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Abstract

We readdress the problem of finding a simultaneous description of the pion form factor
data ine+e− annihilations and inτ decays. For this purpose, we work in the framework
of the Hidden Local Symmetry (HLS) Lagrangian and modify thevector meson mass term
by including the pion and kaon loop contributions. This leads us to define the physical
ρ, ω and φ fields as linear combinations of their ideal partners, with coefficients being
meromorphic functions ofs, the square of the 4–momentum flowing into the vector me-
son lines. This allows us to define a dynamical,i.e. s-dependent, vector meson mixing
scheme. The model is overconstrained by extending the framework in order to include the
description of all meson radiative (V Pγ andPγγ couplings) and leptonic (V e+e− cou-
plings) decays and also the isospin breaking (ω/φ → π+π−) decay modes. The model
provides a simultaneous, consistent and good description of thee+e− andτ dipion spectra.
The expression for pion form factor in the latter case is derived from those in the former
case by switching off the isospin breaking effects specific to e+e− and switching on those
for τ decays. Besides, the model also provides a good account of all decay modes of the
form V Pγ, Pγγ as well as the isospin breaking decay modes. It leads us to propose new
reference values for theρ0 → e+e− andω → π+π− partial widths which are part of our
description of the pion form factor. Other topics (φ → KK, theρ meson mass and width
parameters) are briefly discussed. The most important consequence of this work is indirect
and confirms the known 3.3σ discrepancy between the direct BNL measurement of the
muon anomalous moment and its theoretical estimate relyingon e+e− data.
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1 Introduction

In order to study the phenomenology of light flavor mesons below 1 GeV, like partial de-
cay widths or meson form factors, one needs a framework whichincludes in a well defined
manner the lowest mass nonets of pseudocalar (P) and vector (V) mesons. Such a frame-
work is well represented by the hidden local symmetry (HLS) model [1, 2]. In this approach,
vector mesons are gauge bosons of a spontaneously broken hidden local symmetry which gen-
erates their (Higgs–Kibble, HK) masses. Besides the non–anomalous sector, this model has an
anomalous sector, hereafter called FKTUY Lagrangian [3], which aims at describing couplings
of the formV V P , V Pγ Pγγ, V PPP for light flavor mesons.

In its original form, the full (non–anomalous and anomalous) bare HLS Lagrangian fulfills
theU(3) symmetry, as it possesses both Nonet Symmetry andSU(3) flavor symmetry. As
such, the HLS model covers a limited phenomenological scope. In order to broaden this scope,
especially in order to account forV Pγ andPγγ couplings as derived from measured partial
widths, the original HLS model should be supplemented with symmetry breaking mechanisms.

SeveralSU(3) symmetry breaking schemes have been proposed [4, 5, 6] following the
original idea of Bando, Kugo and Yamawaki (BKY) [7]. It has been shown [8, 9] that the most
successful variant is the so–called “new scheme” of Ref. [6]briefly recalled in Appendix C.
However, breaking only theSU(3) symmetry is insufficient [8, 9] in order to reach a satis-
factory description of the data onV Pγ andPγγ couplings which requires one to also break
Nonet Symmetry. This was first performed in anad hoc manner in [8] with the aim of recover-
ing the radiative decay couplings of O’Donnell [10] which isthe most general set fulfilling only
SU(3) symmetry ; therefore, the model developed in [8] was indeed in agreement with gen-
eral group theoretical considerations with additionally amechanism smoothly breakingSU(3)
flavor symmetry.

Slightly later, it was shown [9, 11] that an appropriate mechanism for Nonet Symmetry
breaking can be produced by adding determinant terms [12] tothe HLS Lagrangian ; the result
was shown to meet all properties of Extended Chiral Perturbation Theory (EChPT) [13, 14, 15]
at leading order in the breaking parameters. Additionally,it was also proved [11] that the
Nonet Symmetry breaking mechanism proposed in [8] was indeed an appropriate approxima-
tion of the (rigorous) mechanism derived from adding the determinant terms to the bare HLS
Lagrangian.

However, breakingSU(3) and Nonet symmetries is still not enough to be in position of
describing fully the whole set of radiative decaysV Pγ ; indeed, a process likeφ → π0γ
requires including aω − φ mixing scheme ; additionally, any global fit of all availableV Pγ
transitions cannot be successful without introducing sucha mixing. Traditionally, theω − φ
mixing is described [8, 9] by rotating the fieldsωI andφI which are the entries of the bare
vector field matrix, generally called ideal fields. An angle involving the mixing of theη and
η′ mesons is also required which has been shown [11] to vanish inthe limit of exactSU(3)
symmetry of the HLS Lagrangian.

A short account of the HLS model in its anomalous (FKTUY) and non–anomalous sectors
is given in Appendices A and B, mostly focused on the subject of this work. Appendix C
describes shortly but fully the various symmetry breaking procedures and the field renormal-
ization scheme, except for theSU(2) breaking mechanism which is the main subject of this
paper. All this illustrates that the model depends on a very few number of free parameters as
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clear from Appendix D where they all appear. Among these freeparameters, some are spe-
cific to our HLS based model, but some others are constrained.For instance, one of the two
SU(3) breaking parameters is the ratio of decay constantsfK/fπ and can be constrained by the
corresponding measured value.

On another hand, decay processes likeω/φ → π+π− can hardly be understood without
some scheme forρ0 − ω andρ0 − φ mixings. Moreover, the decay behaviour ofρ0 andρ±

cannot differ at the coupling constant level. It happens that the HLS model at one loop order
provides a mechanism which allows us to perform a fullρ0 − ω − φ mixing starting from
the corresponding ideal (bare) fields. Within the non–anomalous HLS Lagrangian, the precise
mechanism, kaon loop contributions, has been already described in [16]. However, we shall
see that the (FKTUY) anomalous sector providesK∗K loops as additional mechanism.

Within the HLS model, as recalled below,Vi ↔ Vj transitions among the idealρ0
I , ωI andφI

fields are generated by loop effects ; these transitions generally have not a constant amplitude
but rather depend on the squared 4–momentum flowing through theVi (andVj) line(s). We
show in Section 4 that charged and neutral kaon andK∗K loops come through their sum in
theωI ↔ φI amplitude, while they come through their difference inρ0

I ↔ φI andρ0
I ↔ ωI

amplitudes. This also means that theω − φ mixing proceeds from quantum effects rather than
symmetry breaking effects, in contrast with theρ0 − ω or ρ0 − φ mixings. These transition
amplitudes are given by Dispersion Relations which should be subtracted in order to make the
integral convergent (see, for instance, Appendix A in [9]).This gives rise to polynomials with
real coefficients to be fixed using external renormalizationconditions.

In the exact SU(3) symmetry limit, charged and neutral kaonscarry the same mass and one
can expect (or require) the polynomials associated with thecharged and neutral kaon loops
to coincide. Likewise, the charged and neutralK∗K loop functions can be made equal. In
this case, theωI ↔ φI amplitude survives with its renormalization polynomial, while the
ρ0

I ↔ φI andρ0
I ↔ ωI transition amplitudes exactly vanish. If one breaks the SU(3) flavor

symmetry leaving conserved the(u, d) quark sector, the same conclusion holds. However, if
one introduces a breaking ofSU(2) flavor symmetry, the mass difference beweenu and d
quarks generates a mass difference between the charged and neutral kaons (andK∗’s). Then,
the three possible transition amplitudes do not identically vanish any longer and, moreover,
they depend on the invariant mass associated by the 4-momentum flowing through the vector
meson lines. Stated otherwise : theρ0

I , ωI andφI mixing into the physicalρ0, ω andφ fields
should also be invariant mass dependent. As already noted in[9, 16] this implies that the vector
squared mass matrix, which has to be diagonalized in order todefine the physical fields, is also
invariant mass dependent and that the notion of mass for the physical vector fields becomes
unclear as soon as one goes beyond tree level.

The property thatρ0 − ω mixing should be invariant mass dependent has been the subject
of several studies in the framework of general local effective field theories [17], then in Vector
Dominance Models [18, 19] where it was pointed out that the mixing amplitude should vanish
at s = 0, as theρ0 andω self–masses, in order to preserve gauge invariance. One mayalso
quote other studies going in the same direction [20, 21] attributing the mixing to finite width
effects, or quark loops (and pion loops). Using only the pionform factor data available at that
time, Ref. [22] derived an approximate expression for theρ0 − ω mixing amplitude ; however,
limiting that much the kind of data used, one cannot really observe a clear mass dependence
effect. On the other hand, one should also note that Ref. [23]proved that isospin violation
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effects describing theρ0−ω mixing are not accounted for by the low energy constants (LEC) of
Chiral Perturbation Theory (ChPT) but are generated near threshold by the difference between
charged and neutral kaon loops ; it was also shown that these effects are tiny at the two–pion
threshold (10−4) while they are known to be at the percent level in resonance peak region. This
illustrates the invariant mass dependence of theρ0 − ω mixing. However, one should note that
the absence of the LECs in this calculation suggests a one-loop result may be unreliable.

Therefore, the question we address is to consider the effects of loops onρ0, ω, φ mixing.
However, in order to have some chance to single out the mass dependent behaviour, one clearly
has to treat simultaneously the pion form factor data in the spacelike and timelike regions
together with the largest possible set of light meson decays(radiative, leptonic and isospin
violating strong decays) within a single framework. As argued above, the HLS model, equiped
with suitable symmetry breaking mechanisms, seems able to provide such a framework. We
shall not try to include Isospin Symmetry breaking effects into the coupling constants which
would help by providing more parameter freedom in the fit procedures. If really needed, it can
certainly be done along the lines of the BKY breaking scheme [7, 6] as illustrated by [24].

The question of having a unified description of the largest possible set of low energy
data is by itself interesting. However, this also addressesthe puzzling and long–standing prob-
lem of the difference between the (estimated) isospin 1 partof the pion form factor ine+e−

annihilations and inτ decays which are related through the Conserved Vector Current assup-
tion (CVC). The importance of the problem is enhanced by its implication for the predicted
value of the muon anomalous magnetic momentaµ to be compared with the direct BNL mea-
surement [25] ; refering to the latest account by M. Davier [26] the estimate of the hadronic
vacuum polarization (which enters the theoretical estimate) derived frome+e− data provides a
3.3σ disagreement between the theoretical estimation ofaµ and the BNL direct measurement
[25] ; moreover, theτ data estimate of the hadronic vacuum polarization providesa value ofaµ

very close to its direct measurement [26].
Except for an experimental problem withe+e− annihilation data (which seems by now

unlikely) in the data recently collected at Novosibirsk [27, 28, 29, 30], or some new (or uniden-
tified) physics effect, the disagreement betweene+e− andτ data [31, 32, 33] is hard to explain.
Indeed,a priori the single difference between these two channels, should bedue to Isospin
Symmetry breaking (IB) effects. However, the comparison has been already performed with
IB effects accounted for in bothe+e− andτ data. This includes [34, 35, 36] pion mass values
in kinematical factors, (a parametrization of the)ρ−ω mixing, charged and neutralρmass and
width differences, short range [37] and long range [38, 39, 40, 41, 42, 43] IB effects in theτ
partial decay width to two pions.

This persistent disagreement may point towards new physicseffects [44] ; however, one
should also note that the way some IB effects are accounted for has been questioned several
times. For instance, effects due to the charged and neutralρ pole positions [45, 46] were
considered, but have not been found sufficient in order to solve the observed discrepancy [35,
36] ; ρ − ω mixing effects may also have been poorly estimated [47]. However, based on sum
rules derived using an OPE input, K. Maltman [48, 49] concluded there is inconsistency of the
(presently) estimated isospin 1 part ofe+e− data with expectation, whileτ data provide a nice
agreement.

We plan to address this question once again by building an effective model relying on the
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(symmetry broken) HLS model. In this approach, we plan to have a framework giving simul-
taneously an account of the partial decay widths of light mesons decays (radiative, leptonic,
isospin breaking decay modes), of the pion form factor ine+e− data (both timelike and space-
like) and inτ decay. By construction, the corresponding expressions of the pion form factor
will be such that they will solely differ from each other by Isospin Symmetry breaking effects,
mostly located in the(ρ, ω, φ) mixing scheme which, of course, has no counterpart inτ decay.
Stated otherwise, our model is built in such a way that going from the pion form factor expres-
sion ine+e− annihilations to the expression valid forτ decays is performed by switching off
IB effects specific toe+e− and switching on those specific toτ decays.

At start, the model we built is rendered complicated by the large number of possible loops
involved. Fortunately, it can be somewhat simplified without loosing too much physics in-
sight. Of course, this model depends on some parameters to befixed in a fitting procedure ;
we should define a fitting procedure flexible enough thatτ decay data can be removed or kept.
Stated otherwise, the light mesons decays and the pion form factor ine+e− data are expected
to fix practically the U(3)/SU(3)/SU(2) breaking model. In this approach, we may get a predic-
tion of theτ decay 2–pion spectrum which can be compared with the existing measurements.
Includingτ decay data should only refine the values of the fitted parameters.

The paper is organized as follows : In Section 2, we derive theLagrangian pieces of
relevance in order to deal with the pion form factor ine+e− annihilations andτ decays, while
in Section 3 we give the pion form factor expressions withoutloop corrections and symmetry
breaking effects, mostly for illustration. In Section 4 we discuss the loop corrections which
modify the vector meson mass matrix and perform already somesimplifications. The modified
vector meson squared mass matrix we propose is given in Section 5 with the diagonalization
procedure and the relation between physical and ideal vector meson fields. The method used in
order to renormalize the loop functions defining the self–energies and the transition amplitudes
is sketched in Section 6. The form factor functions used forτ decays ande+e− annihilations
are given in resp. Sections 7 and 8. A necessary ingredient affecting the pion form factor in
e+e− annihilations is the photon vacuum polarization (VP), which is discussed in Section 9.
Fitting with the partial width expressions is briefly discussed in Section 10 ; more details can
be found in [16], where a practically identical method is used with constant mixing functions,
however. The way to deal with the various kinds of data used inthe fit procedures is described
in Section 11, with a special emphasis on our dealing with some correlation phenomena present
in the existing data. In Section 12, we fully describe the fit procedures we worked out under
various conditions and the results and conclusions we reach; we also comment on the numer-
ical and physical properties of our model. Finally, Section13 is devoted to a summary of our
conclusions.

As already commented upon in course of the Introduction, several Appendices gather re-
sults of ours or others already published. They are given in an attempt to be as self contained
as possible ; they are placed outside the main text in the interest of clarity and ease of reading.
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2 The HLS Lagrangian Model

We outline in the Appendices the main features of the HLS Model in both the non–anomalous
(Appendix A) and anomalous (Appendix B) sectors. This allows us to derive the leading terms
of the non–anomalous Lagrangian of interest for the presentpaper by expanding the exponen-
tials defining theξ fields. The breaking of flavour symmetries, SU(3) and the Nonet Symmetry
is sketched in Appendix C.

