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The measurement of the inclusive production of col-
limated jets of hadrons in association with a Z/γ∗ bo-
son in pp collisions provides a stringent test of pertur-
bative quantum chromodynamics (pQCD) [1]. The un-
derstanding of Z/γ∗+jets final states is a crucial part
of the physics program at the Tevatron since they con-
stitute important irreducible backgrounds in searches for
new physics. Previous results [2] from Run I at the Teva-
tron have been compared with leading-order (LO) plus
parton shower Monte Carlo predictions affected by large
scale uncertainties. This Letter reports new and more
precise measurements of the inclusive jet cross sections
in Z/γ∗(→ e+e−) production using 1.7 fb−1 of data col-
lected by the CDF experiment in Run II. Inclusive jet
differential cross sections as a function of jet transverse
momentum pjet

T [3] and total cross sections as a func-
tion of jet multiplicity Njet are measured. The data are
compared to next-to-leading order (NLO) pQCD predic-
tions [4] including non-perturbative contributions.

The CDF II detector is described in detail else-
where [5]. The detector has a charged particle track-
ing system immersed in a 1.4 T magnetic field aligned
coaxially with the beam line that provides tracking cov-
erage in the pseudorapidity [3] range |η| ≤ 2. Segmented
sampling calorimeters, arranged in a projective tower ge-
ometry, surround the tracking system and measure the
energy of interacting particles for |η| < 3.6. The central
electromagnetic and hadronic calorimeters [6] cover the
region |η| < 1, while the end-wall hadronic calorimeter [7]
provides forward coverage out to |η| < 1.3. Forward elec-
tromagnetic and hadronic calorimeters [8] cover the re-
gions 1.1 < |η| < 3.6 and 1.3 < |η| < 3.6, respectively.
The calorimeters are instrumented with finely segmented
detectors [6, 9] to measure the shower profile at a longi-
tudinal depth close to the location of a typical electro-
magnetic shower maximum. Cherenkov counters in the
region 3.7 < |η| < 4.7 measure the number of inelastic pp
collisions to compute the luminosity [10].

Monte Carlo event samples are used to determine de-
tector acceptance and reconstruction efficiency, estimate
background contributions, and unfold the measurements
back to the hadron level [11]. Samples of simulated

de Bruxelles, B-1050 Brussels, Belgium, eUniversity of California
Irvine, Irvine, CA 92697, fUniversity of California Santa Cruz,
Santa Cruz, CA 95064, gCornell University, Ithaca, NY 14853,
hUniversity of Cyprus, Nicosia CY-1678, Cyprus, iUniversity Col-
lege Dublin, Dublin 4, Ireland, jUniversity of Edinburgh, Edin-
burgh EH9 3JZ, United Kingdom, kUniversity of Heidelberg, D-
69120 Heidelberg, Germany, lUniversidad Iberoamericana, Mexico
D.F., Mexico, mUniversity of Manchester, Manchester M13 9PL,
England, nNagasaki Institute of Applied Science, Nagasaki, Japan,
oUniversity de Oviedo, E-33007 Oviedo, Spain, pQueen Mary, Uni-
versity of London, London, E1 4NS, England, qTexas Tech Univer-
sity, Lubbock, TX 79409, rIFIC(CSIC-Universitat de Valencia),
46071 Valencia, Spain,

inclusive Z/γ∗(→ e+e−)+jets events have been gener-
ated using the pythia 6.216 [12] Monte Carlo generator.
CTEQ5L [13] parton distribution functions (PDFs) are
used for the proton and antiproton. The pythia sam-
ples have been created using a special tuned set of pa-
rameters, denoted as pythia-tune a [14], that includes
enhanced contributions from initial-state gluon radiation
and secondary parton interactions between proton and
antiproton beam remnants and provides an accurate de-
scription of the measured jet shapes and energy flows
in Z/γ∗(→ e+e−)+jets final states [15]. Monte Carlo
samples for background processes are generated using
pythia-tune a. The samples are passed through a full
CDF detector simulation (based on geant3 [16] where
the gflash [17] package is used to simulate the energy
deposition in the calorimeters) and reconstructed and an-
alyzed with the same analysis chain as for the data.

