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Abstract— The SuperNova Acceleration Probe (SNAP) 

instrument is being designed to collect image and spectroscopic 
data for the study of dark energy in the universe. In this paper, 
we describe a distributed architecture for the data acquisition 
system which interfaces to visible light and infrared imaging 
detectors. The architecture includes the use of NAND flash 
memory for the storage of exposures in a file system. Also 
described is an FPGA-based lossless data compression algorithm 
with a configurable pre-scaler based on a novel square root data 
compression method to improve compression performance. The 
required interactions of the distributed elements with an 
instrument control unit will be described as well. 
 

Index Terms—Data acquisition, data compression, distributed 
memories, space vehicle electronics. 

I. INTRODUCTION 
HE SuperNova Acceleration Probe (SNAP) is a proposal 
for a satellite observatory being prepared for the Joint 

Dark Energy Mission (JDEM) [1]. The observatory design 
features a 2 meter telescope with a field of view of 
approximately 0.7 square degrees. A half-billion pixel 
imaging camera consisting of visible light CCD and near-
infrared (NIR) detectors provides imaging capabilities from 
the visible to the near infrared portions of the spectrum. The 
CCD imager provides coverage for wavelengths from 0.35 μm 
to 1.0 μm. The NIR imager is a HgCdTe detector providing 
coverage for wavelengths from 0.9 μm to 1.7 μm. Also 
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included are spectrometers to support the identification of 
Type IA supernovae. The mission includes a supernova 
survey and a weak-lensing survey.  

The instrument is being designed as a distributed readout 
and memory system with multiple partitions called slices. 
Each slice consists of non-volatile memories to store multiple 
exposures in a distributed file system. A total of 36 slices will 
be dedicated to the CCD imaging array. Each CCD slice will 
support (3510)2 pixels.  An additional 36 slices will be 
dedicated to the NIR imaging array. Each NIR slice will 
support (2048)2 pixels. Data are to be collected for exposures 
of 300 seconds each. During each exposure period, there will 
be no transfer of data to or from the front end electronics. 
After each exposure, a readout period of approximately 30 
seconds will occur during which the data collected during the 
exposure are transferred to the slices for compression and 
storage. The compressed data for each exposure will be stored 
in a standard packet format in NAND flash memories on the 
slices. The activities of data readout, compression, and file 
storage are coordinated by a master flight computer called the 
Instrument Control Unit (ICU). Approximately once a day, the 
files representing the exposures are extracted from the flash 
memories and transmitted to a ground station.  

II. DATA ACQUISITION SYSTEM ARCHITECTURE 
Figure 1 illustrates the key elements in the data acquisition 

system. The front end electronics modules include detector 
readout ICs that control the delivery of image data from the 
detector elements. The data delivered from these readout ICs 
are sent over 25 Mbps links to a slice unit. Independent slices 
are dedicated to independent detector elements. This 
independence is required to eliminate the possibility of a 
failure in one slice causing another slice to malfunction.  CCD 
channels will deliver data from four pixels as a group framed 
by start, stop, and a single parity bit. The data word for each 
pixel is 16 bits long with the 2 most significant bits 
representing a scale factor. The pixels are interleaved meaning 
that, following the start bit, 16 bits representing the first pixel 
are transmitted, followed by 16 bits each for the second, third, 
and fourth pixels. This group of pixels is followed by a single 
parity bit computed using all of the 64 bits followed by a stop 
bit. When the channel is inactive, the channel is held high.  
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NIR channels will deliver data on four separate connections 

operating synchronously. The processing of NIR detector 
pixels will be done in groups of four so that pixels are 
compressed in blocks in which neighboring pixels are 
compressed as a unit.  

The slices and front end components are programmed and 
controlled by the ICU. Each ASIC on the front end modules 
and an FPGA on the slices are assigned a unique ASIC ID 
code used to address the device to be programmed. Broadcast 
write transmissions will be supported so that multiple targeted 
ASICs may be commanded with the same command cycle. 
Commands issued to a slice FPGA will be filtered from the 
command stream so that they do not arrive at the ASICs of the 
associated front end module.  

The ICU issues commands and receives responses using a 
controller interface that implements an SPI-like serial 
protocol. The ICU interface controller is responsible for 
decoding the slice channel address and routing the command 
to the designated slice over a dedicated 25 Mbps link from the 
controller. Responses from the slice will have the slice 
channel address encoded in the bit stream returned to the ICU. 

