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We will explore a method for measuring chromaticity by continuously kicking the beam

transversely. This is called the continuous head-tail method for measuring chromaticity. The

complete analytic approximation in terms of trigonometric functions is derived for zero

transverse emittance beam. A simple formula for calculating chromaticity from experimental

data is also shown. Finally, the theory is compared with experimental data.
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I. INTRODUCTION

Continuous chromaticity control up the ramp and through the squeeze will be vital for

operating the Large Hadron Collider (CERN-LHC). It is especially important at the beginning

of the ramp because of snapback where chromaticity swings are expected to drift at a rate of

0:33 s�1 even with preprogrammed chromaticity correction tables [1]. Furthermore, the

tolerance required for nominal 7 TeV head-on collisions operations is �1 unit. It is because

of these tight tolerances that a chromaticity feedback system has been envisioned for the LHC.

However, the best method for measuring chromaticity which has a measurement rate better than

1 Hz has not yet been pinned down. During the 2006 LHC Tune Feedback Review as part of the

U.S. LHC Accelerator Research Program (US-LARP), it was pointed out that there are at least

five different methods for doing this. One method, however, stirred up considerable interest: the

continuous head-tail measurement technique.

To start off the discussion, we will look first at the traditional head-tail method [2]. In this

method, the beam is kicked once transversely and, because of chromaticity, the head and the tail

dephase differently. When the phase difference between the head and the tail is measured, it can

be shown that, when the phases are maximally different, this difference is linearly related to the

chromaticity. However, this technique, although proven to work at both CERN and Fermilab,

suffers from at least three deficiencies: (i) It causes large emittance growth because of the large

kicks. (ii) The chromaticity cannot be continuously measured because after a small number of

kicks (< 5), there is so much beam loss that the signal to noise (S/N) becomes really poor. (iii)

It is not compatible with the phase locked loop (PLL) tune tracking method.

Some preliminary measurements at the Relativistic Heavy Ion Collider (BNL-RHIC) with a

special detector called the [3] direct diode detector baseband tune (3D-BBQ) have shown a

phase difference between the head and the tail which changed with chromaticity. Later work at

the Super Proton Synchrotron (CERN-SPS) performed by the authors and the CERN beam

instrumentation group also measured a phase difference in a few data sets, see Fig. 1. We

believe that those that did not were due to saturation in the 3D-BBQ electronics because,

although the 3D-BBQ electronics is extremely sensitive, it has been demonstrated at both RHIC

and the Tevatron to be prone to saturation [4,5]. With these ambiguous results, it begged a

theoretical understanding of whether the phase difference was real or not and thus this paper. If

this method can be proven to work it has the following advantages: (i) There is already a
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continuous transverse kick from the tune tracker PLL. It has already been demonstrated at

Fermilab, RHIC, and SPS that these small kicks �1 nrad do not blow up the emittance or cause

beam lifetime problems. (ii) No extra modulations are required for the chromaticity measure-

ment. For example, the traditional method for measuring chromaticity requires changing the

RF frequency to change the momentum of the beam. It is compatible with the tune tracker PLL.

Therefore, the goal of this paper is to answer the following two questions: (i) Is there a phase

difference between the head and tail when the bunch is continuously kicked transversely? (ii) Is

there a formula which connects chromaticity to this phase difference if the first item is true?

II. THEORY

The way in which we will find the analytic solution for the phase difference between the head

and the tail of the bunch is the following: (i) We write down the ordinary differential equation

(o.d.e.) which describes the dynamics of a single particle. (ii) We transform to a rotating frame

which simplifies the o.d.e. In this frame, we find that it is a simple harmonic oscillator with two

forcing terms: one from the transverse kick of the tune tracker PLL and the other from the radio

frequency (RF) (which is the source of the synchrotron frequency). (iii) The method of

averaging is used to solve the o.d.e. for two cases: (a) when the transverse kick is on the

betatron frequency and (b) when the transverse kick is close to the betatron frequency. (iv) The

solution in the rotating frame is transformed back to the laboratory frame. (v) The phase

difference between the head and tail is calculated. (vi) The particles in phase space are

projected down from momentum space onto position space so as to reflect what is seen at

the output of the beam position monitors.