Events are collected using a three-level trigger sys-
tem [18]. At the first-level trigger, events are required
to have a central electromagnetic calorimeter cluster
(|η| < 1) with ET [3] above 8 GeV and an associated
track with ptrack

T above 8 GeV/c. Similarly, at the second-
level (third-level) trigger a central electromagnetic clus-
ter with ET > 16 GeV (ET > 18 GeV) and an asso-
ciated track with ptrack

T > 8 GeV/c (ptrack
T > 9 GeV/c)

are required. The events are then required to have two
electrons [19] with Ee

T > 25 GeV and a reconstructed
invariant mass in the range 66 < Mee < 116 GeV/c2

around the Z boson mass. The electron candidates are
reconstructed using criteria described in [20]. In this
study, one electron is required to be central (|ηe| < 1)
and fulfill tight selection cuts, while the second elec-
tron is required to pass a looser selection and to be
either central (CC final-state configuration) or forward
with 1.2 < |ηe| < 2.8 (CF final-state configuration).
The trigger efficiencies for CC and CF configurations are
99.96± 0.01% and 97.9± 0.3%, respectively. The events
are selected to have a reconstructed primary vertex with
z-position within 60 cm around the nominal interaction
point, and at least one jet with corrected transverse mo-
mentum pjet

T,cor > 30 GeV/c (see below), rapidity [3] in

the range |yjet
cal| < 2.1, and ∆Re−jet > 0.7, where ∆Re−jet

denotes the distance (y − φ space) between the jet and
each of the two electrons in the final state. The final
sample contains 6203, 650, 57, and 2 events with at least
one, two, three, and four jets, respectively.

Jets are reconstructed in data and Monte Carlo simu-
lated events from the energy deposits in the calorimeter
towers with transverse momenta [21] above 0.1 GeV/c.
The towers associated with the reconstructed electrons in
the final state are excluded from the jet search. Jets are
searched for using the midpoint algorithm [22] with cone
radius R = 0.7 and a merging/splitting fraction of 0.75,
starting from seed towers with transverse momenta above
1 GeV/c. The same algorithm is applied to the final state
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particles in the Monte Carlo generated events, excluding
Z/γ∗ decay products, to define jets at the hadron level.

The rapidity and azimuthal angle of the jets, yjet
cal and

φjet
cal, are well reconstructed in the calorimeter with a res-

olution better than 0.05 units in both y and φ. The
measured jet transverse momentum pjet

T,cal systematically

underestimates that of the hadron-level jet. For pjet
T,cal

values about 30 GeV/c, the jet transverse momentum
is underestimated by about 30%. The systematic shift
decreases with increasing pjet

T,cal down to about 11% for

pjet
T,cal > 200 GeV/c. This is mainly attributed to the

presence of inactive material and the non-compensating
nature of the calorimeter [23]. An average correction,

as a function of pjet
T,cal and yjet

cal, is applied to the mea-

sured pjet
T,cal to account for these effects [24]. The mea-

sured pjet
T,cal also includes contributions from multiple pp̄

interactions per crossing at high instantaneous luminos-
ity. Multiple interactions are identified via the presence
of additional primary vertices reconstructed from charged
particles. For each jet, pjet

T,cal is corrected for this effect
by removing a certain amount of transverse momentum,
δmi
pT

= 1.06 ± 0.32 GeV/c, for each additional primary
vertex in the event, as determined from data [24].

The main backgrounds to the Z/γ∗(→ e+e−)+jets
sample arise from inclusive-jets and W+jets events, and
are estimated from the data. First, an inclusive jet data
sample is employed to estimate the probability f jet

e for a
jet to pass a given electron selection. The probabilities
are parametrized as a function of pjet

T,cal and are typi-
cally around 0.02 and 0.005 for central and forward loose
electrons, respectively. Second, a sample of events in
data with exactly one reconstructed tight central elec-
tron is selected. For each jet in the event, the Ee

T of
a fake electron is determined, and the invariant mass
of the tight-central electron and jet final state is then
computed. Event-by-event, all electron-jet combinations
that fulfill the Ee