Figure 2 illustrates the major components of a slice. 
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At the heart of each slice is an FPGA which communicates 

with the ICU via the ICU control interface. All 
communications for the channel are processed by the slice 
FPGA. The FPGA forwards only those commands issued to 
front end module ASICs over a dedicated control interface to 
the front end module. There is also a dedicated science data 
interface over which the detector data are delivered to the slice 
during front end readout operations. During the downlink 
operations, the slice FPGA is commanded to extract stored 
image files and transmit them to a downlink controller which 
delivers the data for all slices to the spacecraft telemetry 
system.  
 The exposure files are stored in flash memory on the slice. 
The flash memories are organized in two independent banks 
(for a total of 4 Gbits) to prevent a failure on an I/O bus from 
eliminating an entire slice channel. The location of file data in 
the flash memory is coordinated with the ICU. The ICU can 
maintain a file system in which the flash memory blocks used 
to store the data for a given exposure is recorded.  
 Slice channels which are serving NIR detector readout also 
include a 256 Mbit Synchronous DRAM (SDRAM) to be used 
as an intermediate storage device. Unlike the CCD detectors, 
the NIR detectors can be read more than once per exposure so 
that signal averaging can be applied to reduce the effects of 
readout noise in the electronics. The SDRAM will be used to 
hold sums of pixel data (one sum for each pixel) as multiple 
readout cycles are processed for a single exposure. Then, after 
a sufficient number of readout cycles have been accumulated, 
the pixel data can be shifted to complete the averaging 
process. The resulting pixel averages reside in the SDRAM. 
Once the data have been processed in this manner, they can be 
delivered to the data compression block in the FPGA. CCD 
channels can be compressed on the fly as the data streams in 
from the detector front end modules. Exposure data for the 
NIR channels will be compressed during the following 
exposure period. 

III. FPGA FIRMWARE ARCHITECTURE 
The functional blocks of the FPGA firmware are illustrated 

in Figure 3. Commands from the ICU are decoded and routed 
within the FPGA to the various programmable blocks by the 
command processor. Responses to read and status requests 
issued by the ICU are formatted in the output formatter. 
Blocks are enabled for operation by setting a bit 
corresponding to the respective blocks in the block enable 
register.  

The science data front end processor is responsible for 
serial to parallel conversion of incoming image data during an 
exposure readout period. In CCD slice channels, the parallel 
data words are passed directly to the data compression block.  
In NIR slice channels, the parallel data words are first 
processed by the accumulation and SDRAM controller blocks 
before they are passed to the data compression block.  
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The science data compression block consists of a strictly 

lossless data compression algorithm that is based on a subset 
of the CCSDS Lossless Data Compression recommendation 
[1]. This lossless block is preceded by an optional pre-scaling 
block that is not strictly lossless but truncates low order bits 
that contain little useful information because they are 
dominated by detector noise [2]. The lossless compression 
component is implemented as a parallel algorithm in the 
FPGA firmware. The algorithm concurrently evaluates the 
resulting sequence lengths for fourteen different compression 
options. The option selected is the one which results in the 
shortest compressed sequence length. An option code is 
included in the compressed file bit stream for each block of 
processed data. This option code identifies the selected option 
used to encode the block of data. If no option results in a 
sequence shorter than the length of the original, uncompressed 
data, the data words are not compressed and are labeled with 
an option code indicating “no compression”.   

The optional pre-scaler, which is used to map data words 
into shorter code words, is implemented in firmware as a 
lookup table and binary search which iteratively refines the 
estimation of the code word to represent the data. Pixel data 
are compared against the contents of a lookup table which 
represent ranges over which the data may be represented by a 
compressed word of shorter length. The final compressed 
value is determined through a binary search of the contents in 
the lookup table. The number of steps is bounded by log2(N) 
where N is the number of code words in the approach. Like 
the CCSDS algorithm, this pre-scaler can be applied in real 
time to the data arriving from CCD channels.  

The compressed data will be passed out from the 
compression block as CCSDS source packets [3]. Each packet 
will include data from a fixed number of pixels to make 
packet decoding straightforward. These source packets are 
delivered to page buffers and written to the flash memory. A 
count of the number of bytes is recorded for each exposure 
file on each slice. After a readout cycle is completed, the 
number of compressed bytes is read from each slice by the 
ICU and recorded. The byte counts will be used during 
downlink operations so that only the required number of bytes 
will be transmitted to the ground.  