Several pieces of the HLS Lagrangian of relevance for our problem will be given explicitly
in the main text ; first, the part describing the photon sector(traditional VMD) is :

LV MD = ie(1− a

2
)A · π−

↔

∂ π
+ + i

e

zA
(zA −

a

2
− b)A ·K−

↔

∂ K
+ + i

e

zA
bA ·K0

↔

∂ K
0

+
iag

2
ρ0

I · π−
↔

∂ π
+ +

iag

4zA
(ρ0

I + ωI −
√

2zV φI)K
−

↔

∂ K
+ +

iag

4zA
(ρ0

I − ωI +
√

2zV φI)K
0

↔

∂ K
0

−eagf 2
π

[
ρ0

I +
1

3
ωI −

√
2

3
zV φI

]
· A+

1

9
af 2

πe
2(5 + zV )A2 +

af 2
πg

2

2

[
(ρ0

I)
2 + ω2

I + zV φ
2
I

]

(1)
limiting oneself to vector mesons, pion and kaon fields. Flavor symmetries have been broken
and, as noted in [7, 6], this implies a pseudoscalar field renormalization. The pseudoscalar field
renormalization has been performed (following the prescription given by Eqs. (80) or, rather,
by Eqs. (84) which include Nonet Symmetry breaking). The free Lagrangian of the vector
meson fields is standard [1, 2], as well as the (canonical) pseudoscalar kinetic energy piece, the
leptonic (see Eq.(71)) and photonic free Lagrangian pieces.

The parameterg is the traditional universal vector meson coupling constant. On the other
hand, the parametera is specific of the HLS model and fulfillsa = 2 in standard VMD ap-
proaches ; however such a stringent condition is not mandatory and several phenomenological
studies involving pion form factor data on the one hand [50, 51] and light meson decays on the
other hand [8, 9] concluded that a much better favored value isa ≃ 2.4÷2.5. This opens a way
to a direct coupling of photons to pseudoscalar pairs withinVMD–like approches. One should
remark the presence of a photon mass term of ordere2 which is traditionally removed by field
redefinition [2, 52] (see also [53] and the discussion concerning the photon pole position). It
can also be removed by renormalization conditions at one loop order.

The parameterb in Eq. (1) isb = a(zV − 1)/6 wherezV is the SU(3) breaking parameter
of theLV part of the HLS Lagrangian, whilezA = [fK/fπ]2 = 1.495 ± 0.031 [54] is the
SU(3) breaking parameter of itsLA part [1, 2]. zA is almost fixed numerically, whilezV is
the major origin of the HK mass difference between theφ meson and the(ω, ρ0) system ; it
has to be fitted as the relation between vector meson masses determined experimentally and
the (Higgs–Kibble) masses occuring in Lagrangians is unclear [52, 9]. On the other hand, the
value forfK/fπ provided by the Review of Particle Properties (RPP) [54] canbe added to the
set of measurements to be fit.

A subscriptI on the fields, standing for “ideal”, affects the neutral vector meson fields. It
indicates that the corresponding fields occuring in the Lagrangian are not the physical fields.

One should note [6] that the SU(3) breaking of the HLS Lagrangian generates a non–
resonant coupling of the photon to neutral kaon pairs ; this is a property common to all breaking
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procedures of the HLS Lagrangian proposed so far [7, 6, 4, 5].
On the other hand, still limiting oneself to pions and kaon terms, the Lagrangian piece of

relevance forτ decay after symmetry breaking and field renormalization is given by :

Lτ = −ig2

2
VudW

+ ·
[
(1− a

2
)π−

↔

∂ π
0 + (zA −

a

2
)

1

zA

√
2
K0

↔

∂ K
−

]

−af
2
πgg2

2
VudW

+ · ρ− − iag

2
ρ−

[
π0

↔

∂ π
+ − 1

zA

√
2
K

0 ↔

∂ K
+

]

+f 2
πg

2
2

{
1 + a

4

[
zA|Vus|2 + |Vud|2

]
+
a

4
[
√
zV − zA]|Vus|2

}
W+ ·W− + af 2

πg
2ρ+ρ−

(2)
plus the conjugate of the interaction term (theW− term, not displayed). This Lagrangian piece
depends ong2 (which is fixed by its relation with the Fermi constant (see Eq. (72))), on the
CKM matrix elementVud = 0.97377 ± 0.00027 [54], on the universal couplingg and on the
breaking parameterszA andzV already defined. One should note, balancing the photon mass
term inLV MD, a small mass term complementing theW mass of the Standard Model which
could be removed by appropriate field redefinitions.

Finally, the effective Lagrangian of the Model we use in order to describe low energy
physics is :

L = LV MD + Lτ + Lanomalous (3)

whereLanomalous is given by Eq. (87). ItsV V P part is not given in the Appendices, but can
be found fully expanded in the Appendices of [8]. The first twoterms in Eq. (3) allow us
to build up the pion form factor ine+e− interactions andτ decay and the leptonic widths of
neutral vector mesons, while the anomalous decays will be dealt with starting from the third
piece. Except for the single fit parameterzT which is important only forK∗ radiative decays,
all breaking parameters are common to all pieces of ourL ; more precisely, all parameters of
our model, except those of the vector meson mixing, could be fixed from onlyLanomalous and
the leptonic decays of vector mesons. This was proved in [8, 9, 16] by adding various(ρ, ω, φ)
mixing schemes including the most traditional(ω, φ) mixing in isolation [8].

3 The Pion Form Factor Without Symmetry Breaking

The Lagrangian given in Eq. (3) allows us to construct the pion form factor ine+e− anni-
hilation and inτ decay. One has (mπ ≡ mπ±) :

Fπ(s) = (1− a

2
)− a2g2f 2

π

2

1

DV (s)
(4)

for both processes involving intermediate photon and W boson. We also have :




σ(e+e− → π+π−) =
8πα2

3s5/2
|Fπ(s)|2q3

π

dΓ

ds
(s) =

|Vud|2G2
F

64π3m3
τ

|Fπ(s)|2[G0(s) + ǫ2G2(s)]
(5)
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with1 : 




G0(s) =
4

3

(m2
τ − s)2(m2

τ + 2s)

s3/2
Q3

π

G2(s) = −(m2
τ − s)2(4s−m2

τ )

s5/2
m4

πQπ

(6)

and :





ǫ =
m2

π0 −m2
π+

m2
π+

≃ −0.06455 , (mπ ≡ mπ+)

qπ =
1

2

√
s− 4m2

π

Qπ =

√
[s− (mπ0 +mπ+)2][s− (mπ0 −mπ+)2]

2
√
s

(7)

where one accounts for the pion mass difference. TheG2(s) term gives a completely negligi-
ble contribution to the form factor and will be cancelled outfrom now on. The bare inverse
propagatorDV = s−m2

ρ has to be modified for self–mass effects which fortunately shift the ρ
meson pole off the physical region by giving it an imaginary part. At this stage, there is also no
inclusion of loop effects inγρ orWρ transition amplitudes in the expression for the pion form
factor itself.

Additionally, there is clearly no interplay of theω or φ mesons as can be seen from in-
specting the various pieces of the full Lagrangian in Eq. (3); this should come from Isospin
Symmetry breaking.

Including self–mass effects for theρ (and adding theω/φ meson contributions fore+e−

annihilation), these expressions provide the usual HLS based framework for pion form factor
fitting of e+e− data [51, 50]. Even if never done, in principle, Eq. (4) applies toτ data, again
after shifting theρ± singularity off the physical region by means of a varying width Breit-
Wigner amplitude, for instance.

4 Including One–Loop Effects In The HLS Lagrangian

From the expressions given in the previous Section, theρ meson occurs as a pole on the
physical region ; this is moved off the real axis by self–mass(loop) effects which essentially
turn out to provide a width to theρ through the imaginary part of the pion loop. However,
besides this effect, a closer look at ourL allows us to see that loop effects contribute to generate
self–masses to all vector mesons,and transition amplitudes among all neutral vector mesons.
Assuming from now on SU(3) and SU(2) breaking effects, the charged and neutral pion and
kaon masses become different. One can see that kaon loops andthe anomalousV V P piece of
the Lagrangian give the following transition amplitudes for neutral vector mesons (ideal fields

1Of course, in the SU(2) symmetry limit, we haveǫ = 0 andqπ = Qπ.
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are understood,i.e. Πρρ(s) should be understood asΠρIρI
(s), for instance) :






Πρρ(s) = g2
ρππΠ

′(s) + g2
ρKK(Π+(s) + Π0(s)) +

[
g2

ρωπΠωπ(s) + · · ·
]

Πωω(s) = g2
ωKK(Π+(s) + Π0(s)) +

[
g2

ρωπΠρπ(s) + · · ·
]

Πφφ(s) = g2
φKK(Π+(s) + Π0(s)) +

[
g2

φK∗KΠK∗+K−(s) + · · ·
]

Πωφ(s) = −gωKKgφKK(Π+(s) + Π0(s)) + [2 gφK∗KgωK∗K(ΠK∗±K∓(s) + ΠK∗0K0(s)) ]

Πρω(s) = gρKKgωKK(Π+(s)−Π0(s)) + [2 gωK∗KgρK∗K(ΠK∗±K∓(s)− ΠK∗0K0(s)) ]

Πρφ(s) = −gρKKgφKK(Π+(s)−Π0(s)) + [2 gφK∗KgρK∗K(ΠK∗±K∓(s)− ΠK∗0K0(s)) ]

(8)
where we have definedgρππ = ag/2, gρKK = gωKK = ag/(4zA) andgφKK =

√
2agzV /(4zA).

Π′(s) is the charged pion loop, whileΠ+(s) andΠ0(s) are the charged and neutral kaon loops,
each amputated from their couplings to vector mesons (i.e. loops carrying unit coupling con-
stants).

The contributions of the anomalous loops have been displayed between square brackets.
The anomalous FKTUY Lagrangian gives several terms contributing to the self–massesΠρρ(s),
Πωω(s) andΠφφ(s). They can easily be constructed from theV V P Lagrangian given in Ap-
pendix 4 of [8] ; for these, we have displayed in Eqs. (8) only one representative of the full list
which includes alwaysK∗±K∓, K∗0K

0
,K

∗0
K0 and, depending on the particular self–mass

considered, contributions fromωπ0, ρπ0, ωη, ρη, φη, ωη′, ρη′ or φη′ loops.
The anomalous parts of all transition amplitudes have been entirely displayed, as they ex-

hibit an interesting correspondence with the non-anomalous contributions. We have identified
to each other bothK∗±K∓ loops on the one hand, andK∗0K

0
with K

∗0
K0 on the other hand.

Using the present set of notations, we have definedgρK∗K = gωK∗K =
√
zT/zAGanom/2

andgφK∗K = Ganom/
√

2zAzT with [8] Ganom = −3g2/(8π2fπ). We have also denoted by
ΠK∗±K∓(s) andΠK∗0K0(s) the amputatedK∗±K∓ andK∗0K0 loop functions.

In the exact Isospin Symmetry limit, one hasΠ+(s) = Π0(s) on the one hand, andΠK∗±K∓(s) =
ΠK∗0K0(s) on the other hand. Then, all transition amplitudes vanish except forωφ.

Therefore, within the HLS model, theωφ mixing is a natural feature generated by loop
effects and not from some breaking mechanism. In contrast, theρφ mixing and the prominent
ρω mixing are fully due to Isospin Symmetry breaking. Including the anomalous sector does
not change the picture.

If one denotes byΠ+/0(s) the amputatedK+K0 loop and byΠ′′(s) the amputatedπ±π0

loop, the chargedρ self–mass reads :

Π′
ρρ(s) = g2

ρππΠ
′′(s) + 2g2

ρKKΠ+/0(s) +
[
g2

ρ±ωπ±Πωπ(s) + · · ·
]

(9)

with a partial display of the anomalous loop contributions between the square brackets. This
expression actually differs little from the neutralρ self–mass ; indeed, the effect of having
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different masses for neutral and charged particles in theseloop computations is tiny. Of course,
in the Isospin Symmetry limit, we haveΠ′

ρρ(s) = Πρρ(s) and then theρ0 andρ± propagators
(and their poles) coincide.

As is clear from the Lagrangian pieces given by Eqs. (1) and (2), the fieldsρI , ωI , φI

as well asρ± are certainly mass eigenstates at tree level. This statement remains true forρ±

at one–loop order as there is no transition loop from this meson to any other one. This is,
however, clearly not true forρI , ωI , φI fields which undergo mixing with each other, as can be
seen from Eqs. (8). Moreover, as for the self–masses, these transition amplitudes are invariant
mass dependent as already noted [9, 16] !

This implies that physical fields associated with theρ0, ω, φ mesons do not coincide with
their ideal combinations as soon as one–loop corrections are considered. Moreover, the precise
content of the physical fields in terms of ideal fields varies with s, or more precisely with the
invariant mass flowing through the physical field under consideration. This does not prevent
in standard approaches to useρI , ωI , φI in physical amplitudes [55]. However, as one loop
effects have certainly to be considered even only in order toshift the vector meson poles off
the physical region, they should legitimately be considered also for field mixing.

We raise the question of taking these loop effects properly into account and proceeding to
the appropriate field redefinition to physical fields. In order to deal with this problem, let us
define as effective Lagrangian the Lagrangian in Eq. (3) supplemented with the self–masses
and transition terms occuring at one–loop order ; this turnsout to replace the simple vector
meson mass term in the HLS Lagrangian by (m2 = ag2f 2

π):

Lmass =






1

2

{
[m2 + Πρρ(s)]ρ

2
I + [m2 + Πωω(s)]ω2

I + [zVm
2 + Πφφ(s)]φ

2
I

+2Πρω(s)ρIωI + 2Πρφ(s)ρIφI + 2Πωφ(s)ωIφI}+ [m2 + Π′
ρρ(s)]ρ

+ρ−
(10)

TheK∗ mass term, which should also be modified correspondingly, isnot shown as it plays
no role in the present problem.

Even if anomalousV P contributions seem to play some role visible [51] (and, nevertheless,
marginal) in pion form factor data, qualitatively their explicit form is really active only above
theωπ threshold, which is the lowest massV P threshold ; all others are far above the GeV
region2. Below the threshold, the main effect is due to their subtraction polynomials which can
be well absorbed in the subtraction polynomials of the accompanying pion and kaon loops in
order to put the poles of theρ propagator at the place requested by the data.

Beside the (non–anomalous) pion and kaon loops, all transition amplitudes involve only
K∗K loops, the threshold of which being at≃ 1.4 GeV. This means that, besides their subtrac-
tion polynomials (minimally of degree 2), in the region below the GeV, their behavior [9] is a
real logarithmic function (below

√
s ≃ 0.4 GeV) or an arctangent function (0.4 ≤ √s ≤ 1.4

GeV). This also can be numerically absorbed in a fitted subtraction polynomial.
Therefore, there is some sense in neglecting the (explicit)contributions of the anomalous

loops, being understood that their effect is mostly concentrated in their subtraction polynomi-
als. Moreover, as these come always together with pion and kaon loops, they can be accounted

2Their threshold masses are spread out between≃ 1.3 GeV and≃ 2 GeV.
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for by simply letting the (free) pion and kaon loop subtraction polynomials to be second degree.
Therefore, we shall neglect their (explicit) contributions, pointing at the appropriate places to
their possible influence. Thus, from now on, the self–energies and transition amplitudes should
be understood as Eqs. (8–9) amputated from the square bracket terms.