T cuts and with an invariant mass within
66 < Me−jet < 116 GeV/c2 are considered in the back-
ground calculation, where each combination is weighted
by the corresponding f jet

e value and divided by the num-
ber of accepted electron-jet combinations in the event.
The total inclusive-jets and W+jets background is then
computed in each measured distribution. Other back-
ground contributions from tt, Z/γ∗(→ e+e−) + γ, WW ,
WZ, ZZ, and Z/γ∗(→ τ+τ−)+jets final states are esti-
mated using Monte Carlo samples. The total background
in inclusive Z/γ∗(→ e+e−)+jets production is about 12%
for Njet ≥ 1, and increases up to about 17% for Njet ≥ 3.
Good agreement is observed in the total number of events
between the data and the Z/γ∗(→ e+e−)+jets signal plus
background predictions. A χ2 test, where only statistical
uncertainties are considered, gives χ2 probabilities that
vary between 80% and 25% as Njet increases.

Raw inclusive jet differential cross sections as a

function of pjet
T,cor are defined as dσ/dpjet

T,cor = 1
L

×
(N cor

jet /∆pjet
T,cor), where N cor

jet denotes the total number of

jets in a given pjet
T,cor bin, ∆pjet

T,cor is the size of the bin,
and L is the luminosity. N cor

jet is corrected bin-by-bin
for background contributions and trigger inefficiencies.
The measured cross sections are then corrected for accep-
tance and smearing effects back to the hadron level using
pythia-tune a Monte Carlo event samples, and a bin-
by-bin unfolding procedure that also accounts for the effi-
ciency of the Z/γ∗(→ e+e−) selection criteria. The final

results refer to hadron level jets with pjet
T > 30 GeV/c and

|yjet| < 2.1, in a limited and well-defined kinematic range
for the Z/γ∗ decay products: Ee

T > 25 GeV, |ηe1| < 1.0,
|ηe2| < 1.0 or 1.2 < |ηe2| < 2.8, 66 < Mee < 116 GeV/c2,
and ∆Re−jet > 0.7. In order to avoid any bias on the cor-
rection factors due to the particular PDF set used, which
translates into slightly different simulated pjet

T,cal distribu-
tions, the pythia-tune a Monte Carlo event sample is
re-weighted until it accurately follows the measured pjet

T,cal

spectra. The unfolding factors U(pjet
T,cor) = dσ

dp
jet

T

/ dσ

dp
jet

T,cor

are computed separately for the different measurements
and vary between 2.0 at low pjet

T and 2.3 at high pjet
T .

A detailed study of the systematic uncertainties was
carried out [15]. A ±1.5% uncertainty on the trigger ef-
ficiency translates into ±1.5% and ±0.06% uncertainties
on the cross sections for CF and CC configurations, re-
spectively. The uncertainty on the pjet

T dependence of the
electron identification efficiency introduces a ±5% uncer-
tainty on both CC and CF results. The measured jet en-
ergies are varied by ±2% at low pjet

T,cal to ±2.7% at high

pjet
T,cal to account for the uncertainties on the absolute

energy scale in the calorimeter [24]; this introduces un-
certainties on the final measurements which vary between
±5% at low pjet

T and ±12% at high pjet
T . The yjet depen-

dence of the average correction applied to pjet
T,cal intro-

duces a ±2% uncertainty on the measured cross sections,
approximately independent of pjet

T . The uncertainty on
δmi
pT

has a negligible effect on the measured cross sec-

tions. The uncertainty on the pjet
T,cal dependence of f jet

e

introduces a ±15% uncertainty on the inclusive-jets and
W+jets background estimation, that translates into a
less than 2% uncertainty on the measured cross sections.
A conservative ±30% uncertainty on the normalization
of the rest of the background contributions, as extracted
from Monte Carlo samples, introduces a less than 1% ef-
fect on the final results. If the unfolding procedure is
carried out using unweighted pythia-tune a, the effect
on the measured cross sections is less than 1%. Posi-
tive and negative deviations with respect to the nominal
cross section values are added separately in quadrature
to define the total systematic uncertainty. The final re-
sults are obtained from the combination of CC and CF
measurements. Finally, a 5.8% uncertainty on the total
luminosity is included in the measured cross sections.
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FIG. 1: (a) Measured inclusive jet differential cross section

as a function of pjet

T (black dots) in Z/γ∗(→ e+e−)+jets with
Njet ≥ 1, 2 compared to NLO pQCD predictions (open cir-
cles). For clarity, the measurement for Njet ≥ 1 is scaled up
by (×20). The shaded bands show the total systematic un-
certainty, except for the 5.8% luminosity uncertainty. (b and

c) Data/theory ratio as a function of pjet

T for Njet ≥ 1 and
Njet ≥ 2, respectively. The dashed and dotted lines indicate
the PDF uncertainty and the variation with µ of the NLO
pQCD predictions, respectively.