A. The differential equation

We can write down the transverse equation of motion for a single particle as

 

d2X�s�

ds2
�
!2
Q

c2
X�s� � 0: (1)

Here X is the transverse position of the particles, s is the longitudinal coordinate, and !Q is the

betatron frequency and c is the speed of light. However, if the particle resides in an RF bucket,

we must consider its longitudinal motion inside the bucket and so the equation of motion

becomes

 

d2X�s; �; z�

ds2
�
!2
Q���

c2
X�s; �; z� � 0: (2)

Here z defines the longitudinal position relative to the center of the RF bucket and � is the

relative momentum difference from the ‘‘on momentum’’ particle. If we expand the betatron

FIG. 1. (Color) Shown here is the phase difference between the head and tail with continuous kicks. The

head-tail phase changed when the chromaticity was increased by 2.5 units. This data was collected by the

authors and the CERN beam instrumentation group during the SPS machine studies period on 29

September 2006.
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frequency to first order in �, we obtain

 !Q��� � !0Q� �!0�; (3)

where !0 is the revolution frequency, Q � !Q=!0 is the betatron tune, and � is the linear

chromaticity. Therefore Eq. (2) becomes

 

d2X�s; �; z�

ds2
�!2

0�Q� ���2=c2X�s; �; z� � 0: (4)

We will approximate the longitudinal motion inside the RF bucket with

 ��s� � �
!s

�c
r sin

�
!ss

c
��

�

z�s� � r cos

�
!ss

c
��

�

; (5)

where!s is the synchrotron frequency, �r;�� is the position of the particle at s=c � 0, and � is

the slip factor. We can write down a linear transformation with maps �z�0�; ��0�	 
 �z0; �0� to

�z�s�; ��s�	:

 

z�s�
��s�

� �

�
cos�!ss

c
� �c

!s
sin�!ss

c
�

� !s

�c
sin�!ss

c
� cos�!ss

c
�

 !

z0
�0

� �

: (6)

We can also think of the map given by Eq. (6) as a frame that is rotating at the synchrotron

frequency. Thus in this frame, Eq. (4) becomes

 

d2x�s; �0; z0�

ds2
�!2

0

�

Q� �

�

�0 cos

�
!ss

c

�

�
!s�0
�

sin

�
!ss

c

���
2

x�s; �0; z0� � 0; (7)

where �0 � z0=c and we have mapped X ! x to remind us that we are in the rotating frame.

Next, let us change variables to use turns n rather than s, i.e.

 n �
s

2�R
)
dn

ds
�

1

2�R
; (8)

where R is the radius of the accelerator. In this variable, Eq. (7) becomes

 

d2x

dn2
�

�

2�Q� 2��

�

�0 cos�2�Qsn� �
!s�0
�

sin�2�Qsn�

��
2

x � 0; (9)

where s=c � 2�n=!0, Qs � !s=!0 is the synchrotron tune.

If the weak sinusoidal kick from the tune tracker PLL is given by �� cos�2�Qkn� where

�� 1,Qk is the frequency of the kick in tune units and � � 1 has the same dimensions as x to

keep the dimensions of the left-hand side and right-hand side (rhs) of the ordinary differential

equation correct, then Eq. (9) with this force is

 �x�

�

2�Q� 2��

�

�0 cos�2�Qsn� �
!s�0
�

sin�2�Qsn�

��
2

x � �� cos2�Qkn; (10)

where d2x
dn2

� �x.

Let us define the following new variables so that it is easier to lug Eq. (10) around:

 	Q 
 2�Q 	s 
 2�Qs 	k 
 �Qk 
 
 2���0 � 1 � 
 �2��!s�0=�� 1:

(11)

Thus Eq. (10) becomes

 �x� �	Q � 
 cosn	s �� sinn	s�
2x 
 �x�W�n�2x � �� cosn	k: (12)

It is clear that (12) is Hill’s equation with an external periodic forcing because W�n� � W�n�
2�=	s�.
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B. The single particle solution

The approach to solving Eq. (12) is to find the solution to the homogenous problem, then

solve for the first order solutions with the method of variation of parameters and, finally, obtain

the single particle solution by the method of averages.

