the file. The ICU also programs a
file byte count for the file into registers in the flash controller
and the FPGA’s downlink control block. Once the set up has
been completed, the ICU enables the flash controller and the
downlink controller. File data values are extracted by the flash
controller and held in the flash page buffers. As soon as a
buffer is filled, the downlink controller is notified and begins
extracting data from the filled buffer. The downlink control
block of the FPGA controls the flow of data because it must
convert the bytes into a serial bit stream bracketed by start,
parity, and stop bits. Each transmitted byte is counted and
when the transmitted byte count equals the file byte count
programmed by the ICU, the downlink control block of the
FPGA suspends operation. If the process is terminated before
this byte count is reached, an error code (early downlink
termination) is set in the error register of the downlink control
block.

Files are retained in the flash memories even after the data
has undergone a downlink operation. This makes the data
available if it is necessary to repeat the transmission process.
For example, if poor weather conditions prevent the data from
being received free of errors, the ground operations may

request the transmission of the file again. Since the files are
stored in a random access fashion, individual files are
available for extraction. Once a file has been received on the
ground, the ICU can be commanded to erase the flash blocks
in which the data for the file were stored. The ICU will
achieve this by providing the flash block ID RAM with the
blocks to be erased and by writing the “erase flash blocks”
command code (along with a count of the number of blocks to
be erased) to the flash controller. If flash operation status
queries result in the identification of errored blocks, the ICU
can obtain this information and remove such blocks from the
list of available blocks for use in future image storage
operations.

VI. NIR CHANNEL OPERATION SEQUENCE
NIR slice channels are operated differently due to the fact

that the data will not be compressed concurrently with the
readout process. As mentioned earlier, multiple readout
operations are executed for a given exposure of the NIR
detector. The final value stored for a given pixel is obtained
by summing several “negative” readouts (resulting from
readout of the detector before exposure), with a number of
“positive” readouts (resulting from readout of the detector
after exposure). The resultant sum is equivalent to the
difference of the “after exposure” readout images with the
“before exposure” readout images. The result is scaled by
simple shifting by a programmable number of bits prior to
storage in the SDRAM.

During the readout of NIR channels, the flash controller is
not active. Instead, the accumulator controller and the
SDRAM controller are enabled. Data accumulation is
performed in one of two accumulation buffers by either
adding to or subtracting from earlier accumulated values
which are held in locations in SDRAM (one location for each
pixel). The accumulator controller acts concurrently with the
SDRAM controller using the shared pair of accumulation
buffers. When a buffer is filled with accumulated data from an
ongoing readout cycle, that buffer is turned over to the
SDRAM controller which commits the partial sum to
designated locations in the SDRAM. The SDRAM controller
must write this data out to storage, pre-load the next buffer of
data from another block of SDRAM locations, and meet its
refresh cycle timing commitments before the second buffer
has filled with accumulated data. A separate refresh counter
will autonomously increment and the SDRAM controller will,
between data transfer operations, read the counter. The count
that is recorded will be used to execute an equal number of
refresh cycles before the SDRAM controller returns to the
activities of reading and writing from the accumulation
buffers.

While the accumulator controller only needs to be enabled
for readout operations (there is only one commanded state),
the SDRAM controller needs to be enabled for data readout
(accumulation) operations as well as for transfer to data
compression operations. The SDRAM controller will extract

the final averaged data for the nth exposure during the mth
exposure period where m = n + 1. During the data
compression phase, the SDRAM controller, the data
compression blocks, and the flash controller will all be
enabled. The flash block ID RAM will have been set up with
the allocated flash blocks as well. The SDRAM controller is
responsible for providing the necessary word strobes to the
data compression block as it makes data from the SDRAM
available to the compression block.

VII. DESIGN PROTOTYPING
Many of the features described here have been tested in a

prototyping design called the TSDC Firmware Development
Card. This card includes an Actel A3P1000 flash-based
FPGA, 8 Gbits of flash memory, and 256 Mbits of SDRAM.
This card emulates the slice hardware. The emulation of the
front end (for delivery of image data) and the ICU control unit
(for commanding the slice FPGA) is provided by a
Programmable Test Adapter (PTA), a general purpose data
acquisition board developed by the Electronic Systems
Engineering Department at the Fermi National Accelerator
Laboratory. The PTA occupies a PCI slot in a test bench PC
running the Windows XP operating system. The application
software for commanding the slice operations is written using
Microsoft Visual C++. The major functions corresponding to
slice operations (set up, readout, data compression, downlink,
and flash block erase) are provided as button and text box
controls to aid in the operation and debugging of the system.

 While prototyping has made use of a reprogrammable
FPGA, components of the system have been evaluated to
obtain estimates of the resource utilization required in a
typical space-qualified FPGA (an Actel RTAX2000S antifuse-
based FPGA). A brief summary of these estimates is provided
in Table 1:

TABLE 1

FPGA LOGIC RESOURCE ESTIMATES (RTAX2000S)
Functional Block R Cells C Cells
Lossless Compression:
Option Sequence Length Evaluation

8 % 8 %

Lossless Compression:
Compressed Data Formatting

6 % 5 %

Lossless Compression:
Prediction Error Mapper

1 % 1 %

Lossless Compression:
All Blocks

17 % 17 %

Flash Memory Controller 2% 6 %
SPI-like Communications Interfaces 2% 2 %
Total 23 % 26 %

The figures listed represent the percentage of the total number of respective
cell type available in the indicated device. Not all functional blocks for the
design have been estimated at this time.