IV. DATA COMPRESSION AND STORAGE 
Figure 4 illustrates the data compression architecture 

implemented in the FPGA.  
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Data will be delivered to this block either directly from the 

CCD readout chip or from the SDRAM of a NIR channel. The 
data may be passed through the optional pre-scaler, followed 
by the lossless data compression block. An option to force no 
compression is included in the lossless compression block. 
The data values are assembled into blocks corresponding to a 
fixed number of pixels and the best choice among the options 
is evaluated by comparing resulting sequence lengths in 
parallel as the block data accumulates. Once the sequence 
lengths have been determined, a binary voting tree is used to 
declare the best option. This option code is then fed forward 
so that the pixel data corresponding to the block just evaluated 
can be compressed into the output bit stream according to the 
rules of the lossless data compression algorithm. Because data 
for four channels from the CCD detector are interleaved, input 
FIFO #1 is present to accumulate four full compression blocks 
prior to the evaluation of data. This accumulation represents a 
fixed FIFO start up latency. Once the best option is declared 
by the voting block, the pixels in the input FIFO #2 are 
extracted and, using the chosen option, assembled one bit at a 
time into the compressed data sequences. These bits are 
passed out of the sequence construction block as bytes where 
they are input to the CCSDS Source Packet formation block. 
This block assembles the compressed data corresponding to a 
fixed number of detector pixels into source packets with a 
primary header and an optional secondary header. The 
secondary header will contain a packet ID, an exposure ID, 
and a state description of the conditions under which the data 
were taken. Included in the state description would be 
application specific parameters such as the selected 
compression technique (no compression, lossless compression 
with pre-scaler, lossless compression without pre-scaler). 
Packets will be assembled in two packet buffers which will be 
alternated by the firmware. When one buffer is being written 
with data, the other buffer can be passing the data for a 



previously constructed packet forward to one of two receiving 
page buffers. A page buffer is designed to contain the same 
number of bytes as a page in the flash memory architecture. 
The transfer of data in page-sized units is the most efficient 
way of utilizing the flash memories. 

Although the packets are constructed from data with a fixed 
number of pixels, the size of the packets will vary due to the 
application of compression. However, the packet specification 
was defined such that even the longest possible packet must 
have a length less than or equal to the size of a page buffer. 
Restricting packets to this size prevents a bottleneck in the 
transfer from packet buffers to page buffers. 

V. CCD CHANNEL OPERATION SEQUENCE 
The sequence of events for processing exposure data 

includes the following activities: 
 
1. Exposure readout set up – this is the configuration of 

each slice to prepare it to accept image data and to 
compress and store the image data in allocated flash 
memory blocks. The process of setting up an exposure 
read out will take place during the time in which an 
exposure is actually taking place, while the shutter on 
the focal plane of the imager is open.  

2. Exposure readout – this is the actual process of 
transferring the data from the detector to the slice 
FPGA. During this time, data words are delivered to the 
slice FPGA and either compressed in real time (for 
CCD slice channels) or averaged and stored in the 
SDRAM for compression after the readout period (for 
NIR slice channels).  

3. File downlink set up – this is the process of configuring 
each slice to prepare for extracting file data from the 
flash memories. 

4. File downlink – this is the process in which previously 
stored file data are extracted from the flash memory 
and forwarded to a downlink controller for 
transmission to a ground station.  

 
To set up an exposure, the ICU will provide a list of 

available flash memory blocks (including a chip ID targeting 
the specific flash devices on the slice) and write these to a 
flash block ID RAM on the slice FPGA. The ICU also 
provides the count of the number of such blocks provisioned. 
After the flash memory blocks have been provisioned, the 
ICU will configure the programmable blocks in the FPGA 
including the data compression blocks (pre-scaler and 
lossless), and the flash controller. The flash controller will be 
programmed with a “data readout” command code. Once the 
controller and compression blocks have been configured, the 
ICU will issue a command to the front end to begin the 
delivery of data. The slice is required to accept the incoming 
data fast enough to prevent any bottlenecks. The compressed 
packet data will fill the flash memory page buffers. Each byte 
written to the page buffers is counted. Once a page buffer is 

filled, the flash controller will retrieve the ID of the first 
allocated flash memory block from the flash block ID RAM 
and use this to construct a command sequence to be issued to 
the flash memory for executing a page program operation 
(which commits a page consisting of 2048 bytes of data to the 
designated flash block). At the end of a page program 
operation, a program status operation is executed. If the 
operation is errored, the location of the bad block is recorded 
by the slice FPGA. This information will be read by the ICU 
after the readout is completed so that the ICU can update a list 
of bad blocks, removing them from the list of blocks available 
for file storage.  