The use of the modified HLS Lagrangian has already been discussed in [9] where it was
shown, for instance, that this method allows one to recover vector meson propagators usually
derived through the Schwinger–Dyson resummation procedure, which turns out to sum up an
infinite series, which is not necessarily convergent. However, we show shortly that introducing
this modified mass term allows us to also account for the othertransition effects which would
be more difficult to derive from the Schwinger–Dyson resummation procedure (of course, this
should be possible, merely tedious).

5 Mass Matrix Diagonalization And Physical Fields

As clear from Eq. (10), at one loop order, the mass term is diagonal in the charged vector
meson sector and will not be discussed any longer. In the neutral vector meson sector, however,
the mass matrix is not diagonal and the effective Lagrangianmass term is :

Lmass =
1

2
ŨM2(s)U with Ũ = (ρI , ωI , φI) (11)

(the ideal fields being supposed real) and3 :

M2(s) =




m2 + Πππ(s) + ǫ2 ǫ1 − µǫ1

ǫ1 m2 + ǫ2 − µǫ2

− µǫ1 − µǫ2 zVm
2 + µ2ǫ2




(with µ ≡ zV

√
2 ) (12)

where we have defined : 




ǫ1 = g2
ρKK(Π+(s)−Π0(s))

ǫ2 = g2
ρKK(Π+(s) + Π0(s))

Πππ(s) = g2
ρππΠ′(s)

(13)

In the region where we work – invariant masses bounded essentially by the two–pion thresh-
old and theφ mass– , the functionsǫ1 andǫ2 are small and can be treated as perturbation pa-
rameters4 ; moreover, they are real for reals up to the two–kaon threshold region. In contrast,
Πππ(s) is complex starting from the two–pion production thresholdand is not expected to be
small enough to be consistently treated as a perturbation parameter.

The physical vector meson mass eigenstates are the (s–dependent) eigenvectors ofM2(s)
and their masses are the corresponding eigenvalues, which are alsos dependent ! Expressed

3For ease of reading,ǫ1 ǫ2 are not written with their explicits dependence which is (or may be) understood
throughout this paper.

4Actually, from their very expressions in terms of kaon andK∗K loops, one may expectǫ1 to be sensitively
smaller thanǫ2 in absolute magnitude.
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this way, the notion of vector meson mass looks a little bit paradoxical, however, it is not really
new : writing, as usual, the inverseρ dressed propagatorDV (s) = s − m2 − Πρρ(s) can be
interpreted as stating that theρ mass squared ism2 + Πρρ(s) and includes an imaginary part.
From a physics point of view, what is important is that the pole position associated with the
ρ is always a zero ofs − m2 − Πρρ(s) located on the unphysical sheet, close to the physical
region5. Theρ pole position has been fitted long ago by [56] ine+e− data, and more recent fit
values can be found in [57] ; this piece of information is actually highly model independent, in
contrast with any other definition [53]. We shall revisit this issue with our fit results.

One may wonder about the hermiticity properties of the Lagrangian modified as proposed.
As below the two–pion threshold, the loops defined above are all real for reals, we still in-
deed haveL(s) = L†(s), however, above this point, the hermiticity should be redefined as
L(s) = L†(s∗). This property known as hermitian analyticity [58] is fulfilled by our modified
Lagrangian as it is already fulfilled by the loop functions.

Now, in order to define the physicalρ, ω, φ in terms of their ideal partners, one has to
find the eigenstates of the squared mass matrix given by Eq. (12). Let us take advantage of
the smallness ofǫ1 andǫ2 to solve the problem perturbatively in order to avoid dealing with
untractable expressions. Let us split up the squared mass matrix into two pieces and write it
M2 = M2

0 + ǫB with :

M2
0 =




m2 + Πππ(s) 0 0

0 m2 + ǫ2 0

0 0 zVm
2 + µ2ǫ2




, ǫB =




ǫ2 ǫ1 −µǫ1

ǫ1 0 −µǫ2

−µǫ1 −µǫ2 0




(14)
In this splitting up, we have found appropriate to leave a part of the actual perturbation

insideM2
0 . In this way, we avoid to some extent the problem of having theunperturbed eigen-

values degenerated twice or even three times (whenzV = 1) for some values ofs and some
zV . However, while assuming thatΠππ(s), ǫ1(s) andǫ2(s) vanish at origin, one cannot avoid
to have a twofold degeneracy ats ≡ 0 ; this degeneracy is resolved as soon ass departs from
zero by an arbitrary small quantity. This issue, which affects strictly the points = 0 (where the
exact solution is trivial !), does not raise any problem withour data which are all ats 6= 0, even
if close to zero, as the NA7 spacelike form factor data [59]. Another solution to this problem
would be that the HK masses forρI andωI would be slightly different ; such a mechanism
remains to be found6.

The unperturbed solution is then trivial, as the eigenvectors are the canonical ideal combi-
nations of the neutral vector meson fields, with eigenvaluesas can be read off the diagonal of
M2

0 . Then, one has to solve the following system for the perturbationsδvi andδλi :

5The upper lip of the physical region– thes ≥ 4m2
π semi–axis – located on the physical sheet is topologically

close to the lower lip in the unphysical sheet of the Riemann surface ; in contrast, the lower lip in the physical
sheet is topologically far from the upper lip in the same sheet.

6 A way to get it would have been to use as breaking matrixXV = Diag(1 + εu, 1 + εd,
√

zV ) instead
of XV = Diag(1, 1,

√
zV ) while computingLV (see Appendix C). This, actually, generates a mass difference

betweenρ0 andρ±, but the HK mass for theω meson remains equal to that of theρ0 meson.
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



M2
0 vi = λivi , ṽi · vi = 1, (i = 1, 2, 3)

M2(vi + δvi) = (λi + δλi)(vi + δvi) , with[60] : ṽi · δvi = 0
(15)

for eachi = (ρ, ω, φ) = (1, 2, 3). The solution can be written :



ρ0

ω

φ




= R(s)




ρ0
I

ωI

φI




,




ρ0
I

ωI

φI




= R̃(s)




ρ0

ω

φ




(16)

where (recallǫi ≡ ǫi(s) are analytic functions ofs) :

R =




1
ǫ1

Πππ(s)− ǫ2
− µǫ1

(1− zV )m2 + Πππ(s)− µ2ǫ2

− ǫ1
Πππ(s)− ǫ2

1 − µǫ2
(1− zV )m2 + (1− µ2)ǫ2

µǫ1
(1− zV )m2 + Πππ(s)− µ2ǫ2

µǫ2
(1− zV )m2 + (1− µ2)ǫ2

1




(17)
The matrixR is orthogonal up to (neglected) second order terms (see Section 6 in [16]) and

its elements are, actually, meromorphic functions ofs ; this, for instance, means that one has
to check that they do not develop singularities in the regionof physical interest for our model.

On the other hand, one may wonder gettingR̃(s) with no complex conjugation in the
field transformation (Πππ(s) is complex and fulfills the real analyticity conditionΠππ(s) =
Π∗

ππ(s∗)). This is due to the unitarity condition which writes [9] :

R(s + iε) ·R†((s+ iε)∗) = R(s + iε) ·R†(s− iε) = 1 (18)

for real s above threshold andε > 0. The real analyticity property fulfilled by the matrix
functionR then givesR∗(s− iε) = R(s+ iε) and then Eq. (18) becomes :

R(s+ iε)R̃(s+ iε) = 1 (19)

as can be checked directly with theR matrix above.
At first order, the corrections for eigenvalues are not changed with respect to their unper-

turbed values forω andφ , while for ρ0, the first order correction is such that the eigenvalue is
restored tom2 + Πππ(s) + ǫ2 and is formally identical to theρ± mass squared7. Therefore, in
order to deal with the physical eigenstatesρ0, ω andφ, one has to introduce in the Lagrangian
(3) above, the physical fields as defined by Eqs. (16) using Eqs. (17). For coupling constants,
one has to perform exactly as explained in Section 6.3 of [16], using theR matrix above and,
where appropriate, the ideal coupling constants given in Appendix D.

In order that this solution should be considered valid, one has to check that the non–diagonal
elements of the matrixR are small compared to 1 in the whole range of application of our
model. As they depend on fit parameters, this check can only beperformed with the fit solution.

7Forρ± , the mass squared value contains what was namedΠ′
ππ(s) andǫ2 → 2g2

ρKKΠ+/0(s).
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We will not go into more details with expressing the full Lagrangian (3) in the basis of
physical neutral vector meson fields, as formulae become really complicated (even if they can
be readily and tediously written down). Let us only give the most interesting piece in terms of
physical fields for illustrative purposes :

iag

2
ρI · π−

↔

∂ π
+ =

iag

2

[
ρ0 − ǫ1

Πππ(s)− ǫ2
ω +

µǫ1
(1− zV )m2 + Πππ(s)− µ2ǫ2

φ

]
· π−

↔

∂ π
+

(20)
This clearly shows how kaon loops generate couplings of thephysical ω andφ fields to

π−π+ which vanish (withǫ1) in the Isospin Symmetry limit. AsΠππ(s) has a large imaginary
part, it is clear that the phase of theω coupling compared withρ0 will be very large at theρ
peak. It should also be mentioned that the couplings shown here (and the matrix elements ofR)
have all a finite limit ats = 0 even if the loops individually vanish ats = 0 as the pseudoscalar
pairs couple to conserved currents [52, 17].

The effects of the neglected loops could be briefly mentionedhere. The most important
effect in the expression forR(s) (Eq. (17)) is on the denominators ofR12(s) andR21(s) where
the difference of the anomalous contributions to self–energies for theρ andω mesons will add
to the presentΠππ(s)− ǫ2(s) ; this could change a little bit the behaviour nears = 0 where all
loops tend to zero.

As stated above, at first order in perturbations, the squaredmass eigenvalues are the entries
in the diagonal ofM2(s) given in Eq. (12). For further use, let us also give the secondorder
corrections to the eigenvalues (and thus to the running squared meson masses) :






δ2λρ =
ǫ21

Πππ(s)− ǫ2
+

µ2ǫ21
(1− zV )m2 + Πππ(s)− µ2ǫ2

δ2λω = − ǫ21
Πππ(s)− ǫ2

+
µ2ǫ22

(1− zV )m2 + (1− µ2)ǫ2

δ2λφ = − µ2ǫ21
(1− zV )m2 + Πππ(s)− µ2ǫ2

− µ2ǫ22
(1− zV )m2 + (1− µ2)ǫ2

(21)

In the mass range where we are working (from the two–pion threshold to theφ mass), the
mass eigenvalues at first order are real8 for theω andφ, excluding a width. At second order,
one observes that the pion loop generates an imaginary part to these mass eigenvalues. Let us
remind the reader that, as the pole positions are the solutions ofs− λi(s) = 0, one expects to
find theρ pole position close to the value found by [56]. However thereis little chance that the
ω width happens to carry the correct width value as this shouldbe generated by the anomalous
ρπ loop with additional insertion of a pion loop on theρ leg (or simply considering the dressed
ρ propagator) or directly through a possibleω → 3π → ω (double) loop. Finally, in the model
we use, it is only at second order that a difference between neutral and chargedρ propagators
(and thus masses) occurs and this is a net (and small) effect of the neutral vector meson mixing.
This comes in addition to other sources ofρ0 − ρ± mass difference (see footnote 6).

8Actually, near the acceptedφ mass our perturbation parameters start to carry a tiny imaginary part.
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6 Renormalization Conditions On Loops

With the approximations we choosed (neglecting the anomalous loop contributions), the
loop expressions needed in order to construct the pion form factorFπ(s) are only theππ and
KK loops. They can be computed by means of Dispersion Relations[52, 9] and can be derived
without explicit integration, relying only on properties of analytic functions, especially the
uniqueness property of the analytic continuation (see9 Appendix A in [9]).

From general principles, any loopΠ(s) is a so–called real analytic function (see the Section
just above), the imaginary part of which is calculable usingthe Cutkosky rules, or in the simple
case of single loops, using the partial width of the processV → PP ′. Indeed :

ImΠ(s) = −
√
sΓ(s) , s > s0 (22)

wheres is the pair invariant mass squared,s0 the threshold mass squared of the pair andΓ
the partial width of the decay. With this at hand, the full loop is the solution of the integral
equation :

Π(s) = Pn−1(s) +
sn

π

∫ ∞

s0

ImΠ(z)

zn(z − s + iǫ)
dz (23)

wherePn−1(s) is a polynomial of degreen − 1 with real coefficients and the integral runs
over the right-hand cut (the physical region). These coefficients should be fixed by means of
condition to be fulfilled byΠ(s), the so–called subtraction polynomial, which are nothing but
renormalization conditions chosen externally and depending on the problem at hand.

A priori, the number of subtractions,i.e. the number of conditions can be arbitrary, however,
in order that the integral in Eq. (23) converges, there is a minimal number of subtractions to
perform : ForPP ′ loopsn ≥ 2, for V P loopsn ≥ 3.

In the most general form of the pion form factor following from the Lagrangian (3), and
using the modified one–loop mass term (10) the relevant basicloops are only the pion loops and
the kaon loops. These imply that at leastn = 2 ; however, the very existence ofV P neglected
loops implies that we are still minimally subtracting with usingn = 3 for all loop functions
in this paper. As discussed in Section 4, in this way, the subtraction polynomials carry some
(unknown) information on the anomalous loop contribution.

Additionnally, we request all polynomialsPn−1(s) to fulfill Pn−1(0) = 0 reflecting this way
current conservation [52, 17, 61, 51] when needed and an appropriate constraint otherwise10.

In usual approaches[61, 57, 52], the renormalization conditions are defined from start and,
then, one leaves free other parameters like meson mass and width in order to accomodate the
experimental data. As already done in [51], we proceed in theopposite way : as masses and
couplings are fixed consistently in our Lagrangian, we leavefree the subtraction polynomials
in the loopsΠππ(s) , ǫ1(s) andǫ2(s). This way allows the full data set to contribute to fixing the
subtraction constants. The basic (pion and kaon) loop expressions are given in Appendix E and
are used only subtracted once (in order that they vanish ats = 0) ; they are supplemented with

9In this reference, the loop expressions for equal mass pseudoscalar meson pairs and vector–peudoscalar pairs
are already given and are correct ; the function given for unequal mass pseudoscalar meson pairs is not correct
as the contribution of the gauge term has been omitted ; we apologize for this error and correct for in the present
paper (see Appendix E).

10In this case, the constant term in theρ propagators is the squared (HK) mass occuring in the Lagrangian with
no modification.
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second degree polynomials vanishing ats = 0 and having coefficients to be fixed by fitting the
data.

7 The Model Pion Form Factor In τ Decay

Introducing pion and kaon loop effects gives theρ± a self–mass, but, nevertheless, theρ±

fields remain mass eigenstates. To stay consistent with using ρ self–mass, one has also to
account for loops in theW − ρ transition amplitude. Inτ decay the relevant loop effects, while
neglecting anomalousV P loops, are theπ±π0 andK0K± contributions. Accounting for this
modifies Eq. (4) to :

F τ
π (s) =

[
(1− a

2
)− F τ

ρ gρππ
1

Dρ(s)

]
(24)

with : 




F τ
ρ = f τ

ρ − ΠW (s)

Dρ(s) = s−m2 −Π′
ρρ(s)

f τ
ρ = agf 2

π

(25)

wherem2 = ag2f 2
π and the chargedρ self–massΠ′

ρρ(s) has been defined in Section 4 by Eq.
(9) and used in Eq. (10) (recall we neglect VP loops). One should note that Eqs. (24) and (25)
are not affected by any breaking mechanism. The diagrams contributing to the pion form factor
in τ decays are sketched in Figure 1.