In addition to logic resources, SRAM resources in the

FPGA are also required to implement features such as the

flash block ID RAM, flash memory page buffers, CCSDS
packet format buffers, accumulation buffers (for NIR channel
processing), and pre-scaler lookup table storage. Estimates of
the SRAM resource utilization to support these features are
provided in Table 2 for the same space-qualified FPGA:

TABLE 2

FPGA SRAM RESOURCE ESTIMATES (RTAX2000S)
FPGA SRAM Functional
Block

Bytes Device
Utilization

Flash Block ID RAM 512 1.4 %
Flash Memory Page
Buffers

4096 11 %

CCSDS Source Packet
Buffers

4096 11 %

NIR Channel Accumulator
Buffers

2048 5.5 %

Square Root Pre-scaler
Lookup Table

8192 22 %

Total 18944 51 %

The figures listed represent the percentage of the total number of SRAM bits
available in the indicated device.

In order to protect against single event upsets (SEUs) in the
design, error detection and correction blocks will be
implemented to envelope the sensitive memory portions of the
design. For example, the lookup table for the optional pre-
scaler needs to be protected so such measures will be applied
to this table. Other portions of the design that may benefit
from this approach include the accumulator buffers in the NIR
channel processing and the flash memory page buffers. The
data being written in packet format will have error detection
bits added before the data are written to the flash.

ACKNOWLEDGMENT
The authors wish to thank Chris Bebek, Robert Abiad, and

Henry Heetderks of the Lawrence Berkeley National
Laboratory and Gunther Haller of the Stanford Linear
Accelerator Center for helpful suggestions.

REFERENCES
[1] G. Aldering et.al., “Overview of the Supenova/Acceleration Probe

(SNAP)”, Proc. SPIE Vol 4835, pp/ 146-157, 2002.
[2] “CCSDS Recommendation for Lossless Data Compression”, CCSDS

121.0-B-1, Blue Book, May 1997.
[3] H. Lin, J. Marriner, “Preliminary Report on Lossy Image Compression

by Square Root Prescaling”, unpublished.
[4] “CCSDS Report Concerning Telemetry: Summary of Concept and

Rationale”, CCSDS 100.0-G-1, Green Book, December, 1987.

Alan Prosser received a B.S. degree in physics from Case Western Reserve
University in 1979. He received an M.S. degree in electrical engineering from
Case Western Reserve University in 1982. He has been employed by the
Applied Physics Laboratory at Johns Hopkins University, AT&T Bell
Laboratories, and Agere Systems. Since August, 2004, he has been with the
Electronic Systems Engineering department at the Fermi National Accelerator
Laboratory in Batavia, IL.

Guilherme Cardoso received the B.S. degree in electrical and computer
engineering in 1998 from the Universidade Federal do Rio Grande do Sul,
Brazil. He received M.S. and Ph. D. degrees in electrical and computer
engineering from the Illinois Institute of Technology in 2000 and 2004,
respectively. He received an MBA degree from the University of Chicago in
March, 2007. He was employed at the Fermi National Accelerator Laboratory
from 1998 until February, 2007. Currently he is Vice President of Technology
with Aguila Technologies, Inc. in San Marcos, CA.

John Chramowicz received an A.A.S degree in electronic engineering
technology from DeVry University in 1985. He received a B.S. degree in
electronic engineering technology from DeVry University in 1986. He has
been employed at the Fermi National Accelerator Laboratory since August,
1986. He is currently with the Electronic Systems Engineering department at
Fermilab.

John Marriner received a B.A. degree in physics from the University of
California, Berkeley, in 1970. He received a Ph. D. degree in physics from the
University of California, Berkeley in 1977. He was employed at the Lawrence
Berkeley National Laboratory from 1974 through 1978. He has been with the
Fermi National Accelerator Laboratory since 1978. He is currently a member
of the Experimental Astrophysics Group at Fermilab. He is a fellow of the
American Physical Society.

Ryan Rivera received a B.S. degree in computer engineering from the
University of Illinois, Urbana-Champaign in 2004. He received an M.S.
degree in electrical engineering from the University of Illinois, Urbana-
Champaign in 2006. Since July, 2006, he has been a member of the Electronic
Systems Engineering department at the Fermi National Accelerator Laboratory
in Batavia, IL.

Marcos Turqueti received a B.Sc. degree in electronics from UFRGS, RS,
Porto Alegre, Brazil in 1999. He received an M.S. degree in Electronics
Systems and Devices from ITA, SP, Sao Jose dos Campos, Brazil in 2001.
Since September, 2001, he has been a member of the Electronic Systems
Engineering department at the Fermi National Accelerator Laboratory in
Batavia, IL.

	I. INTRODUCTION
	II. Data Acquisition System Architecture
	III. FPGA Firmware Architecture
	IV. Data Compression And Storage
	V. CCD Channel Operation Sequence
	VI. NIR Channel Operation Sequence
	VII. Design Prototyping