Each time a filled page buffer is written to the designated 
block, a page counter in the flash controller is incremented. 
When the number of pages in a block is reached, the block is 
full. This causes the flash controller to retrieve the next 
allocated block from the flash block ID RAM. The number of 
blocks in use is counted. This process continues as long as the 
flash controller is enabled (by the enabling bit assigned to the 
controller in the block enable register). If the number of 
blocks consumed is greater than the number allocated by the 
ICU, the flash controller writes a “block overflow” code to its 
internal error register. It also suspends the acceptance of any 
further data from the front end. Once the block is disabled, the 
ICU can read the error code register to determine if the 
readout was successful. The ICU can also read the count of 
bytes that were written to the flash and the identities of any 
errored blocks observed during the process.   

The file downlink process is set up by having the ICU write 
the identities of flash blocks that have been used to store a 
specific file. The file to be downlinked may be requested from 
the ground individually or as part of a group of files. The ICU 
retains the list of flash blocks in which the data resides. The 
ICU writes the block locations to the flash block ID RAM and 
the number of blocks for the file. The ICU also programs a 
file byte count for the file into registers in the flash controller 
and the FPGA’s downlink control block. Once the set up has 
been completed, the ICU enables the flash controller and the 
downlink controller. File data values are extracted by the flash 
controller and held in the flash page buffers. As soon as a 
buffer is filled, the downlink controller is notified and begins 
extracting data from the filled buffer. The downlink control 
block of the FPGA controls the flow of data because it must 
convert the bytes into a serial bit stream bracketed by start, 
parity, and stop bits. Each transmitted byte is counted and 
when the transmitted byte count equals the file byte count 
programmed by the ICU, the downlink control block of the 
FPGA suspends operation. If the process is terminated before 
this byte count is reached, an error code (early downlink 
termination) is set in the error register of the downlink control 
block. 

Files are retained in the flash memories even after the data 
has undergone a downlink operation. This makes the data 
available if it is necessary to repeat the transmission process. 
For example, if poor weather conditions prevent the data from 
being received free of errors, the ground operations may 



request the transmission of the file again. Since the files are 
stored in a random access fashion, individual files are 
available for extraction. Once a file has been received on the 
ground, the ICU can be commanded to erase the flash blocks 
in which the data for the file were stored. The ICU will 
achieve this by providing the flash block ID RAM with the 
blocks to be erased and by writing the “erase flash blocks” 
command code (along with a count of the number of blocks to 
be erased) to the flash controller. If flash operation status 
queries result in the identification of errored blocks, the ICU 
can obtain this information and remove such blocks from the 
list of available blocks for use in future image storage 
operations.  

VI. NIR CHANNEL OPERATION SEQUENCE 
NIR slice channels are operated differently due to the fact 

that the data will not be compressed concurrently with the 
readout process. As mentioned earlier, multiple readout 
operations are executed for a given exposure of the NIR 
detector. The final value stored for a given pixel is obtained 
by summing several “negative” readouts (resulting from 
readout of the detector before exposure), with a number of 
“positive” readouts (resulting from readout of the detector 
after exposure). The resultant sum is equivalent to the 
difference of the “after exposure” readout images with the 
“before exposure” readout images. The result is scaled by 
simple shifting by a programmable number of bits prior to 
storage in the SDRAM.  

During the readout of NIR channels, the flash controller is 
not active. Instead, the accumulator controller and the 
SDRAM controller are enabled. Data accumulation is 
performed in one of two accumulation buffers by either 
adding to or subtracting from earlier accumulated values 
which are held in locations in SDRAM (one location for each 
pixel). The accumulator controller acts concurrently with the 
SDRAM controller using the shared pair of accumulation 
buffers. When a buffer is filled with accumulated data from an 
ongoing readout cycle, that buffer is turned over to the 
SDRAM controller which commits the partial sum to 
designated locations in the SDRAM. The SDRAM controller 
must write this data out to storage, pre-load the next buffer of 
data from another block of SDRAM locations, and meet its 
refresh cycle timing commitments before the second buffer 
has filled with accumulated data. A separate refresh counter 
will autonomously increment and the SDRAM controller will, 
between data transfer operations, read the counter. The count 
that is recorded will be used to execute an equal number of 
refresh cycles before the SDRAM controller returns to the 
activities of reading and writing from the accumulation 
buffers.   