Let us denote for a moment the pion and kaon amputated (i.e. computed with unit coupling
constants) loops byℓπ(s) andℓK(s), assuming they are already subtracted once in order that
they identically vanish ats = 0 (see Appendix E). TheW − ρ transition amplitude and theρ±

self–energy occuring in the pion form factor have the following expressions in terms of pion
and kaon amputated loops :





ΠW (s) = gρππ

[
(1− a

2
)ℓπ(s) +

1

2z2
A

(zA −
a

2
)ℓK(s)

]
+ PW (s)

Π′
ρρ(s) = g2

ρππ

[
ℓπ(s) +

1

2z2
A

ℓK(s)

]
+ Pρ(s)

(26)

wheregρππ = ag/2 andPW (s) andPρ(s) being subtraction polynomials with real coefficients
to be fixed by external renormalization. As emphasized in [51] and [61], the polynomials
PW (s) andPρ(s) can be chosen independent. Indeed,Im ΠW (s) andIm Π′

ρρ(s) are even not
proportional as soon as SU(3) is broken (zA 6= 1) ; moreover, the transition amplitudeΠW (s)
is non zero even ifa = 2 as soon as SU(3) symmetry is broken. We choose to constrainPW (s)
andPρ(s) to be second degree and vanishing ats = 0, as discussed in Section 6.

For the sake of simplicity, we have also chosen to use the pseudoscalar meson loops assum-
ingmπ± = mπ0 andmK± = mK0 after having checked that this is numerically armless while
dealing with all form factor data. Under this approximation11, we haveΠ′

ρρ(s) = Πρρ(s) (see

11 This implies that theρ0 andρ± widths do not significantly differ. This statement is supported by the various
experimental data collected in [54].
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Eq. (8)) and all symmetry breaking effects due to the pion mass difference are concentrated in
the phase space factors (see Eqs. (5–7)) for cross sections and partial widths where these have
a sizable effect.

Therefore, one can rewrite Eqs. (26) under a form more appropriate for our fitting proce-
dure : 




ΠW (s) =
1

gρππ

[
(1− a

2
)ΠW

ππ(s) + (zA −
a

2
)ǫ2(s)

]

Π′
ρρ(s) = Πρρ(s) = Πρ

ππ(s) + ǫ2(s)

(27)

whereǫ2(s), already defined in Eqs. (13), carries its own subtraction polynomial, and having
defined : 





ΠW
ππ(s) ≡ g2

ρππℓπ(s) +QW (s)

Πρ
ππ(s) ≡ g2

ρππℓπ(s) +Qρ(s)
(28)

whereQW (s) andQρ(s) are second degree polynomials12 (with real coefficients to be fitted)
and vanishing at origin. Possible correlations among them,if any, would be an outcome of the
fit procedure and can be detected from inspecting the fit errorcovariance matrix. Finally, one
can check that the conditionF τ

π (0) = 1 is automatically fulfilled
Before turning to the pion form factor ine+e− annihilations, let us also remind the reader

that theτ partial width expression in Eqs. (5) has to be further corrected for isospin breaking
effects by multiplying it by13 SEW = 1.0232 which accounts for short range radiative correc-
tions [37]. Long range radiative corrections have been derived in [38, 39, 40] and come as a
further factorGEM(s) ; another estimate taking into account additional Feynman diagrams can
be found [41, 42] and a corresponding numerical parametrization ofGEM(s) has been provided
in [43]. This means that in all our fits we perform the substitution :

F τ
π (s) =⇒ SEWGEM(s)F τ

π (s) (29)

which, therefore, accounts for all reported Isospin Symmetry breaking effects specific to the
τ sector. Another isospin breaking effect might have to be considered, namely aρ0 − ρ±

mass difference. This can be generated, for instance, by means of the mechanism sketched in
footnote 6. It can be shown that this turns out to modify Eqs. (25) to :





F τ
ρ = f τ

ρ − ΠW (s)

Dρ(s) = s−m2 − δm2 −Π′
ρρ(s)

f τ
ρ = agf 2

π +
δm2

g

(30)

whereδm2 is left free. The modified Eqs.(30) allows Eq. (24) to still fulfill F τ
π (0) = 1

automatically14.
12We recall here, that these polynomials may account for the neglected anomalous loop effects not introduced

explicitly.
13Actually, this numerical value has been derived for the pionfinal state ; in practical applications, it is usually

assumed that this value holds also for theρ final state – see for instance [34, 35, 36].
14Anticipating somewhat the fit results, a possibleδm2 can be detected on ALEPH data [31] (not on CLEO data

[33]) and amounts to≃ −0.25 GeV2. f τ
ρ (≃ 0.7 GeV2) is then increased by0.5 10−3 GeV2, a quite negligible

quantity.
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8 The Model Pion Form Factor In e+e− Annihilations

In τ decay, the pion form factor, as just seen, is free from any vector meson mixing effect.
Instead, the pion form factorF e

π(s) expression is sharply influenced by the vector meson mix-
ing mechanism constructed explicitly in Section 5 which leads us to make the transformation
from ideal to physical vector meson fields. After this tranformation, we get from our effective
Lagrangian the diagrams shown in Figure 1 and the corresponding expression :

F e
π(s) =

[
(1− a

2
)− F e

ρ (s)gρππ
1

Dρ(s)
− F e

ω(s)gωππ
1

Dω(s)
− F e

φ(s)gφππ
1

Dφ(s)

]
(31)

whereDρ(s) (see Eq. (25) for its charged partner),Dω(s) andDφ(s) are the inverse propagators
of the corresponding (physical) vector mesons. We have now :

Dρ(s) = s−m2 − Πρρ(s) (32)

(recall that our assumptions on pseudoscalar meson masses impliesΠρρ(s) = Π′
ρρ(s), which

reduces the number of free parameters in our model). The vector meson couplings to a pion
pair after symmetry breaking are :





gρππ =
ag

2

gωππ = −ag
2

ǫ1
Πρ

ππ(s)− ǫ2
gφππ =

ag

2

µǫ1
(1− zV )m2 + Πρ

ππ(s)− µ2ǫ2

(33)

whereΠρ
ππ(s) has been defined in the previous Section. One should note thatthe quantity

namedΠππ(s) in the definition of the matrixR(s) (see Section 5) coincides with the presently
definedΠρ

ππ(s).
The quantitiesF e

V can be written :

F e
V (s) = f e

V − ΠV γ(s) (34)

Collecting the various couplings of the ideal fields suitably weighted by elements of the
matrix transformationR(s) (see Eq. (17)), we get :






f e
ρ = agf 2

π

[
1 +

1

3

ǫ1
Πρ

ππ(s)− ǫ2
+

1

3

µ2ǫ1
(1− zV )m2 + Πρ

ππ(s)− µ2ǫ2

]

f e
ω = agf 2

π

[
1

3
− ǫ1

Πρ
ππ(s)− ǫ2

+
1

3

µ2ǫ2
(1− zV )m2 + (1− µ2)ǫ2

]

f e
φ = agf 2

π

[
−µ

3
+

µǫ1
(1− zV )m2 + Πρ

ππ(s)− µ2ǫ2
+
µ

3

ǫ2
(1− zV )m2 + (1− µ2)ǫ2

]

(35)
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and, keeping only the leading (first order) terms, the loop correctionsΠV γ(s) (see the defini-
tions in Eqs. (13), and the expression forµ in Eqs. (12)) are :




Πρ0γ(s) = (1− a

2
)
Πγ

ππ(s)

gρππ
+ (zA −

a

2
− b)ǫ1 + ǫ2

gρππ
+ b

ǫ2 − ǫ1
gρππ

Πωγ(s) = −(1− a

2
)

ǫ1
Πρ

ππ(s)− ǫ2
Πγ

ππ(s)

gρππ

+ (zA −
a

2
− b)ǫ1 + ǫ2

gρππ

− bǫ2 − ǫ1
gρππ

Πφγ(s) = (1− a

2
)

µǫ1
(1− zV )m2 + Πρ

ππ(s)− µ2ǫ2

Πγ
ππ(s)

gρππ
− (zA −

a

2
− b)µǫ1 + ǫ2

gρππ
+ bµ

ǫ2 − ǫ1
gρππ

(36)
The first term for each transition loop is the pion loop contribution while the others are

resp. the charged and neutral kaon loops. Of course, the functions occuring there are the
same as forF τ

π . We have denoted byΠγ
ππ(s) the transition amplitude forγ − ρI , which is

in correspondence with theW − ρ± transition amplitude introduced in the previous Section
(see Eq. (28)). A priori, the subtraction polynomials ofΠγ

ππ(s) andΠW
ππ(s) might be slightly

different. However, in an attempt to reduce further the number of free parameters of the model,
we assume that they coincide, which turns out to identify theamputatedW − ρ± andγ − ρI

transition amplitudes15. We shall see that this assumption is well accepted by the data and,
moreover, make clearer the switching to theτ form factor expression.

In addition to the explicit dependence of our model on the HLSbasic parametersa, g, and
on the breaking parametersx, zA, zV ,zT andδm2, there is a further dependence on subtraction
parameters hidden insideΠρ

ππ(s), ΠW/γ
ππ (s), ǫ1(s) and ǫ2(s). Isospin symmetry breaking is

reflected in having a non–zeroǫ1(s) function. We have :




ΠW/γ
ππ (s) = Q0(s) + ℓπ(s)

Πρ
ππ(s) = P0(s) + ℓπ(s)

ǫ1(s) = P−(s) + ℓK±(s)− ℓK0(s)

ǫ2(s) = P+(s) + ℓK±(s) + ℓK0(s)

(37)

whereℓπ(s), ℓK±(s) andℓK0(s) are now thenon-amputated π+π−, K+K− andK0K
0

loops,
subtracted in order that these loops vanish at the origin. The parameter polynomialsQ0(s),
P0(s), P−(s) andP+(s) are chosen to be second degree with zero constant terms in order to
stay consistent with the Node theorem [17, 52].

One can check thatF e
π(0) = 1 + O(ǫ21), which could have been expected from having

neglected terms of order greater than 1 in our diagonalization procedure16.
As the form factor data collected at theφ are not currently available, the last term in Eq. (31)

could have been removed. However, in order to account for tails effects, we preferred keeping
it and use a fixed width Breit–Wigner expression incorporating the Particle Data Group mass
and width recommended values [54]. Due to the narrowness of theω mass distribution, we also

15This is a nothing but a strong CVC assumption.
16 Actually, it depends on the (1,2) rotation matrix element :1 + O([R12(s = 0)]2) and, numerically, the

neglected term is≃ 1.5 10−3.
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have replaced in our fits theω propagator by a fixed width Breit–Wigner constructed using the
recommended mass and width from [54].

Let us also recall that Eq. (31) is our formula for the pion form factorF e
π(s) in both the

spacelike and timelike regions. Indeed, for consistency, we will not remove theω andφ meson
contributions while going to negatives.

Using the first order correction to theρ mass eigenvalue, the inverse propagator could
have been writtenDρ0(s) = s− λρ(s), as the leading order squared mass eigenvalue is :

λρ(s) = m2 + Πρ
ππ(s) + ǫ2(s) (38)

As far ase+e− data are concerned, we shall modify the eigenvalue expression to :

λρ(s) = m2 + Πρ
ππ(s) + ǫ2(s) + δ2λρ(s) (39)

by adding the second order correction given in Eqs. (21). This does not add any more freedom
in the model, but rather allows some check of the diagonalization method.

Therefore, the difference betweenF e
π(s) andF τ

π (s) is solely concentrated in the coupling
changes from ideal to physical fields given by the varying matrix R(s) (see Eq.(17)) which
only affectsF e

π(s). Stated otherwise, modifying the functionF τ
π (s) in order to incorporate

isospin breaking effects is strictly equivalent to using our expression forF e
π(s) directly, the

factorSEWGEM(s) being removed andδm2 being made identically zero.

9 The Photon Vacuum Polarization

The raw data on the pion form factorF e
π(s) should be “undressed” by unfolding the con-

tributions due to radiative corrections and to the photon vacuum polarization (VP) before any
comparison withτ data (we refer the reader to [62, 63] for a comprehensive analysis of these
factors and for previous references). Quite generally, available experimental data onF e

π(s)
have already been unfolded from radiative corrections [27,28, 29, 30, 59, 64]. All the data
sets just referred to are not unfolded from photon vacuum polarization (VP) effects, except for
KLOE data [64]. Therefore, one has to account for VP effects by including the corresponding
factor when comparing a pion form factor model with experimental data. Traditionally (see for
instance [65] and references quoted therein), this resultsin the change17 :

F e
π(s) −→ (1− ΠV P (s))F e

π(s) (40)

when comparing with most data sets.
The VP functionΠV P (s) contains two parts. The first one is the sum of the leptonic loops

which can be computed in closed form at leading order (In Appendix E, we recall the explicit
form at orderα and give its expression along the reals axis). The second part is the one
particle irreducible hadronic contribution to the photon self–energy which is derived by means
of a dispersion relation ; at low energy, where non–perturbative effects are dominant, this is

17 If one denotes byΣ(s) the photon self–mass, the inverse photon propagator is given byD−1
γ (s) = s−Σ(s) =

s(1−Σ(s)/s). Therefore, compared with traditional notation, we haveΠV P (s) = −Σ(s)/s. This is not a problem
but should be kept in mind.
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estimated using the experimentally mesurede+e− cross section (see, for instance, [65, 66, 67,
62]), while the high energy tail is calculated using perturbative QCD.

For our purpose, we use the sum of the leptonic VP as given in Appendix E fore+e−, µ+µ−

andτ+τ− together with a numerical parametrization of the hadronic contribution. From the 2–
pion threshold to theφ mass, we benefited from a parametrization18 provided by M. Davier
[68]. Below the 2–pion threshold and down tos = −0.25 GeV2, we use instead a (real valued)
parametrization provided by H. Burkhardt [69].

10 Decay Widths Of Light Mesons

In order to compute decay widths and fit data, one has to define the couplings allowing the
decays of the light mesons involved. For the two–photon decays of theη andη′ mesons, as well
as for the radiative decays of theρ± andK∗’s mesons, the couplings defined after SU(3) and
Nonet Symmetry breaking (see Eqs. (90) and (93)) are the couplings coming directly in the
decay widths formulae (see Subsection D.3) and do not dependon further Isospin Symmetry
breaking effects than mass values in phase space factors.

The isospin breaking procedure we presented plays only for theρ0, ω andφ mesons. In or-
der to compute the leptonic decays of these, one has to use thefull couplingsF e

V (s) as given by
Eqs. (35) and (36) in Eq. (97) and computed at the appropriatevector meson massesF e

V (m2
V ).

As the loop functions are slowly varying, one can choosemV as the Higgs–Kibble masses
occuring in the Lagrangian (see Eq.(1)), which moreover simplifies the fitting procedure.