1. Homogeneous solution

The o.d.e. from Eq. (12) with the rhs set to zero is

 �y h �W�n�2yh � 0; (13)

where we have introduced yh to be the solution of this equation. An approximate solution of

Eq. (13) is [6]

 yh � �0e
�i
R
W�n�dn; (14)

where �0 2 C is a constant determined from initial conditions. Therefore, the homogeneous

solution is
 

yh � �01 cos

�

n	Q �
�

	s
sin�n	s � ’�

�

��02 sin

�

n	Q �
�

	s
sin�n	s � ’�

�


 �01y1�n� ��02y2�n�; (15)

where �01, �02 2 R are constants to be derived from initial conditions and

 � �
������������������


2 ��2
q

’ � arctan
�



: (16)

2. Variation of parameters

The two relevant equations which can be written down from Eq. (15) which are prescribed by

the variation of parameters method are

 y � z1�n�y1�n� � z2�n�y2�n� _y � z1�n� _y1�n� � z2�n� _y2�n�; (17)

where z1 and z2 are the equations to be solved from initial conditions. The first order differential

equations which when integrated give us z1 and z2 are
 

_z1 � �
�� cosn	k

	Q
sin

�

n	Q �
�

	s
sin�n	s � ’�

��

1�
�

	Q
cos�n	s � ’�

�

_z2 � �
�� cosn	k

	Q
cos

�

n	Q �
�

	s
sin�n	s � ’�

��

1�
�

	Q
cos�n	s � ’�

�

;
(18)

if we assume that �=	Q � 1. To integrate the above, we will apply the method of averaging.

3. Averaging

Notice that the rhs of Eq. (18) is not periodic but almost periodic because of the three tunes

	k, 	Q, and 	s. The nonlinear averaging theorems described by Hoppensteadt [7] can be used to

approximately integrate these two first order differential equations.

The definition of averaging of a function f�t1; t2; . . .� with respect to (w.r.t.) t1 in this theorem

is

 

�f�t2; t3; . . .� 
 lim
T!1

1

T

Z T

0

X1

n�0

fn�t2; t3; . . .�e
i!nt1dt1; (19)

where fn�� are the Fourier coefficients for the expansion of f�t1; t2; . . .� in t1 and !n. In this

context, n	Q and n	s are treated as independent variables when we perform averaging.
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Furthermore, we will find solutions for only j	k � 	Qj � 1 because the tune tracker PLL is

always assumed to lock onto the betatron tune or close to it.

Suppose the tune tracker PLL locks close or onto 	Q, i.e. j	k � 	Qj � 1. Let us write

 	k � 	Q � �	Q: (20)

When we substitute this into Eq. (18) we get

 

_z1 � �
��

	Q
�cosn	Q cosn�	Q � sinn	Q sinn�	Q�

�

sinn	Q cos

�
�

	s
sin�n	s � ’�

�

� cosn	Q sin

�
�

	s
sin�n	s � ’�

��

_z2 � �
��

	Q
�cosn	Q cosn�	Q � sinn	Q sinn�	Q�

�

cosn	Q cos

�
�

	s
sin�n	s � ’�

�

� sinn	Q sin

�
�

	s
sin�n	s � ’�

��

;

(21)

if �=	2Q � 0. When we average over n	Q, we get

 

_�z1 �
��

2	Q

�

sinn�	Q �
�

	s
cosn�	Q sin�n	s � ’�

�

_�z2 �
��

2	Q

�

cosn�	Q �
�

	s
sinn�	Q sin�n	s � ’�

�

;
(22)

if we assume that �=	s � 1. Equation (22) is actually integrable and so we get

 

�z1 � �
��

2	Q

�
cosn�	Q
�	Q

�
�

	s��	
2
Q � 	2s�

�	s cosn�	Q cos�n	s � ’�

��	Q sinn�	Q sin�n	s � ’�	

�

�z2 � �
��

2	Q

�
sinn�	Q
�	Q

�
�

	s��	
2
Q � 	2s�

�	s sinn�	Q cos�n	s � ’�

��	Q cosn�	Q sin�n	s � ’�	

�

:

(23)

As expected, as �	Q ! 0, cosn�	Q=�	Q ! 1 in the �z1 equation. This singularity will be

removed when the initial conditions are included in the full solution [8]. The secular term arises

when �	Q ! 0, sinn�	Q=�	Q ! n, which is exactly what we expect when the excitation is

exactly on the betatron tune. Furthermore, we notice that there are extra singularities which

occur when �	Q � �	s.