Figure 1(a) shows the measured inclusive jet dif-

ferential cross sections as a function of pjet
T in

Z/γ∗(→ e+e−)+jets production, with Njet ≥ 1 and
Njet ≥ 2, compared to NLO pQCD predictions. The
data are reported in Table I. The cross sections decrease
by more than three orders of magnitude as pjet

T increases
from 30 GeV/c up to about 300 GeV/c. The NLO pQCD
predictions are computed using the mcfm program [4]
with CTEQ6.1M PDFs [25], with the renormalization
and factorization scales set to µ2 = M2

Z + p2
T (Z), and

using a midpoint algorithm with R = 0.7 and Rsep =
1.3 [26] to reconstruct jets at the parton level. Values
for Rsep between 1.0 and 2.0 change the theoretical pre-
diction by less than 2%. A variation of µ by a factor
two (half) reduces (increases) the theoretical predictions
by 10% to 15%. The uncertainties on the NLO pQCD
predictions due to the PDFs were computed using the
Hessian method [27]. They vary from ±4% at low pjet

T to

±10% at high pjet
T .

The theoretical predictions include parton-to-hadron
correction factors, Chad(Njet, p

jet
T ), that approximately

account for non-perturbative contributions from the un-
derlying event and fragmentation into hadrons (see Ta-
ble I). In each measurement Chad is estimated using the

pythia-tune a Monte Carlo samples, as the ratio be-
tween the nominal pjet

T distribution and the one obtained
by turning off both the interactions between proton and
antiproton remnants and the string fragmentation in the
Monte Carlo samples. The correction decreases as pjet

T in-

creases from about 1.2 (1.26) at pjet
T of 30 GeV/c to 1.02

(1.01) for pjet
T > 200 GeV/c for Njet ≥ 1 (Njet ≥ 2), and

is dominated by the underlying event contribution. In or-
der to estimate the uncertainty on Chad, pythia samples
are generated with a different set of parameters, denoted
as tune dw [28], that governs the underlying event ac-
tivity and also describes the Z/γ∗(→ e+e−)+jets final
states. The uncertainty on Chad is about 10% (17%) at

low pjet
T and goes down to 1% at high pjet

T for Njet ≥ 1
(Njet ≥ 2). The ratios between data and theory as a func-

tion of pjet
T are shown in Fig. 1(b,c). Good agreement is

observed between the measured cross sections and the
nominal theoretical predictions. A χ2 test, where the
sources of systematic uncertainty on the data are con-
sidered independent but fully correlated across pjet

T bins,
and the uncertainty on Chad is also included, gives a χ2

probability of 99% (22%) for Njet ≥ 1 (Njet ≥ 2).

) [
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FIG. 2: (a) Measured total cross section for inclusive jet pro-
duction in Z/γ∗(→ e+e−) events as a function of Njet com-
pared to LO and NLO pQCD predictions. The shaded bands
show the total systematic uncertainty, except for the 5.8%
luminosity uncertainty. (b) Ratio of data and NLO to LO
pQCD predictions versus Njet. The dashed and dotted lines
indicate the PDF uncertainty and the variation with µ of the
NLO pQCD predictions, respectively.