For the other (radiative decay) coupling constants one has to combine the ideal coupling
constants (given in Appendix D) using the transformationR(s) to derive the physical coupling
constants, as was described in [16] ; the context, compared to [16], slightly differs due to the
fact that, now, the mixing parameters are functions to be computed at the appropriatem2

V values
in order to go to the vector meson mass shell.

Traditionally, theρ0 is decoupled from mixing and treated as theρ± and mixing effects are
only considered in the(ω−φ) sector. Additionally, it is usual to treat the(ω−φ) mixing angle
as a constant to be fit (see [4, 5, 8, 9, 16] and the references quoted therein). The approach in
the present study is different : One considers a full(ρ0 − ω − φ) mixing scheme (as in [16]),
however – for the first time – the mixing parameters are functionally related and the same
functions have to be computed at each vector meson mass. For instance, the(ω − φ) mixing
“angle” has not the same numerical value at theω mass and at theφ mass. This only reflects
that the mixing is actually invariant mass dependent. When,as forω → ππ [50] andφ → ππ
[70, 71] data exist on the phase of the coupling constant, these phases can be introduced in the
fit with the same functions, the modulii of which determine the branching fractions.

11 The Full Set of Data Submitted To Fit

In order to work out the model presented in the Sections above, we use several kinds of
data sets. In this Section, we list them and give some detailson the way they are dealt with in
our fit procedure.

18This parametrization neglects the (very small) imaginary part of the hadronic VP contribution.
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11.1 Partial Width Decays

As a general statement, the decay data submitted to fits have been chosen as the so–called
“fit” values recommended by the Particle Data Group (PDG) in the latest (2006) issue of the
Review of Particle Properties [54].

This covers, with no exception, the leptonic decay widths oftheρ0, ω andφ mesons, the
two–photon decay widths of theη andη′ mesons and theπ+π− partial width of theφ meson.
There are two measurements of the phase of the coupling constant gφπ+π− reported in the
literature ; the older one [70] isψφ = −42◦±13◦ and more recently [71]ψφ = −34◦±4◦±3◦.
Summing up in quadrature the errors, we choose as reference value in our fitsψφ = −34◦±5◦.
We could have chosen to include in our fits the 2–photon decay width of theπ0 ; however, we
preferred replacing this piece of information by the pion decay constant valuefπ = 92.42 MeV
and did not let it vary, as this is supposed to carry a very small error19 [54].

The RPP pieces of information [54] concerning theρ andω decay width toπ+π− and the
partial widthρ0 → e+e− are not considered as data to be submitted to fits, as they haveall been
extracted from fitting the same pion form factor timelike data which we are included in our
fit procedure (see the Subsection below) ; this does not prevent us from comparing our results
to the RPP available information. This is also true for the relative phase of the couplings
gωπ+π− to gρπ+π− (the so–called Orsay phase) which has been measured [50] with the result
ψω = 104.7◦ ± 4.1◦.

Instead, it is quite legitimate to include theω → e+e− partial width in our fit procedure
as, even if this mode could have been marginally influenced bythe pion form factor data, it is
mostly extracted frome+e− → π+π−π0 data [54]. As the pion form factor spectrum around
theφ mass is not currently available, theφ→ e+e− partial width is quite legitimately included
in our fit data set.

In the present work, as in our previous works on the same subject [8, 9, 16], we do not intend
to use the decay widthsK∗ → Kπ. Actually, as for the widthρ → ππ which is inherently
fitted with the pion form factor, the choice of the mass value for a very broad object makes the
extraction of coupling constants a delicate matter. It should be more appropriately discussed
with theKπ form factor inτ decays when the corresponding data will become available.

The data on the two kaon partial widths of theφ meson are also left outside our fit proce-
dure. In a previous work of some of us [16], as in other works [72] the issue of accomodating
theφ→ K+K− partial width was raised. A recent work [73] claims that the ratio of these par-
tial widths can be accomodated by introducing corrections to the decay widths which increase
both partial widths as derived from the matrix elements of the transitions. As then, the problem
may affect both theφ→ K+K− and theφ→ K0K

0
partial widths, we have preferred leaving

both modes outside the fit procedure. We will discuss this issue below in a devoted Subsection.
We also use all radiative decay partial widths of light flavormesons of the formV → Pγ

or P → V γ. As a general rule, we chose as reference data the “fit” valuesrecommended by
the PDG as given in the latest RPP issue [54]. There are two exceptions to this statement : the
partial widths forω → ηγ andω → π0γ.

Indeed, as already noted in [16], there is some difficulty in accomodating the presentω →
ηγ “fit” branching fraction ((4.9±0.5) 10−4) while the so–called “average” value [54] ((6.3 ±
1.3) 10−4) is much better accepted by our model fitting.

19Possible Isospin Symmetry breaking effects might have to beconsidered.
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On the other hand, the new “fit” value for the branching fraction ω → π0γ ((8.90 ±
0.25) 10−2) is also hard to accomodate in our model. We show that the previous PDG “fit”
value ([8.50± 0.50] 10−2) seems in better consistency with the rest of the data we handle ; we
also checked that the value ([8.39±0.25] 10−2) produced by a fit [74] performed in a completely
different context was also well accepted, pointing to a possible overestimate of the central value
for this mode20. The questions raised by the values of these two decay widthswill be discussed
at the appropriate place below.

Finally, we also introduce in the fit procedure the ratio of the kaon to pion decay constants
as they are reported in the latest RPP [54]. This actually coincides with our SU(3) breaking
parameter (zA = [fK/fπ]2).

11.2 Timelike Form Factor Data in e+e− Annihilations

Beside the decay data listed just above, we have included in our fit all data on the pion form
factor collected ine+e− annihilations by the OLYA and CMD Collaborations as tabulated in
[75] and the DM1 data [76] collected at ACO (Orsay). These data will be referred to globally as
“old timelike data”. When included into aχ2 expression, systematic errors have to be combined
with the published statistical errors ; they have been first added in quadrature to the statistical
errors for OLYA data (4%) and CMD (2%) following expert advice [77]. However, for sake of
consistency with the new data discussed just below, we preferred extracting the correlated part
of the systematic errors, estimated [77] to 1% and have performed the same treatment as for
the new data (see just below). The accuracy of the DM1 data making the influence of this data
set marginal, we did not add any further contribution to the published errors. We only use the
data points located below theφ meson mass in order to avoid being sensitive to higher mass
vector mesons, not included in the present model.

Four additional data sets have been collected later at Novosibirsk on the VEPP2M ring. The
first one, covering the region from about 600 to 960 MeV, collected by the CMD2 collaboration
[78] and recently corrected [27], is claimed to have the lowest systematic error (0.6%) ever
reached in this field.

CMD2 has collected in 1998 and recently published two additional data sets, one [28]
covering the energy region from 600 to 970 MeV is claimed to reach a systematic error of
0.8%, and a second set [29] covering the threshold region (from 370 to 520 MeV) with an
estimated systematic error of0.7%. On the other hand, the SND collaboration has recently
published [30] a new data set covering the invariant mass region from 370 to 970 MeV with a
systematic error of1.3% over the whole data set except for the very low mass region where the
(first) 2 points carry a systematic error of3.2%.

Concerning these four data sets (which will be referred to globally as “new timelike data”),
we could, as per usual, add in quadrature the systematic and statistical errors and then get a
diagonal error matrix which can be used inχ2 fits in a trivial way.

However, an important part of the systematic uncertaintiesfor these data sets is expected
to be a common global scale uncertainty [77] which has been estimated to0.4% and generates
bin to bin correlated errors. In principle, one should take the latter information into account in

20Looking at [54], the role of the data and analyses for thee+e− → π0γ process itself to get the “fit” value for
the partial widthω → π0γ is unclear.
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fits ; this implies dealing with systematic and statistical errors in a way slightly more elaborate
than simply adding in quadrature statistical and systematic errors.

Firstly, the (bin per bin) uncorrelated part of the systematic error is derived by subtracting
in quadrature0.4% from the already quoted systematic errors. This uncorrelated part of the
systematic error (i.e.

√
σ2

syst. − (0.4%)2, depending on the data set considered) can certainly
be added in quadrature to the statistical error bin per bin, giving a combined standard deviation
namedσi for the measurementmi in the energy bini ; theσi are uncorrelated errors and define
a diagonal error matrix. The question then becomes how to redefine the full covariance matrix
for each experiment, being understood that the quantity to be compared with the theoretical
pion form factorf th

i for each energy bini is related with the measurementmi by :

f th
i 7−→ m′

i = (1 + δλ)mi (41)

whereδλ is considered a gaussian random variable with zero mean and standard deviation
λ = 0.4 × 10−2. With this assumption it is possible to model reasonably well the covariance
matrix, which is no longer diagonal.

Secondly, one has to treat these correlations. The quoted correlated systematic error is a
conservative estimate of the accuracy of radiative corrections performed on the four data sets
using the same Monte Carlo generator [77]. Therefore, the fitparameter introduced in order
to optimize the absolute scale should be the same for all datasets ; in statistical terms, this fit
parameter value can be considered as onlyone sampling of the gaussian random variableδλ
defined just above and should be valid for all data collected by the CMD2 and SND Collabo-
rations.

If the correlated part of the systematic error was strictly zero, the error covariance matrix
for each data set would simply be given by :

Vij = σ2
i δij (42)

wherei and j label energy bins in the data set. In the case of existing correlations, having
definedσi as the sum in quadrature of the statistical error and the uncorrelated systematic error
in theith bin , the error covariance matrix elements can be written :

Vij =
∑

k,l

MikWklMlj , (43)

where :
Mij = σiδij and ,Wij = δij + λ2eiej (44)

λ = 0.4 10−2 being the standard deviation of the correlated error function and the vectore
being defined by its components on the various energy binsi as the ratio of the corresponding
measurement to its uncorrelated error :

ei = mi/σi , ∀i ∈ [1, · · ·nmeasur.] (45)

However, what is relevant forχ2 fitting, is not so much the covariance matrix Eq. (44) as
its inverse. It happens that the matrixW can be inverted in closed form :

W−1
ij = δij − µ2eiej and µ2 =

λ2

1 + λ2
∑nmeasur.

i=1 e2i
(46)
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and the full error covariance matrix is also inverted in closed form :

V −1
ij =

∑

k,l

M−1
ik W

−1
kl M

−1
lj . (47)

This is, together with the measured values, the main ingredient of theχ2 calculation which
will be performed with the four new timelike data sets. Finally, while fitting the new data, a
term has to be added to theχ2 ; namingλfit the fit parameter for the global scale common to all
the new Novosibirsk data sets andλexp = 0.4×10−2 the scale uncertainty on the measured form
factor estimated by the experiments, this additional contribution to theχ2 is simply[λfit/λexp]

2.
Mutatis mutandis, the same method has been applied to the old Novosibirsk datasets using

another global scaling factorλ′fit with λ′exp = 1.0 10−2, as recommended by informed people
[77], and the same procedure to construct the final inverse covariance matrix to be used in fits.

A new data set has been recently collected by the KLOE collaboration [64] using the Ra-
diative Return Method. Existing analyses (see, for instance, the short account in [26]) however
report a disagreement between KLOE data and the recently collected data sets at Novosibirsk
due to some systematic effect presently not understood. A recent study of a parametrization of
the pion factor [79] argues about a possible systematic energy shift in the data which would be
detected by fitting theω mass. In view of this unclear situation, we have found it appropriate
to postpone including the existing KLOE set among our fittingdata samples.

11.3 Spacelike Pion Form Factor Data

In order to further constrain the pion form factor in the timelike region, information on
the close spacelike region is valuable. Reliable data on thepion form factor in the negatives
region are somewhat old [59, 80]. The Fermilab data set [80] consists of 14 measurements of
|Fπ(s)|2 betweens = −0.039 GeV2/c ands = −0.092 GeV2/c with 2÷ 7 % statistical error ;
an estimated systematic error (overall normalization) of 1% is provided in [80]. The NA7 data
cover the region betweens = −0.015 GeV2/c ands = −0.253 GeV2 with 45 measurement
points and an overall statistical precision better than those of the Fermilab data. However, NA7
data are also claimed to undergo an overall scale error of 0.9% rms.

One will use these two data sets and treat these correlated systematic errors exactly as
explained above for the timelike pion form factor data.

Data have more recently been collected at the Jefferson Accelerator Facility [81] and reana-
lyzed in order to optimize the extraction of the pion form factor data in the region fors between
−0.60 and−1.60 GeV2 with a quoted uncertainty of about 10%. No precise information about
the correlated–uncorrelated sharing of the systematic error is reported. Including these data in-
volves some more studies and modelling which goes beyond themain task of the present work,
namely, to check the consistency ofe+e− andτ data.

11.4 Phase Pion Form Factor Data

There are several data sets available which provide measurements of the isospin 1 part of
the ππ amplitude phase shift. The most precise set is the CERN/Munich one [82], but the
older Fermilab data set [83] is still useful. However, systematic errors here are not completely
controlled. Moreover, as we neglect vertex corrections at theππ vertex andt-channel resonance
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exchanges which may carry some unknown imaginary part, one cannot draw firm conclusions
when comparing the phase information of our pion form factorwith phase shift data. Therefore,
we have left these data outside our fitting procedure and limited ourselves to simply compare
graphically with the phase of our pion form factor.

11.5 Pion Form Factor Data Fromτ decays

There are presently three available data sets concerning the pion form factor. These have
been collected at LEP by ALEPH [31] and OPAL [32] Collaborations and at much lower energy
by the CLEO Collaboration [33].

The data provided by the ALEPH Collaboration [31] include the covariance matrices for
statistical and systematic errors which should be added before inversion in order to be used in
a χ2 minimization. There is some disagreement between ALEPH [31] and OPAL data [32]
which has led most works to discard this data set ; we shall do likewise.

The CLEO data [33] on the pion form factor are also provided with their full error matrix,
but one that accounts for statistical errors only. Statistical errors dominate most of the system-
atic uncertainties except for those contributing to the absolute energy scale for determining

√
s

[84]. These were quantified by CLEO as a systematic uncertainty on the value of theρ± mass
obtained in their fits to form factor models, estimated to be 0.9 MeV. This error, not accounted
for by the CLEO error covariance matrix, is a systematic error which correlates the various bin
energy values. In contrast with the Novosibirsk data, it is not easy to rigorously account for
this correlated systematic error21. As an approximation we allow the central bin

√
s value to

vary by someε MeV and add[ε/0.9]2 to the CLEO dataχ2. This approach provides a simple
and reasonable way to deal with the data and errors [84].

In order to stay consistent with our dealing withe+e− data, we have limited our fitting
range to theφ mass and then removed all points aboves = 0.9 GeV2. This leaves us with
33 measurements from ALEPH and 25 from CLEO, largely unaffected by higher mass vector
meson effects, as will be checked.

12 The Main Global Fit To The Data Sets

12.1 General Comments About The Fits

Our global model has seven parameters carrying an obvious physical meaning :

• The universal vector couplingg,

• the SU(3) breaking parameterzA (expected to coincide with[fK/fπ]2 within errors),

• the Nonet Symmetry breaking parameterx,

• the basic HLS parametera (expected close to 2),

• the parameterzV which mostly governs the mass difference between theρ0 − ω system
and theφ meson but also plays a role in some coupling constants,

21It affects the position of the measurement, not the measuredvalue itself.
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• zT which affects only theK∗ radiative decay sector in the data used,

• and, finally, theρ0 − ρ± squared mass shiftδm2.