Carrying on, we can calculate the particular integral from Eq. (17) and therefore, the

complete solution to Eq. (10) when 	k � 	Q � �	Q is
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y � yh � yp

�

�

�01 �
�� cosn�	Q
2	Q�	Q

�

cos

�

n	Q �
�

	s
sin�n	s � ’�

�

�

�

�02 �
�� sinn�	Q
2	Q�	Q

�

 sin

�

n	Q �
�

	s
sin�n	s � ’�

�

�
���

4	Q	s

�
1

�	Q � 	s
cos

�

n�	Q � �	Q� �
�

	s
sin�n	s � ’� � �n	s � ’�

�

�
1

�	Q � 	s
cos

�

n�	Q � �	Q� �
�

	s
sin�n	s � ’� � �n	s � ’�

��

: (24)

C. Laboratory frame

All the calculations that we have done so far are in the frame that follows the single particle.

In the laboratory frame, we measure the transverse position of the beam once a turn at the

longitudinal positions ��B while we continuously kick the beam. To arrive at an analytic

solution for this paper, we will make the assumption that the beam is matched to the RF bucket,

i.e., in the ��; �� plane the particle distribution is stationary [9]. This means that the particles are

dense on the contour rB=c, see Fig. 2. The series of pictures here give us a clue for how to

FIG. 2. (Color) These series of pictures tell us how to calculate the transverse position of the beam at

�rB=c;�B�. The angle between each vector is 	s. Note: (a) the labels ��̂B; �̂B�, ��̂1; �̂1�, etc., are the initial

conditions at n � 0 which are used to calculate �01 and �02 of Eq. (24). (b) The circle rB=c contains a

dense set of points. We only highlight the points which are relevant for the calculation.

(c) �B � n	s � ’̂B � n	s because ’̂B � �=2��B.
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calculate the transverse position of the beam at �rB=c;�B� for all n. Note that the labels

��̂B; �̂B�, ��̂1; �̂2�; . . . , are the initial conditions at n � 0 which are used to calculate �01 and

�02 of Eq. (24). Notice that we have used the symbol ‘‘̂ ’’ to denote initial conditions at n � 0.

At time n � 0, the point labeled ��̂B; �̂B� is at the observation point. The point ��̂1; �̂1� is at an

angle 	s away from ��̂B; �̂B�. So at time n � 1, ��̂B; �̂B� rotates counterclockwise away by 	s
and the point ��̂1; �̂1� now lands at the observation point. At n � 2, the point ��̂1; �̂1� rotates

away by 	s and the point ��̂2; �̂2� lands at the observation point. This continues ad infinitum.

Therefore, at the observation point, the transverse amplitude ŶB�n� [the symbols are here to

remind us that the amplitude is measured at point �rB=c;�B� and uses initial conditions

��̂B; �̂B�, ��̂1; �̂1�; . . . ] is simply

 Ŷ B�n� �

8

>>>>><

>>>>>:

y�0� if n � 0 with initial conditions ��̂B; �̂B�

y�1� if n � 1 with initial conditions ��̂1; �̂1�

y�2� if n � 2 with initial conditions ��̂2; �̂2�

..

. ..
.

(25)

where y�n� comes from Eq. (24). For the remainder of this paper, we will use the y�n� from

Eq. (24). It will be more convenient if we write the initial conditions ��̂n; �̂n� in terms of

��̂B; ’̂B�. It is easy to show from Eq. (16) and � and 
 from Eq. (11) that
 

�̂n �

8
><

>:

� ��̂B
2��!s

sin�n	s � ’̂B� if 
B; �B > 0 or 
B < 0; �B > 0

� ��̂B
2��!s

sin�n	s � ’̂B� if 
B; �B < 0 or 
B > 0; �B < 0

�̂n �

8
><

>:

� �̂B
2��

cos�n	s � ’̂B� if 
B; �B > 0 or 
B < 0; �B > 0

�̂B
2��

cos�n	s � ’̂B� if 
B; �B < 0 or 
B > 0; �B < 0

(26)

and so with the above relationship, we can write ŶB�n� as

 Ŷ B�n� �

8
>>>>>><

>>>>>>:

y�0� if n � 0 with initial conditions ��̂B; ’̂B�
y�1� if n � 1 with initial conditions ��̂B; 	s � ’̂B�
y�2� if n � 2 with initial conditions ��̂B; 2	s � ’̂B�

..