While the accumulator controller only needs to be enabled 
for readout operations (there is only one commanded state), 
the SDRAM controller needs to be enabled for data readout 
(accumulation) operations as well as for transfer to data 
compression operations. The SDRAM controller will extract 

the final averaged data for the nth exposure during the mth 
exposure period where m = n + 1. During the data 
compression phase, the SDRAM controller, the data 
compression blocks, and the flash controller will all be 
enabled. The flash block ID RAM will have been set up with 
the allocated flash blocks as well. The SDRAM controller is 
responsible for providing the necessary word strobes to the 
data compression block as it makes data from the SDRAM 
available to the compression block. 

VII. DESIGN PROTOTYPING  
Many of the features described here have been tested in a 

prototyping design called the TSDC Firmware Development 
Card. This card includes an Actel A3P1000 flash-based 
FPGA, 8 Gbits of flash memory, and 256 Mbits of SDRAM. 
This card emulates the slice hardware. The emulation of the 
front end (for delivery of image data) and the ICU control unit 
(for commanding the slice FPGA) is provided by a 
Programmable Test Adapter (PTA), a general purpose data 
acquisition board developed by the Electronic Systems 
Engineering Department at the Fermi National Accelerator 
Laboratory. The PTA occupies a PCI slot in a test bench PC 
running the Windows XP operating system. The application 
software for commanding the slice operations is written using 
Microsoft Visual C++. The major functions corresponding to 
slice operations (set up, readout, data compression, downlink, 
and flash block erase) are provided as button and text box 
controls to aid in the operation and debugging of the system. 

 While prototyping has made use of a reprogrammable 
FPGA, components of the system have been evaluated to 
obtain estimates of the resource utilization required in a 
typical space-qualified FPGA (an Actel RTAX2000S antifuse-
based FPGA). A brief summary of these estimates is provided 
in Table 1: 

 
TABLE 1 

FPGA LOGIC RESOURCE ESTIMATES (RTAX2000S) 
Functional Block R Cells C Cells 
Lossless Compression: 
Option Sequence Length Evaluation 

8 % 8 % 

Lossless Compression: 
Compressed Data Formatting  

6 % 5 % 

Lossless Compression: 
Prediction Error Mapper 

1 % 1 % 

Lossless Compression: 
All Blocks 

17 % 17 % 

Flash Memory Controller 2% 6 % 
SPI-like Communications Interfaces 2% 2 % 
Total 23 % 26 % 

 
The figures listed represent the percentage of the total number of respective 
cell type available in the indicated device. Not all functional blocks for the 
design have been estimated at this time. 

 
In addition to logic resources, SRAM resources in the 

FPGA are also required to implement features such as the 



 

flash block ID RAM, flash memory page buffers, CCSDS 
packet format buffers, accumulation buffers (for NIR channel 
processing), and pre-scaler lookup table storage. Estimates of 
the SRAM resource utilization to support these features are 
provided in Table 2 for the same space-qualified FPGA: 

 
TABLE 2  

FPGA SRAM RESOURCE ESTIMATES (RTAX2000S) 
FPGA SRAM Functional 
Block 

Bytes Device 
Utilization 

Flash Block ID RAM 512 1.4 % 
Flash Memory Page 
Buffers 

4096 11 % 

CCSDS Source Packet 
Buffers 

4096 11 % 

NIR Channel Accumulator 
Buffers 

2048 5.5 % 

Square Root Pre-scaler 
Lookup Table 

8192 22 % 

Total 18944 51  % 
 

The figures listed represent the percentage of the total number of SRAM bits 
available in the indicated device. 
 

In order to protect against single event upsets (SEUs) in the 
design, error detection and correction blocks will be 
implemented to envelope the sensitive memory portions of the 
design. For example, the lookup table for the optional pre-
scaler needs to be protected so such measures will be applied 
to this table. Other portions of the design that may benefit 
from this approach include the accumulator buffers in the NIR 
channel processing and the flash memory page buffers. The 
data being written in packet format will have error detection 
bits added before the data are written to the flash.  
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