These have been already fitted in isolation in related previous works [8, 9, 16, 51, 85]
and we expect to find fit values close to the already published ones. Within our approach, the
pseudoscalar mixing angle is not free, but is derived from the previous parameters using Eq.
(95) and is expected close to−10.5◦ degrees from previous fits [8, 16]. This has been found in
perfect agreement with the two-angle formulation [11] expressed in the framework of Extended
Chiral Perturbation Theory [13, 14].

Beside these parameters carrying a clear physical meaning,one has the subtraction polyno-
mial of the pion loop (mostly associated with theρ meson self–energy), assumed to be written
c1s+c2s

2 with c1 andc2 to be fitted. Two additional subtraction polynomials carrying the same
form and associated with the difference (ǫ1(s)) and the sum (ǫ2(s)) of theK+K− andK0K

0

loops introduce 4 more parameters22 to be fit. Finally, two more subtraction parameters come
from the specific subtraction of theγρ (or Wρ±) transition amplitude. We thus end up with
15 parameters23 for a number of data of 344 (18 decay modes, 127 data points from the new
timelike pion form factor data, 82 from the old timelike pionform factor data, 59 data points
in the spacelike region, 33 data points coming from ALEPH data and 25 from CLEO).

In addition to these parameters which define our model, we have to account for correlated
systematic errors in several experiments by fitting the corresponding scale factors and using
the experimental pieces of information as constraints. These additional degrees of freedom are
therefore exactly compensated in number by the constraints. This covers the global scale factor
of the former Novosibirsk experiments as reported in [75] (estimated to 1.0% r.m.s.), the global
scale factor of the new Novosibirsk experiments as reportedin [27, 28, 29, 30] (estimated to
0.4% r.m.s), the scale factor for the NA7 [59] and Fermilab [80] data (estimated respectively
to 0.9 % and 1.0 % r.m.s.). Finally, the CLEO data set is expected to carry a systematic energy
shift which will be fitted and is expected [84] of the order 0.9MeV.

We have performed various kinds of fits. In all of them, as detailed above, we have
introduced all usual symmetry breaking effects in the valueof meson masses, the prominent
effects ofρ0 − ω − φ mixing (for e+e− data) and the long– and short–range [37] IB correction
factors (for theτ spectra). We have observed that the two proposed ways to account for long
range corrections by either of [38, 39, 40] and [41, 42, 43] approaches provide quite similar
effects and that, on the basis of probabilities, the difference was never observed significant in
any of our fits. For definiteness, we choose to use the functionof [38, 39, 40] for all results
presented here.

On the other hand, it was useful to check the effect of excluding the photon vacuum polar-
isation (VP), by fixing the corresponding factor to 1. We alsofound it of interest to perform
fits by excluding either theτ data or the spacelike data ; this gives information on the effect of
these on the global fit quality and on the stability of the fit parameter values. Finally, it has also

22We note that we approximate theK±K0 loop by the average value of theK+K− andK0K
0

loops in order
to limit the number of free parameters.

23It will be emphasized later on that one among these subtraction parameters does not influence the fit and can
be safely fixed to zero.
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Data Set Without VP With Vacuum poliarisation (VP)

♯ (data+ conditions) Full Fit Full Fit No τ No Spacelike Noρ mass shift

Decays (18+1) 11.46 11.13 11.52 11.48 11.25

New

Timelike (127+1) 132.81 128.10 122.02 125.76 132.23

Old

Timelike (82+1) 62.22 59.05 54.68 55.20 60.15

Spacelike(59+2) 68.53 65.70 55.20 89.82/(59) 65.13

τ ALEPH (33) 27.06 23.86 42.27/(33) 20.80 24.48

τ CLEO (25+1) 25.53 26.06 26.16/(25) 29.72 28.55

χ2/dof 327.40/331 313.83/331 257.73/274 238.81/272 321.75/332

Probability 54.6 % 74.3 % 75.2% 92.7% 64.7%

Table 1: The first column lists the subset named as defined in the text together with its number
of measurements and condition(s) if any. Each row displays the correspondingχ2 contribu-
tion under the condition quoted in the title of the data column. The last row gives the total
χ2/(number of degree of freedom), followed by the fit probability. Information written bold-
face indicates theχ2 distance of the fit function to a data set left outside from thefit procedure
together with its number of data points. In this case, the condition parameter associated with
the corresponding data set (scale or mass shift) is fixed to the value returned by the full global
fit reported in the second data column and given in Table 2.

been of interest to check the mass shift effect between theρ0 and theρ± mesons, by fixing the
corresponding parameter to zero. The results summarizing the statistical qualities are gathered
in Table 1 and the fit parameter values can be found in the appropriate data column of Tables 2
and 3.

12.2 Discussion Of The Fit Information

Table 1 reports the statistical information about our fits under various conditions. As a
general statement, the fit quality is always either reasonable or very good as clear from the last
row in Table 1.
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Parameter Full Fit No τ No Spacelike No ρ mass shift

Scale New Timelike 1.006± 0.004 1.000± 0.003 1.004± 0.003 1.007± 0.003

Scale Old Timelike 1.012± 0.009 1.010± 0.009 1.011± 0.009 1.013± 0.009

Scale NA7 1.008± 0.007 1.008± 0.007 1.008 1.011± 0.006

Scale Fermilab 1.006± 0.007 1.006± 0.008 1.006 1.008± 0.007

CLEO Shift (MeV) 0.40± 0.52 0.40 0.36± 0.52 1.37± 0.39

δm2 (102 GeV2) −0.268± 0.095 -0.268 −0.285± 0.096 0

a 2.303± 0.012 2.297± 0.012 2.292± 0.012 2.306± 0.012

g 5.576± 0.015 5.578± 0.017 5.597± 0.016 5.573± 0.015

x 0.903± 0.013 0.902± 0.013 0.902± 0.013 0.903± 0.013

zA 1.503± 0.010 1.505± 0.010 1.507± 0.010 1.503± 0.010

zV 1.459± 0.014 1.466± 0.014 1.453± 0.014 1.460± 0.014

zT 1.246± 0.049 1.245± 0.049 1.243± 0.049 1.246± 0.049

Table 2: Parameter values in fits performed including photonVP. Three data columns are
associated with all data (first data column), removing only theτ data (second data column) and
removing only the spacelike data (third data column). The last data column reports parameter
values returned while fitting all data sets by fixingδm2 ≡ 0. Information written boldface
displays values not allowed to vary in the fit procedure.

As a first remark, neglecting to account for photon vacuum polarization effects does not
end up with a dramatic failure ; however, there is a general improvement while introducing
the corresponding function. The negligible degradation observed for CLEO data is entirely
produced by the value found for the CLEO mass shift parameter(which contributes to theχ2,
as explained above) will be discussed below. This statementclearly follows from comparing
the two data columns named “full fit” in Table 1.

The gain inχ2, while including the photon VP, is 13.5 units without any additional param-
eter freedom and, in terms of fit probability, one wins 20 %. Therefore, one may conclude
that the data description prefers including explicitly thephoton VP while fitting thee+e− data.
Under realistic conditions, the fit probability is then always of the order 75 % or better.

The fits have always been performed using the packageMINUIT [86] and the errors quoted
are always the improved errors returned by the routineMINOS. This has allowed us to check
that the minimumχ2 was always locally parabolic, which provides symmetric errors.
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Tables 2 and 3 display the fit parameter values as returned by the fit under the conditions
defined by the various titles of the data columns. We only provide results including the photon
VP inside the definition of the pion form factor fore+e− annihilations. Comparing the vari-
ous data columns in Tables 2 and 3, clearly illustrates that the fit parameter values stay close
together, and generally widely within their (MINOS) errors. The single exception is obtained
while removing the spacelike data ; in this case, the coefficients for the subtraction polyno-
mial ΠW/γ

ππ differ significantly from all other cases. This could have influenced the predicted
values for theV → e+e− partial widths ; however, we have checked that this is not thecase
numerically.

Among the fit parameter values given in Table 2, the most interesting are clearly the fit
values for the scale factors which are nicely consistent with the corresponding experimental
information recalled at the beginning of this Section.

The single exception is the CLEO global invariant mass shiftwhich is found consistent
with zero. Taking into account the way the 0.9 MeV expected shift has been determined24 [84],
this information is interesting. It will be rediscussed when examining the fit residuals which
provides an additional important information.

The third and fourth data columns in Table 1 provide further information :
i/ Removing theτ data from the fit sample, one can construct thepredicted distributions

for the ALEPH and CLEO data which are fully derived using our model together with only
light meson partial width decays and thee+e− data. The predictedχ2 distance to CLEO data
is practically unchanged with respect to fitting with them, while the prediction for the ALEPH
data is not as good even if it remains reasonable25. This indicates that CLEO data are in so nice
agreement with predictions (especiallye+e− data) that they do not really constrain the fit ! In
this respect, ALEPH data, while introduced in the fit data set, clearly influence the procedure.

ii/ Removing only the spacelike data looks a little bit more appealing. Theχ2 distance of
the NA7 and Fermilab data altogether is degraded by≃ 24 units, and the fit probability grows
from 74 % to 93%, pointing to some slight difficulty in accomodating these data sets. However,
this result is by no way problematic enough to either force usto remove the spacelike data or
to deeply question their quality.

In order to compute theχ2 distance of the data samples left out from fit, one had to choose
either the CLEO energy shift or the NA7 and Fermilab scale factors, as they can no longer be
fit. We choose to fix them to their fit value as given in the first data column in Table 2.

Tables 2 and 3, mostly illustrate that, whatever the fit conditions examined, the location of
the minimum in the fit parameter space remains practically unchanged26. The results obtained
by removingτ data from the fit sample, those by removing the spacelike data, those corre-
sponding to removing the photon VP function (not shown) . . . are consistent with each other.
Let us note that the fit parameterc1 in the Πρ

ππ(s) function (i.e. essentially theρ self–mass
function) has been fixed to zero, as it was not found to sensitively affect the fits in the energy
range we are fitting. The various fit conditions only affect the fit quality which varies from

24 In order to make consistent theρ parameters derived from fits to the ALEPH and CLEO data.
25Theχ2 distance for the fitted part of the ALEPH spectrum corresponds to an averageχ2 per point of 1.28 and

thus to an average distance of1.13σ per data point. As a prediction, it is already a good startingpoint, which is
improved by the global fit to an average distance of0.90σ per data point.

26With the exception mentioned above.
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good to very good, while including the photon VP.

Parameter Full Fit No τ No Spacelike No ρ mass shift

Subtraction Polynomial :Πρ
ππ(s)

c1 0 0 0 0

c2 −0.467± 0.013 −0.463± 0.014 −0.472± 0.013 −0.470± 0.013

Subtraction Polynomial :ǫ2(s)

c1 −0.071± 0.003 −0.071± 0.003 −0.072± 0.003 −0.072± 0.003

c2 0.045± 0.004 0.045± 0.004 0.046± 0.004 0.045± 0.004

Subtraction Polynomial :ǫ1(s)

c1 −0.017± 0.001 −0.017± 0.001 −0.017± 0.001 −0.017± 0.001

c2 0.020± 0.001 0.020± 0.001 0.020± 0.001 0.020± 0.001

Subtraction PolynomialΠW/γ
ππ (s)

c1 0.918± 0.061 0.944± 0.068 0.727± 0.074 0.915± 0.060

c2 0.433± 0.106 0.361± 0.115 0.831± 0.145 0.440± 0.105

Table 3: Parameter values under various strategies (cont’d). Boldface parameters are not
allowed to vary. Each subtraction polynomial is supposed tobe writtenc1s+ c2s

2.

Figure 2 shows the fit with thee+e− data in the timelike region superimposed. The
global scale factor effects are accounted for. In theφ mass region, the lineshape is a predic-
tion essentially derived from the phase and branching fraction of theφ → π+π− decay mode
as measured by the SND Collaboration [71]. Information on the full (local) invariant mass
spectrum (when available) would certainly improve this prediction.

Likewise, Figure 3 shows the fit function and the ALEPH [31] and CLEO [33] data super-
imposed. One may note that the highest data point from CLEO data lies at≃ 2σ of the fitting
curve. Actually, the lineshape of the CLEO data in the neighborhood of the maximum raises
some difficulty while fitting, as will be seen shortly with thefit residuals.

Leftside Figure 4 shows the spacelike data [59, 80] togetherwith the fit function. One
may note a small, but systematic upwards shift of the fit compared with the NA7 data which
certainly explains the jump in the fit probability while removing this data sample from the fit.

One may conclude from Figures 2, 3, 4 and the fit probabilitiesthat the agreement of the
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data with the model functions is good and that no obvious drawback shows up.

In order to refine this statement, we have had a closer look at the fit residual plots. The
fit residuals for the new Novosibirsk data are shown in Figure5. The plotted experimental
errors do not take into account the bin–to–bin correlationsgenerated by the global scale error
common to all data sets. As the difference between our pion form factor functionsF e

π(s) and
F τ

π (s) essentially lies in theρ0−ω−φmixing scheme produced by breaking Isospin Symmetry,
this Figure can be compared with Figure 1 in [26] or Figure 9 in[36] where a systematics–
dependent effect was pointing towards a consistency problem betweene+e− andτ data ; such
an effect is no longer observed, pointing to a presently moreadequate manner of performing
the breaking of Isospin Symmetry. One may possibly note thatthe dispersion of the residuals is
very small everywhere for the 1998 CMD2 data [28, 29], while it is larger for the 1995 CMD2
[27] and SND [30] data which additionally, are moved in opposite directions in theω mass
region. This indicates that our fit parameter values are dominated by the 1998 CMD2 data.

The residual distributions forτ data –the upper plots in Figure 6– look more interesting.
The arrows indicate the limit of the fit regions. The errors plotted are certainly underestimated,
as the bin–to–bin correlations are not accounted for in the drawings ; moreover, the errors
produced by identifying invariant mass coordinate and central bin value also are not considered.

One observes now a small but clears–dependent structure above theρ peak location (more
precisely aboves ≃ 850 MeV) which certainly reflects the influence of the unaccounted for
higher mass vector mesons. One has also examined the effect of removing the parameterδm2

by fixing it identically to zero while fitting. Theτ data residuals are given by the lower plots
in Figure 6. One clearly observes the rise of a structure at the ρ peak location in ALEPH data
which is therefore a clear signal of aρ0 − ρ± mass difference. The mass shift observed is :

m2
ρ0−m2

ρ± = −δm2 = (0.27±0.10) 10−2 GeV2 ⇐⇒ mρ0−mρ± = 1.73±0.60 MeV (48)

in good agreement with several other reported values [54].
In contrast, the shape of the CLEO residual distribution rather indicates a systematic effect

in CLEO data located only in theρ peak region. The global Cleo energy shift of 0.9 MeV serves
to recover from the disagreement with ALEPH data. However, these plots clearly show that
the problem of systematics is not global but local and that there is no evidence for a significant
global invariant mass shift within the CLEO data in our fittedrange. As this residual behaviour
is also observed in the standalone fit performed in [33] (see Figure 10 therein), it should not
follow from the constraints specific to our model.