. ..
.

: (27)

1. ŶB for zero transverse emittance case

For the zero transverse emittance case with y�0� � _y�0� � 0, we can show that �01 and �02

in terms of � and ’ are [10]
 

�01��;’� � ��

�

�
1

4	Q�	Q � � cos’�
cos

�
2�

	s
sin’

�

�
1

4	Q	s�	Q � � cos’�



�

	s � � sin’ sin

�
2�

	s
sin’

��

�
1

2�	Q	Q
�

� cos’

2��	2Q � 	2s��	Q � � cos’�



�

1�
� cos’

	Q

��

�02��;’� � ��

�
1

4	Q�	Q � � cos’�
sin

�
2�

	s
sin’

�

�
� sin’

2	Q	s

�cos2��
	s
sin’�

	Q � � cos’
�

�	Q

�	2Q � 	2s

��

;

(28)

and so from Eq. (27), ŶB�n� is easily derived by mapping �! �̂B and ’! �n	s � ’̂B� of y.

Thus, the analytic solution for the transverse amplitude at ��̂B; ’̂B� for all n is

7



 

ŶB�n� �

�

�01��̂B; n	s � ’̂B� �
�� cosn�	Q
2	Q�	Q

�

cos

�

n	Q �
�̂B
	s

sin’̂B

�

�

�

�02��̂B; n	s � ’̂B� �
�� sinn�	Q
2	Q�	Q

�

sin

�

n	Q �
�̂B
	s

sin’̂B

�

�
���̂B
4	Q	s

�
1

�	Q � 	s
cos

�

n�	Q ��	Q� �
�̂B
	s

sin’̂B � ’̂B

�

�
1

�	Q � 	s
cos

�

n�	Q ��	Q� �
�̂B
	s

sin’̂B � ’̂B

��

: (29)

It is interesting to note that the time dependent synchrotron term n	s is now embedded in �01

and �02 and removed from the terms cosn	Q, sinn	Q, cosn�	Q � �	Q�, and sinn�	Q � �	Q�.

The reason why there can be any phase difference between the head and the tail originates from

here. This means that, if we had ignored the initial conditions, we would have obtained an

incorrect solution.

2. Changing perspective

To calculate the phase difference between the head and tail, we will first change perspective

from that of a fixed betatron tune 	Q and variable kick tune 	k to that of a fixed 	k and variable

	Q because ultimately this is what is done in our experiment when we use the tune tracker PLL:

we measure phase w.r.t. the frequency of the kick and not the betatron frequency. In this

perspective, we have

 	Q � 	k � �	Q (30)

from Eq. (20), and thus ŶB�n� is transformed to this perspective with a trivial change of

variables, where we just replace 	Q with 	k � �	Q to become
 

Ŷk;B�n� �

�

�01��̂B; n	s � ’̂B� �
�� cosn�	Q

2�	k � �	Q��	Q

�

cos

�

n�	k � �	Q� �
�̂B
	s

sin’̂B

�

�

�

�02��̂B; n	s � ’̂B� �
�� sinn�	Q

2�	k ��	Q��	Q

�

sin

�

n�	k � �	Q� �
�̂B
	s

sin’̂B

�

�
���̂B

4�	k � �	Q�	s

�
1

�	Q � 	s
cos

�

n	k �
�̂B
	s

sin’̂B � ’̂B

�

�
1

�	Q � 	s
cos

�

n	k �
�̂B
	s

sin’̂B � ’̂B

��

; (31)

where we have added k to the subscript of Ŷk;B�n� to remind ourselves that we are in the

perspective of the kicker and the new functions �k;01�� and �k;02�� are �01�� and �02�� with

	Q ! 	k � �	Q i.e.