Figure 2 shows the total cross sections, σNjet
,

for Z/γ∗(→ e+e−)+jets events up to Njet ≥ 3.
The measured event cross sections are: σ1 =

7003 ± 146(stat.)+483
−470(syst.) ± 406(lum.) fb, σ2 = 695 ±

37(stat.)+59
−60(syst.) ± 40(lum.) fb, and σ3 = 60 ±

11(stat.)+8
−8(syst.) ± 3.5(lum.) fb, for Njet ≥ 1, Njet ≥ 2,

and Njet ≥ 3, respectively. The data are compared to
LO and NLO pQCD predictions. The parton-to-hadron
non-perturbative corrections vary between 1.1 and 1.4 as
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pjet

T
dσ

dp
jet

T

± (stat.) ± (syst.) ± (lum.) Chad ± (stat.) ± (syst.)

[GeV/c] [fb/(GeV/c)] parton → hadron

Z/γ∗(→ e+e−)+jets (Njet ≥ 1)

30 - 35 413.3 ± 13.3+30.4
−31.3 ± 24.0 1.209 ± 0.010 ± 0.134

35 - 41 263.3 ± 9.4+18.3
−17.4 ± 15.3 1.146 ± 0.010 ± 0.096

41 - 47 178.3 ± 7.5+12.0
−11.6

± 10.3 1.114 ± 0.011 ± 0.077

47 - 54 128.5 ± 5.9+8.7
−8.4 ± 7.5 1.097 ± 0.012 ± 0.066

54 - 62 80.5 ± 4.3+5.5
−6.0 ± 4.7 1.086 ± 0.013 ± 0.059

62 - 72 52.5 ± 3.2+4.4
−4.3

± 3.0 1.078 ± 0.013 ± 0.053

72 - 83 34.2 ± 2.4+2.5
−2.8 ± 2.0 1.072 ± 0.015 ± 0.049

83 - 110 16.0 ± 1.1+1.5
−1.3 ± 0.9 1.063 ± 0.012 ± 0.043

110 - 146 4.9 ± 0.5+0.5
−0.5

± 0.3 1.051 ± 0.012 ± 0.035

146 - 195 1.1 ± 0.2+0.1
−0.1 ± 0.06 1.040 ± 0.008 ± 0.027

195 - 400 0.08 ± 0.03+0.01
−0.01 ± 0.005 1.021 ± 0.005 ± 0.013

Z/γ∗(→ e+e−)+jets (Njet ≥ 2)

30 - 38 52.9 ± 3.5+5.3
−4.6 ± 3.1 1.262 ± 0.022 ± 0.217

38 - 47 37.0 ± 2.8+2.9
−2.8

± 2.1 1.207 ± 0.024 ± 0.169

47 - 59 21.2 ± 1.8+1.9
−1.9 ± 1.2 1.164 ± 0.025 ± 0.130

59 - 79 10.5 ± 1.0+0.9
−1.0 ± 0.6 1.123 ± 0.024 ± 0.093

79 - 109 5.7 ± 0.6+0.7
−0.5

± 0.3 1.087 ± 0.026 ± 0.062

109 - 179 0.88 ± 0.15+0.09
−0.10 ± 0.05 1.052 ± 0.020 ± 0.030

179 - 300 0.15 ± 0.04+0.02
−0.02 ± 0.009 1.026 ± 0.010 ± 0.008

TABLE I: Measured inclusive jet differential cross section
in Z/γ∗(→ e+e−)+jets production as a function of pjet

T with
Njet ≥ 1 and Njet ≥ 2. The systematic uncertainties are fully
correlated across pjet

T bins. The parton-to-hadron correction

factors Chad(pjet

T , Njet) are applied to the pQCD predictions.

Njet increases. For Njet ≥ 1 and Njet ≥ 2, the LO pQCD
predictions underestimate the measured cross sections by
a factor about 1.4, which corresponds to χ2 probabilities
of 0.07% and 2.7%, respectively. Good agreement is ob-
served between data and NLO pQCD predictions, with
χ2 probabilities better than 83%. For Njet ≥ 3, where no
NLO pQCD prediction is available, the measured cross
section indicates that the data can be described by a LO-
to-NLO theoretical factor independent of Njet.

In summary, we report new results on inclusive jet
production in Z/γ∗(→ e+e−) events in pp collisions at√

s = 1.96 TeV for jets with pjet
T > 30 GeV/c and

|yjet| < 2.1, based on 1.7 fb−1 of CDF Run II data. The
measured cross sections are well described by NLO pQCD
predictions including non-perturbative corrections.
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