Actually, there is a correlation betweenδm2 and the Cleo energy shiftε which vanishes
when performing a simultaneous fit of ALEPH and CLEO data. In order to check this state-
ment, we have removed ALEPH data from the fit data set. Then, fixing δm2 ≡ 0, we get
ε = 1.57 ± 0.40 MeV and, conversely, fixingε ≡ 0 results in − δm2 = (0.36± 0.08) 10−2

GeV2, with no change in theχ2 value and always the same residual shape as shown in Figure
6. Therefore, the value forδm2 is set by the ALEPH data and should be confirmed by forth-
coming data sets. Correspondingly, it is the use of ALEPH data which indicates that the Cleo
energy shift could well be consistent with zero.

All the reported exercises also show, as clear from Tables 2 and 3, that the fit parame-
ter values are stable (with the exception already mentioned). This means that our model is
overconstrained and that, practically, only the fit quality(i.e. the height of the minimum) is
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affected by the various conditions we have imagined. We werealso aware of possible correla-
tions between the subtraction polynomials. Looking at the fit error covariance matrix, we did
not observe strong correlations between parameters belonging to different polynomials, which
seems to indicate that they are indeed independent.

Therefore, one may consider that the description of all formfactor data supports our mixing
model, as reflected by the statistical fit qualities reportedin Table 1 under various conditions.

Finally, rightside Figure 4 shows thepredicted phase of theI = 1 part of the pion form
factor together with the measuredP11 (ππ) phase data from [82, 83]. Clearly, the description is
good, keeping in mind that some contributions have not been included, especially the exchange
of a spacelikeρ. Therefore, this Figure indicates that the neglected diagrams should contribute
not more than a few degrees to the phase.

Therefore, the description of all form factor data can be considered as satisfactory and
provides a solid ground to our main assumptions :

j/ The bulk of Isospin Symmetry effects which create the difference betweene+e− andτ
form factor lineshapes is aρ0−ω−φmixing scheme of dynamical (i.e. s–dependent) structure.

jj/ An appropriate subset of meson partial width decays and thee+e− form factor data
mostly suffice to set up aρ0 − ω − φ mixing scheme able to derive theτ spectrum with good
precision.

jjj/ The effects of higher mass vector mesons in the mass region below 1.0 GeV, even if
somewhat visible on the upper wing of theρ peak, are negligible.

jv/ The (observed)ρ0 − ρ± mass shift is very small and of negligible effect. Newτ data
may confirm its relevance, as this follows only from ALEPH data.

12.3 Light Meson Decays

As a preliminary remark, when fitting partial widths (actually coupling constants), the rec-
ommended data used are the partial widths taken from the RPP [54], when available. If not,
they are derived from the branching ratios and the full widths. Sometimes, this procedure re-
veals a surprising information. For instance, forη → γγ, the ratio of the “fit” partial width
error to the corresponding central value is0.026/0.51 = 0.05, while the corresponding infor-
mation derived from the quoted “fit” branching fraction is0.26/39.98 = 0.007, which might
look somewhat optimistic.

The numerical estimates of branching fractions have been calculated using the information
returned by theMINOS program and take into account the parameter error covariance matrix in
the standard way (as recalled in Section 7.3 of [16], for instance). This is mandatory as some
error correlation coefficients are very large, namely thoseamong the two fit parameters hidden
insideǫ1(s), or insideǫ2(s) are about 95%. Most other error correlation matrix elementsare
below the 10 % level. We therefore consider that our error estimates are accurate.

On the other hand, all partial width results we compute have been derived using the accepted
values for all vector and pseudoscalar meson masses [54]. Inorder to produce the branching
ratios as given in Table 4, we have also divided these partialwidths by the accepted total
widths reported in the latest issue of the Review of ParticleProperties [54]. The errors on
masses and widths have been taken into account in the computer code used in order to derive
the reconstructed branching ratios.
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12.3.1 Radiative Decays Of Light Mesons

The fit values for the branching fractions of light mesons radiative decays are displayed on
top of Table 4. Most decay modes involving vector mesons are in nice correspondence with
their recommended values [54].

The value returned for theω → π0γ branching ratio is about 3σ from the presently rec-
ommended value [54], but is in good agreement with the formerrecommended value ((8.5 ±
0.5) 10−2 as well as the value found in the fit of thee+e− → π0γ reported in [74] ((8.39 ±
0.25) 10−2). This indicates that the recommended central value for this decay mode can be
questioned.

On the other hand, as already commented upon, the branching fraction found forω → ηγ, is
in much better agreement with the average value proposed by the PDG in [54] ((6.3±1.3) 10−4)
than their so–called fit value reported in Table 4 ; this result is also in perfect agreement with
the Crystal Barrel [87] measurement ((6.6 ± 1.7) 10−4) as well as the measurement obtained
in a fit to thee+e− → ηγ cross section [74] ((6.56± 2.5) 10−4). We also consider confidently
our result for this decay mode.

The ratio :
Γ(ω → ηγ)

Γ(ω → π0γ)
= (0.802± 0.011) 10−2 (49)

depends only weakly on the mass and width definitions of theω meson and is in agreement with
all reported direct measurements in the RPP [54]. This also gives support to both fit results.

The contribution of theη′ → ρ0γ mode to theχ2 is 2.23, while all others are smaller or
of order 1. This may indicate that the box anomaly [85, 88] shows up and might have been
accounted for.

The only difficult point of the model is the≃ 1.9σ departure of the partial width forη →
γγ from the expected value commented upon at the beginning of this Section. Whether this
could be due to our assuming that the pion decay constant is not affected by Isospin Symmetry
breaking effects is an open possibility. Instead, the partial width for η′ → γγ fits nicely its
expected value, possibly because of its larger experimental uncertainty27.

Finally, we should note that our model gives a precise indirect measurement offK/fπ :
[
fK

fπ

]2

= 1.503± 0.010stat ± 0.002model =⇒ fK

fπ
= 1.226± 0.004stat ± 0.001model (50)

where the second quoted uncertainty reflects details of the model together with the effects of
including the spacelike data in the fit. This is in balance with the corresponding quantity which
can be derived from the reported world average data [54] asfK/fπ = 1.223± 0.010, assuming
that the errors onfπ andfK are uncorrelated.

12.3.2 Leptonic Decays Of Light Vector Mesons

Table 4 indicates that our model nicely accomodates theω → e+e− andφ → e+e− partial
widths giving values which coincide with their recommendedvalues [54].

27 In order to test this assumption, we have leftfπ0 free in our fits and, forfπ0 = 87.9 ± 2.4 MeV, we have
reached a probability slightly above 80 %, withΓ(η → γγ) at 0.55σ from its recommended value [54] and
Γ(η′ → γγ) at only 0.37σ. This has to be compared with the reported value extracted fromΓ(π0 → γγ) which
providesfπ0 = 91.92± 3.54 MeV.
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Our result forρ0 → e+e− is derived from the same data which underly the other proposed
values [54] and has been obtained with a careful account of all statistical and systematic re-
ported errors. Therefore, this value can be confidently considered ; one should note that it
exhibits a≃ 10σ distance to the presently accepted branching fraction [54]. A more straight-
forward information coming out from our fits is the corresponding partial width :

Γ(ρ→ e+e−) = (8.34± 0.10± 0.31)10−3 MeV (51)

where the first error merges all statistical and systematic uncertainties commented upon in the
body of the text ; the second error takes into account the realuncertainty affecting theρ mass
used in order to derive the partial width from the coupling. It has conservatively been fixed
to 10 MeV for reasons which will become clearer shortly. The corresponding partial width as
given in [54] is(7.02± 0.11)10−3 MeV.

12.3.3 Theω/φ→ π+π− Decays

The value found for theφ → π+π− partial width compares well with its measured value
[71]. Actually, one may suspect that this datum prominentlyinfluences some of our free pa-
rameters, certainly those in the expression forǫ1(s). The phase of the corresponding coupling
constant being close enough (1.4σ) to expectation [71] might indicate that the data (modulus
and phase) for this mode carry small systematic uncertainties.

The branching fraction we get for theω → π+π− mode is more appealing. It is derived
from all data involved in this measurement with a precise account of all systematic uncertain-
ties. Additionally, the quality of the measurement we propose probably does not suffer from
significant model uncertainties, as theρ−ω interference region is quite well described (see the
insets in Figure 2). Therefore, our conclusion for this decay mode is either of :

Br(ω → π+π−) = (1.13± 0.08)% , Γ(ω → π+π−) = (9.59± 0.80) 10−2 MeV (52)

using the recommended value for width and the mass of theω meson [54].
This new datum may influence the global fit of all theω decay modes in isolation. This is of

concern for our purpose, as one has noticed that the disagreements observed between the PDG
recommended values [54] and our results for theV Pγ modes refer mostly to theω → (η/π0)γ
branching ratios.

Finally, the unfitted Orsay phase for the couplingω → π+π− is found close to its expected
value from a standalone fit to the so–called old timelike data[50], while our fit for the phase of
theφ→ π+π− coupling is in good agreement with its measured value [71].

12.3.4 Theφ→ KK Decays

As explained in the body of the text, we have been led to leave both φ → KK de-
cay widths outside our fit procedure, as there is some uncertainty with possible factors, like
Coulomb corrections, which may affect the usual coupling constant contributions to both par-
tial widths[72, 73, 89].

Therefore, the values reported in Table 4 are predictions only influenced by the other de-
cay modes and without any additional correction factor to each of theφ → KK branching
ratios. The numerical values found for these branching ratios clearly illustrate that our model
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is overconstrained and provides precise values for the coupling constants of bothφ → KK
modes.

The ratio of the prediction to the recommended central values is 1.022 for the charged
mode (i.e. a1.8 σ distance) and 0.97 for the neutral decay mode (i.e. a2.0 σ distance). Taking
into account the model uncertainty reported in Table 4, the agreement could be considered as
satisfactory.

Now, if correction factors have to be applied, they are expected to improve the prediction
for the rates. Therefore, they should be of the order 0.976 and 1.031 for, respectively, the
charged and neutral decay widths. This clearly invalidatesthe traditional 1.042 correction
factor proposed in order to account for Coulomb interactionamong the charged kaons28.

Correcting both modes as argued in [73], even if able to provide a good account for the ratio
Γ(φ → K+K−)/Γ(φ → K0K

0
), does not allow a good account of both modes separately, as

the corrections proposed turn out to increase the expected rate for both modes.
Within the framework of our model, if correction factors have to be applied, they should not

increase the charged decay mode by more than≃ 1%. There is more freedom with the neutral
decay mode. Therefore, in order to fix one’s ideas, one has leta correction factor for only the
neutral decay mode to vary. In this case, of course, the correction factor (= 1.047 ± 0.024)
is found such that the neutral mode exactly coincides with its measured value, which could
be expected beforehand. However, more interesting is that theχ2 contribution of the charged
decay mode (which does not explicitely depend on this factor) is only 0.3 (a0.5 σ effect).
This indeed confirms that only the predicted neutral decay width might have to be corrected
significantly. Taking into account that systematic effectsare harder to estimate for the charged
mode than for the neutral one (see footnote 16 in [16]), this may look a physical effect. Whether
the “mixed isoscalar and isovector source” scheme of [89] can account for such an effect would
be interesting to explore.

As a summary, our analysis tends to disfavor a significant correction factor to theφ →
K+K− decay width (above the 1.01 level). It would rather favor a significant correction factor
for only the neutral modeφ → K0K

0
(which could be as large as 1.047 for the rate). If

the traditional scheme of Coulomb corrections should really apply, both measured widths for
φ→ KK are hard to understand, as already stated in [72, 16].

12.3.5 What Are Theρ Parameters?

For objects as broad as theρ (orK∗) meson, the definition of mass and width is not a trivial
matter [53]. Having defined in our model theρ0 andρ± propagators as analytic functions (or
rather meromorphic functions on a 2–sheeted Riemann surface with branch point at threshold),
one has at disposal the poles of the propagators. This has been shown to provide the most stable
definition of the mass and width [53]. If one assumes that Analyticity of S–matrix elements
is a basic principle, this is also the most model independentdefinition. Indeed, whatever are
the working assumptions, the pole basically tells where thepeak is really located and how
wide is the invariant mass distribution around the peak (typically, close to the full width at half
maximum). We remind that the data used for our fits is the most complete set of data allowing
to define the mass and width of theρ mesons.

28 See [72] for a detailed account of the usual way to deal with Coulomb corrections and Isospin Symmetry
breaking effects inφ decays.
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For this purpose, our final results for the complexs locations of theρ meson poles are :





sρ0 = (0.5782− i 0.1099)± (0.9 + i 0.5) 10−3 (GeV2)

sρ± = (0.5760− i 0.1095)± (1.0 + i 0.5) 10−3 (GeV2)

sρ0 − sρ± = (2.26− i 0.38) 10−3 ± (0.83 + i 0.14) 10−3 (GeV2)

(53)

All other results depend on how to defineMρ andΓρ starting from the relevantsρ pole location.
Defining as in [56]sR = M2

R − iMRΓR one gets :





Mρ0 = 760.4± 0.6 MeV , Γρ0 = 144.6± 0.6 MeV

Mρ± = 758.9± 0.6 MeV , Γρ± = 144.3± 0.5 MeV

Mρ0 −Mρ± = 1.51± 0.53 MeV

(54)

which for ρ0 are slightly larger than those found by [56] using only the so–called old timelike
data. One may note that the mass difference is affected by a smaller uncertainty than the masses
separately.

One may also choose [57]sR = (MR − iΓR/2)2 and obtain slightly different values (not
shown). Defining the mass by the location of the maximum of thedistribution and the width
by the full width at half maximum cannot be derived easily from Eqs. (53) ; they are :





Mρ0 = 762.1± 0.6 MeV , Γρ0 = 144.5± 0.6 MeV

Mρ± = 760.8± 0.6 MeV , Γρ± = 144.5± 0.5 MeV

Mρ0 −Mρ± = 1.22± 0.53 MeV

(55)

One may consider these values as they are in consistency withthe way the mass and width for
objects like theω andφ mesons are usually defined [54]. The difference between these results
and those in Eqs. (54) could be attributed to the influence of the regular part of the invariant
mass distribution.

If instead, one decides to parametrize the distributions with varying width Breit–Wigner
shapes, one will recover the traditional values tabulated in [54] (Mρ0 = 775.5 ± 0.4 MeV, for
instance). However, their model dependence (not only theirdefinition dependence) should be
stressed.

Instead, one may also choose the HK mass values as they come from the Lagrangian29 and
our fitted parameters, one would rather get :

Mρ0 = 782.1± 2.1 MeV , Mρ± = 780.4± 2.2 MeV , Mρ0 −Mρ± = 1.74± 0.60 MeV
(56)

This result is also interesting. Indeed, as stated above (see Footnote 6), a reasonable break-
ing of Isospin Symmetry at Lagrangian level, while producing a (HK) mass difference between

29 This has a clear physical meaning : It is the mass of theρ meson while working at tree level (when possible,
as maybe farther inside the spacelike region than we have gone).
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theρ0 andρ± mesons returnsmρ0 = mω. As one may think that the HKω mass is close to
the tabulated value [54] (mω = 782.65 ± 0.12 MeV), it may have a meaning to find that the
HK mass for theρ0 is consistent with the acceptedω mass. For this purpose, it should be noted
that theω mass value used in our fits was fixed at this accepted value, andthen cannot directly
influence the HK value formρ0 .