 �k;01��̂B; n	s � ’̂B� � ��

�

�
cos�2�̂B	s sin�n	s � ’̂B�	

4�	k � �	Q��	k ��	Q � �̂B cos�n	s � ’̂B�	

�
f	s � �̂B sin�n	s � ’̂B� sin�

2�̂B
	s

sin�n	s � ’̂B�	g

4	s�	k � �	Q��	k ��	Q � �̂B cos�n	s � ’̂B�	

�
1

2�	k � �	Q��	Q

�
�̂B cos�n	s � ’̂B��1�

�̂B cos�n	s�’̂B�
	k��	Q

�

2��	2Q � 	2s��	k � �	Q � �̂B cos�n	s � ’̂B�	

�

; (32)

and
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 �k;02��̂B; n	s � ’̂B� � ��

� sin�2�̂B
	s

sin�n	s � ’̂B�	

4�	k � �	Q��	k ��	Q � �̂B cos�n	s � ’̂B�	

�
�̂B sin�n	s � ’̂B�

2�	k ��	Q�	s

� cos2��̂B
	s

sin�n	s � ’̂B�	

	k ��	Q � �̂B cos�n	s � ’̂B�
�

�	Q

�	2Q � 	2s

��

:

(33)

When we look at Eqs. (31) and (33)—which are rather complicated—very carefully, we can

extract out two different cases. The first is when j�	Qj � 	s � 1 or �	Q � 0, i.e., the kick is

very close to the betatron tune but not on a synchrotron line or on the betatron tune. The other

case is when j�	Qj � 	s � 1, i.e. when the kick is close to or on a synchrotron line. The

second case will not be considered in this paper but has been discussed elsewhere [11].

3. Solution when j�	Qj � 	s � 1 or �	Q � 0

In this case, the dominant terms in Eq. (31) are those with coefficients which contain 1=�	Q.

Picking these out, we have
 

Ŷ�	Q;k;B
�n� � �

��

2�	k ��	Q��	Q

�

cos

�

n�	k ��	Q� � n�	Q �
�̂B
	s

sin’̂B

�

� cos

�

n�	k � �	Q� �
�̂B
	s

sin’̂B

��

; (34)

and the string of Ŷ subscripts has increased with the addition of �	Q which reminds us that we

are only looking at terms which contain 1=�	Q.

4. Averaged transverse position

To obtain an averaged transverse position X̂, we have to integrate Ŷ over � [12], see Fig. 3.

Note that the � distribution is time independent because we have assumed that the ��; ��
distribution is matched to the bucket and thus stationary. Let ��B; �� 
 ��� be the density of

particles in the ��; �� plane which is normalized, i.e.

 

Z 1

�1
d���� � 1: (35)

Therefore, the fraction of particles in the small segment � is d� which gives us the weight

for calculating the average X̂, i.e.

 X̂ 	k;k;B
�
Z 1

�1
d����Ŷ	k;k;B: (36)

Thus, the averaged transverse position X̂ at �B is
 

X̂�	Q;k;B�n� � �
��

2�	k ��	Q��	Q

�

cos

�

n�	k ��	Q� � n�	Q �
�!0�B
�

�

� cos

�

n�	k � �	Q� �
�!0�B
�

��

; (37)

which is independent of . If we define  to be the phase w.r.t. the kick �� cosn	k, then it is

easy to show that

  � arctan

�cos�3
2
n�	Q � �!0�B

� �

sin�3
2
n�	Q � �!0�B

�
�

�

� � � �
�

2
�

3

2
n�	Q �

�!0�B
�

; (38)

because cot	 � tan��=2� 	� and the �� is from the ‘‘�’’ sign in front of ��. Equation (38)
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makes physical sense, because we expect  � ��=2 at resonance when �B � 0. Now, from

Eq. (38), we can immediately read off the phase difference  ��; �B� between the head at ��B
w.r.t. the tail at ��B to be

 � ��; �B� � �
2�!0�B
�

; (39)

which is astonishingly simple for all the work that we have done. However, we must again

remind ourselves that Eq. (39) is only valid if �	Q � 	s � 1 or �	Q � 0. Note: The head-tail

phase difference has also been derived by Fartoukh [13] using a different method and agrees

with our answer. We have also used numerical calculations to verify this formula as well as

Eq. (29). The numerical results agree very well with the analytic solutions.

III. EXPERIMENT

In this experiment, the basic idea is for us to continuously kick the beam vertically with the

AC-dipole. The phase difference between the head and tail due to this kick is then measured and

plotted for different chromaticities. The advantage of doing it this way is because the AC-dipole

kicks are big enough to be seen directly with an oscilloscope and so do not require any special

high gain electronics. Furthermore, this method is independent of the tune tracker PLL

electronics which gave ambiguous results (discussed in the Introduction). Unfortunately, the

disadvantage is that the transverse emittance will blow up because the AC-dipole kicks are very

close to the betatron tune.

Practically, we must first calibrate the knob T:CYINJ which we will use to change the

vertical chromaticity. We do this by measuring the vertical chromaticity �v for different

T:CYINJ settings. The reason for using uncoalesced [14] rather than coalesced [15] beam is

because it is much easier to measure chromaticity with uncoalesced beam with the traditional

change of RF frequency method than with coalesced beam. The fit that we have found is

 �v � �0:78� 0:03�  T:CYINJ� �16:6� 0:8�: (40)

FIG. 3. (Color) The blue curve represents the bunch signal at a beam position monitor. The point

��B; X̂k��; �B; n�� comes from integrating Ŷ over all the particles in the red line and thus gives us an

averaged position X̂ at �B. The magenta surface is the distribution of particles in ��; �; X� space. We have

a sheet because of the initial conditions. The green line is the intersection between the plane at constant

�B and the magenta surface.
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From this fit, we find that the error in the value of �v when we are given T:CYINJ is

approximately �0:65 units at a confidence level of 95% for the range of T:CYINJ that we

will be setting. See Fig. 4.

The experimental setup is shown in Fig. 5 [16]. We inject one coalesced bunch, which

contains about 330 109 protons, to be used for the entire experiment. We set the chromaticity

with T:CYINJ and then we kick the bunch transversely with the AC-dipole for a short period of

time for each head-tail phase measurement. The reason for turning off the AC-dipole is to keep

the vertical emittance growth to a minimum. The exact ramp waveform of the AC-dipole is

shown in Fig. 5. The frequency of the kick is set to 0:6 10�3 tune units �<Qs � 1:7 10�3�

FIG. 4. (Color) The T:CYINJ knob is calibrated with chromaticity measured with uncoalesced beam

instead of coalesced beam. The dotted lines are the 95% confidence intervals.

FIG. 5. The experimental setup consists of an AC-dipole at E17 and a stripline with its electronics at

F0. The AC-dipole is ramped up to its set voltage in 20 ms and stays at flattop for about 100 ms

(equivalent to about 10 synchrotron periods or 5000 turns) and then ramped down again in 20 ms.
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FIG. 6. (Color) This shows the calculated phase difference between the head w.r.t. tail. This plot is for

�v � 4, �B � 0:8 ns. The phase difference is � � �30� 7�� during the 100 ms (5000 turns) flattop

period of the AC-dipole kicker. See Fig. 5. The ripples during this time give us the error of the phase

measurement. single kick computer

simulation which includes the efparameters!

0 � 2� � v

� b�; ( 4 1 )

w h e r e

F I G . 7 . ( C o l o r ) T h e s e p l o t s s h o w t h e d a t a a n a l y z e d f o r�B � 0:4 ns, 0.8 ns, and 1.2 ns. The red line is



below the vertical betatron tune which is at 0.5776. The transverse position of the head and the

tail are measured with a fast sampling oscilloscope and the phase difference is calculated off-

line. After each change of chromaticity, we move the vertical tune if necessary to ensure that the

betatron tune remains at 0.5776. Despite having set the AC-dipole kick to its minimum value,

the vertical emittance measured with the flying wires system, grows from 17� mmmrad to

36� mmmrad during the experiment. The sigma bunch length B did not change during this

time and is 2.9 ns.

Figure 6 shows an example of the head-tail phase difference which we have analyzed. In this

example �v � 4 and �B � 0:8 ns. From here it is unambiguous that there is a phase difference

between the head w.r.t. tail.

The measured phase difference � for three values of �B � 0:4 ns, 0.8 ns, and 1.2 ns versus

�v are shown in Fig. 7. The red line is the expected � as a function of �v from Eq. (39) where

we have used the Tevatron parameters !0 � 2� �47:71 103� s�1 and � � 0:0028. To

check how good our theory fits to the data despite the nonzero vertical emittance, we have

calculated �2 and the reduced �2 for these three cases which are summarized in Table I.

For all three �B cases, the �2 and the reduced �2 results tell us that the phase difference data

does not match Eq. (39) very well and, in fact, this is rather obvious by eye from Fig. 7.

We suspect that there are nonlinear components in � that are not taken care of in the theory.

If we assume that the lowest power nonlinear term is quadratic in �, then we can try to fit the

data with this added �2 term,

 � �deg� � �v�a�v � b�; (41)

where a and b are fit parameters. The blue curves in Fig. 7 show the quadratic fit and Table II

shows the fit parameters.

It is clear from the plots that the quadratic fits are rather good despite the wildly different

reduced �2 for each case.

A. Sources of the nonlinearity

Equation (39) has been derived by assuming that the RF bucket is linear and that the

transverse emittance is zero. The effects of nonlinearity from transverse impedance, second

order chromaticity as well as amplitude driven effects have not been included. A full account-

ing of all these effects is beyond the scope of this paper and would require a complete numerical

simulation where the beam is driven resonantly.

TABLE I. �2 comparison between experiment and theory.

�B (ns) �B=B �2 P ( � �2) Reduced �2

0.4 0.14 5.8 0.67 0.72

0.8 0.28 9.6 0.29 1.2

1.2 0.41 8.8 0.35 1.1

TABLE II. Quadratic fit of data.

�B (ns) �B=B a b Reduced �2

0.4 0.14 0:8� 0:1 1:6� 0:5 0.42

0.8 0.28 1:5� 0:3 3� 1 0.59

1.2 0.41 2:2� 0:4 4� 1 0.97
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However, some preliminary insight can be gained by considering a single kick computer

simulation which includes the effects of transverse impedance from short range resistive wall

wakefields, linear and second order chromaticity. These simulations seem to indicate that

neither second order chromaticity by itself nor resistive wall impedance by itself can account

for the observed phase structure. This is because the phase effects of 2nd order chromaticity by

itself cancel when the phase difference between the head and the tail is calculated. The effect of

the impedance of the beam pipe can introduce a nonlinear phase response which can be seen in

Fig. 8. It is clear from this figure that the nonlinear effect becomes more pronounced as the

effective impedance Zeff is increased from zero to 1:5 M�=m at 100 MHz. Note: 1:5 M�=m at

FIG. 8. (Color) The effect of resistive wall wakefield on the measured phase difference between the head

slice ( � 0:4 ns from bucket center) and the tail slice ( � 0:4 ns from bucket center) for a single kick.

FIG. 9. (Color) The effect of resistive wall wakefield and 2nd order chromaticity on the measured phase

difference between the head slice ( � 0:4 ns from bucket center) and the tail slice ( � 0:4 ns from bucket

center) for a single kick. In the presence of wakefields, 2nd order chromaticity can now contribute to the

phase response, and as it increases, the maximum phase difference shifts to higher chromaticity. The

curvature of the phase difference before the peak has a similar flavor to the measured phase difference

shown in Fig. 7.
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100 MHz is a realistic value for the Tevatron from previous analysis. However, resistive wall

impedance by itself fails to fully capture the observed phase response [17]. When both 2nd

order and resistive wall impedance effects are included, a complex interplay between these

effects is observed which can be seen in Fig. 9. In this simulation three different values of

second order chromaticity are used to illustrate the behavior of the head-tail phase difference as

a function of linear chromaticity. For reference, the Tevatron 2nd order chromaticity is �1000.

Notice that, as the second order chromaticity is increased, the maximum phase difference

moves towards higher chromaticity and the curvature of the phase difference before the

maxima takes on a similar look to the measured data shown in Fig. 7. However, it must be

emphasized that these simulations have been performed with a single kick instead of a

resonantly driven system and so a direct comparison cannot be made between these two results.

IV. CONCLUSION

We have found an analytic approximation for the weakly forced Hill’s equation which

describes the transverse motion of the beam in the presence of chromaticity for a single particle.

We have checked that our analytic approximation matches very closely to the numerically

integrated solution. From here, we have derived an analytic approximation which shows that

there is a phase difference between the head and tail for a zero transverse emittance but nonzero

longitudinal bunch length. A simple formula for this phase difference has been derived when

the kick tune is very close to the betatron tune.

For the experiment, we have used the AC-dipole to excite the beam transversely and then

measured the head-tail phase of the bunch. We have shown that there is a phase difference

between the head and tail and thus have removed any lingering doubts as to whether the effect is

real or not. From the measured data, we have found that there are nonlinear terms which are not

taken care of by the theory. There are several possible sources for these terms, with short range

wakefields coupling with second order chromaticity being the best candidate. The exact nature

of this coupling will have to be resolved with computer simulations in the future.
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