Defining the width using Eq. (101) provides the same width forthe charged and neutralρ
meson :

Γρ = 172.13± 1.42 MeV. (57)

which is substantially larger than all other definitions ; however this follows from the most
usually employed formula for the two–body decay widths of the ω andφ mesons. One may
argue that the larger mass and width exhibited by Eqs. (56) and (57) compared with usual is
related with our having the HLS parametera significantly different from 2 (a3 σ effect).

Therefore, one considers the best solution as being thes location of the poles as given
by Eqs. (53) ; the definition of the mass and width usingsR = M2

R − iMRΓR, or sR =
(MR − iΓR/2)2, or something else, can be derived algebraically.

12.4 A Few More Comments On The Model

In order to justify the change from ideal to physical fields, one should check that the func-
tions in the non–diagonal elements of theR matrix in Eq. (17) are small compared to 1 in the
relevant invariant mass range. For this purpose, we have hada closer look at the functions :






Fρω(s) =
ǫ1(s)

Πππ(s)− ǫ2(s)

Fρφ(s) =
µǫ1(s)

(1− zV )m2 + Πππ(s)− µ2ǫ2(s)

Fωφ(s) =
µǫ2(s)

(1− zV )m2 + (1− µ2)ǫ2(s)

(58)

computed with the fit parameter values. These are the entriesof theR(s) matrix which defines
our transformation from ideal (bare) fields to physical fields.

Figure 7 shows the real and imaginary parts of these functions. They are all small compared
to 1 all along the physical region :|Fρω(s)| ≃ O(10−2), |Fρφ(s)| ≃ O(10−2) and|Fωφ(s)| ≃
O(10−1). As expectedFωφ(s), which does not vanish in the Isospin Symmetry limit, is larger
and one observes an order of magnitude difference.

Fρω(s) represents the traditionalρ−ω mixing and its behaviour translates in our modelling
the known large (Orsay) phase by the quasi–vanishing of its real part aroundm2

ω. It exhibits
around

√
s ≃ 0.3 GeV, the two–pion threshold, an unexpected behaviour whichis actually

too small to influence numerically the pion form factor. Whether this local effect should be
considered seriously is unclear, taking into account the approximations done in order to work
out the model30. The important point here is that, even if narrow, the amplitude does not exceed

30This goes along with the remark that one would have preferreda solution forFρω(s) which vanishes ats = 0
asFρφ(s) andFωφ(s) do, even for non identically vanishing ofǫ1. This could also be a consequence of working
at first order inǫ1 andǫ2. However, the neglecting of the anomalous loop effects may play some role nears = 0.
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a 10 % level there and a few percents all along the physical region (namely theρ/ω andφ peak
locations).

Fρφ(s) is of the same order of magnitude thanFρω(s) but much smoother all along the
physical region ; its real and imaginary parts around theφ meson mass are comparable (≃ 1
%).

Fωφ(s) is more interesting as it represents what is traditionally attributed to a constant
mixing angle of a few degrees [8]. It is indeed what is exhibited, as this function is real atm2

ω

and close to real atm2
φ. However, the numerical values of the mixing angle vary significantly :

at theω mass the angle is 0.45◦, while it is 4.64◦ at theφ mass. This tends to indicate that the
notion of mixing angle has somewhat to be readdressed.

As explained above, the (not too small) magnitude ofFωφ(s) could have been infered from
the HLS model, as the transitions betweenωI andφI follow from kaon (andK∗K) loop effects
and not from supplementing them with Isospin Symmetry breaking effects.

Figure 8 emphasizes the important features of our model for the pion form factor. The
upper plot shows the function :

H(s) =
|F e

π(s)|2 − |F τ
π (s)|2

|F τ
π (s)|2 (59)

which summarizes the breaking of Isospin Symmetry all alongthe physical region. The strong
effects at theω andφ mass locations could have been expected. However, one clearly sees a
non–zero “background” contribution extending down to threshold (and even below) and beyond
theφ mass. This simply illustrates that ourρ − ω − φ mixing scheme is really invariant mass
dependent. This is why it can suppress the unwanted effects exhibited by residuals in more
standard approaches (see for instance [26], [35] or [36]).

The lower plot shows instead :

H1(s) =
|F e

π,I=1(s)|2 − |F τ
π (s)|2

|F τ
π (s)|2 (60)

whereF e
π,I=1(s) is identified with theρ0 part of the pion form factor, as traditionally done. It

clearly exhibits that theρ0 andρ± mesons are different kinds of objects in our modelling. We
indeed observe31 an effect of several percents and functionallys–dependent.

Stated otherwise, theρ± is indeed a pure isospin 1 meson, while theρ0 meson is actually
a mixture of isospin 1 (ρ0

I) and isospin 0 states (ωI andφI). A real extraction of the isospin
1 component ofF e

π(s) should isolate the isospin 1 part of theρ, ω, andφ amplitudes, which
is exactly what our model does, by construction. This allowsus to agree with the analysis by
K. Maltman [48, 49] concluding that theρ part of the pion form factor ine+e− data does not
behave as being isospin 1 ; however, this does not invalidatethee+e− data.

Therefore, the single departure from CVC one observes is simply the tiny shift between the
ρ0 andρ± masses which follows from ALEPH data.

31The local minimum just above threshold, which reflects the structure ofFρω(s) we discussed, may be an
artifact of the model. Its numerical value at this location makes it however totally invisible.
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It also follows from our model that usingτ data in order to reconstruct the equivalente+e−

spectrum is not straightforward and requires a non–trivialphysics input as shown by both plots
in Figure 8.

One is tempted to think to extending the model in order to include higher mass vector
meson nonets. In order to do it properly within the HLS context, one may change in the co-
variant derivative (see Eqs. (67)) the (presently) single vector termgV to

∑
giVi. This induces

further transition amplitudes like, for instance,ρ0(770)←→ ρ0(1450) which may sharply com-
plicate the model. It is not easy to have a feeling for the numerical magnitude of the inter–nonet
transitions as, now, pion and kaon loops contribute. Moreover, the higher mass vector mesons
are in the region where all the thresholds of theV P channels are open. Therefore, one may
also have to include the corresponding loops explicitly. Whether the problem will not become
numerically untractable is therefore unclear.

On the other hand, one has certainly noticed that the problemwe have examined is highly
non–linear in the parameters. This makes the search for solutions highly dependent on getting
a starting point (in the parameter phase–space) reasonablyclose to the final solution that the
fit procedure may succeed. In the present case, it was alreadya non–trivial (and highly time
consuming) task.

13 Conclusion

Within the context of the HLS model, as for other models, at tree level the so–called ideal
fields (ρI , ωI , φI) are mass eigenstates. This simple picture vanishes at one–loop order. In this
case, kaon loops generate non–zero amplitudes allowingωI ←→ φI transitions. Breaking of
Isospin Symmetry in the pseudoscalar sector generates a mass difference between kaons and,
besides, the transition amplitudesωI ←→ ρI andφI ←→ ρI , even if of small magnitude, are no
longer vanishing. Additionally, these amplitudes exhibita dependence ons, the square of the
momentum flowing through the vector meson lines. As the physical fieldsρ, ω, φ are expected
to be eigenstates of the squared mass matrix, this unavoidably leads to define them as linear
combinations of their ideal partners. However, as the transition amplitudes ares–dependent, it
is clear that these combinations should also bes–dependent.

We substantiate these considerings starting from the HLS Lagrangian, modified by includ-
ing in the squared mass matrix of the neutral vector mesons all self–energies and transition
amplitudes. Making the assumption that the physical neutral vector fields should be eigen-
states of the loop modified squared mass matrix of the (ideal)neutral vector meson, we solve
the eigenvalue problem perturbatively. This leads to physical vector meson fields expressed
as linear combinations of their ideal partners with definites–dependent coefficients, which are
actually analytic – or, rather, meromorphic – functions ofs. Of course, this algebra leaves
unchanged the charged and/or open strangeness sector, as the starting fields acquire a running
mass but no transition from one to another meson field.

The main mechanism producing the vector meson field mixing isthe occurence of neu-
tral and charged kaon loops in transitions between the idealneutral vector meson fields. We
have also shown that the anomalous HLS–FKTUY sector provides as supplementing mecha-
nismK∗K loops, occuring in transitions in nice correspondence withkaon loops. Within this
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framework, theωφ mixing has been shown to proceed from quantum (loop) effects, while the
ρ0ω andρ0φ mixings follow from Isospin Symmetry breaking effects and vanish when this
symmetry is restored.

This allows to dynamically generate isospin violating couplingsφπ+π− andωπ+π− at the
(modified HLS) Lagrangian level. With this at hand, we have been able to construct the pion
form factor expression at one–loop order modified in order toaccount for Isospin Symmetry
breaking through only a dynamically generatedρI − ωI − φI mixing scheme.A priori, this
fully affects thee+e− physics but, by no way, theτ physics ; in this sector, as a second order
refinement, we have been led to accept shifting with respect to each other the Higgs–Kibble
masses of theρ0 andρ± mesons. This provides a tiny effect, nevertheless clearly visible in
ALEPH τ data, but not obvious in CLEO data. New data expected from B-factories may
confirm the need for this mass shift. As a final result, we end upwith structureless residuals in
the fitted regions, which confirm that our dynamical mixing scheme is appropriate.

The mixing properties have been introduced in the anomalousdecay amplitudesV → Pγ
andP → V γ. These processes actually represent our main lever arm while defining numeri-
cally our isospin breaking scheme.

Beside a good description of theV → Pγ andP → V γ decay data, this allows a very
good simultaneous description of all pion form factor data from the close spacelike region to
theφ mass, ine+e− annihilations as well as inτ decays. The physical ground of this result
can be traced back to the fact that theρ0 meson is a mixture of isospin 0 and 1 states (as theφ
andω meson), in contrast to theρ± meson which is purely isospin 1. Actually, extracting the
isospin 1 part of the pion form factor ine+e− annihilations requires to split up theρ0, φ andω
contributions. This is done automatically by our model, andone can claim that such a splitting
cannot be done without some model.

The net result of this model is to prove that the lineshapes for the pion form factor in
e+e− annihilations and inτ decays are perfectly consistent with each other, without any further
breaking of CVC than a possible tinyρ0−ρ± mass difference. In a further step, one may include
the data from KLOE as well as data expected to come from BaBar and Belle concerning the
τ spectrum on the one hand and thee+e− Initial State Radiation samples on the other hand.
However, our comparison ofe+e− andτ data does not seem to leave room for any kind of new
physics.

On the other hand, we have shown that this model allows a good account of all decays
of the formV → Pγ andP → V γ. The case of theω → ηγ andω → π0γ partial widths,
where some disagreement is observed with the so–called “fit”values proposed by the PDG, has
been discussed and we have argued that the real situation is somewhat unclear.

Our dealing with the pion form factor data has led us to propose improved values for data
sharply related with thee+e− → π+π− annihilation process, namely theρ0 → e+e− and
ω → π+π− partial width decays. In both cases, we find that the reference values should be
significantly modified and we propose for these new referencedata.

Finally, we have briefly commented upon the mass and width of the ρ0 andρ± mesons
and argued that the best motivated definition should rely on the pole position in the complex
s–plane and related definitions.

Having shown thate+e− data andτ data are perfectly consistent with each other pro-
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vided one uses an appropriate model of Isospin Symmetry breaking, we can conclude that there
is no reason to question thee+e− data. This result is important as these data serve to estimate
numerically the hadronic photon vacuum polarization used in order to predict the value of the
muon anomalous magnetic momentg − 2 . Therefore our model indirectly confirms the 3.3σ
discrepancy between the BNL direct measurement of the muon anomalous magnetic moment
and its theoretical estimate.
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Decay Mode Fit Value PDG/Reference

ρ→ π0γ [×104] 5.17± 0.04 6.0± 0.8

ρ→ π±γ [×104] 5.03± 0.03 4.5± 0.5

ρ→ ηγ [×104] 3.05± 0.04 2.95± 0.30

η′ → ργ [×102] 33.3± 1.0 29.4± 0.9

K∗± → K±γ[×104] 9.8± 0.9 9.9± 0.9

K∗0 → K0γ[×103] 2.26± 0.02 2.31± 0.20

ω → π0γ [×102] 8.23± 0.04 8.9+0.27
−0.23 (∗)

ω → ηγ [×104] 6.60± 0.09 4.9± 0.5 (∗)

η′ → ωγ [×102] 3.14± 0.10 3.03± 0.31

φ→ π0γ [×103] 1.24± 0.07 1.25± 0.07

φ→ ηγ [×102] 1.292± 0.025 1.301± 0.024

φ→ η′γ [×104] 0.60± 0.02 0.62± 0.07

η → γγ [×102] 35.50± 0.56 39.38± 0.26

η′ → γγ [×102] 2.10± 0.06 2.12± 0.14

ρ→ e+e− [×105] 5.56± 0.06 4.70± 0.08 (∗∗)

ω → e+e− [×105] 7.15± 0.13 7.18± 0.12

φ→ e+e−[×104] 2.98± 0.05 2.97± 0.04

ω → π+π−[×102] 1.13± 0.08 1.70± 0.27 (∗∗)

gωπ+π− phase [degr] 101.2± 1.6 104.7± 4.1 (∗∗) [50]

φ→ π+π−[×105] 7.14± 1.7 7.3± 1.3

gφπ+π− phase [degr] −27.0± 0.5 −34± 5 [71]

φ→ K+K−[×102] 50.3± 1.0 49.2± 0.6 (∗∗)

φ→ K0
SK

0
L[×102] 33.0± 0.7 34.0± 0.5 (∗∗)

Table 4: Reconstructed Branching fractions for radiative and leptonic decays using any of the
various fit strategies. The reported values are the mean value and the rms of the simulated
distributions. The last column displays the recommended branching ratios [54]. The symbol
(∗) indicates data commented upon in the text,(∗∗) indicates data which are not introduced in
the fit procedure.
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Appendices

A The Full HLS Non–Anomalous Lagrangian

The construction of the non–anomalous Lagrangian of the Hidden Local Symmetry (HLS)
Model has been presented in great detail several times by itsauthors (see for instance [1] or
more recently [2]). Let us simply outline the main steps of the construction procedure.

The HLS model allows to produce a theory with vector mesons asgauge bosons of a hidden
local symmetry. These acquire a mass because of the spontaneous breakdown of a global chiral
symmetryGglobal = U(3)L ⊗ U(3)R. The chiral Lagrangian is written :

Lchiral =
f 2

π

4
Tr[∂µU∂

µU ] (61)

whereU(x) = exp [2iP (x)/fπ] ; herefπ is identified with the pion decay constant (fπ = 92.42
MeV) andP is the matrix of pseudoscalar mesons (the Goldstone bosons associated with the
spontaneous breakdown ofGglobal). This matrix :

P = P8+P0 =
1√
2




1√
2
π0 +

1√
6
η8 +

1√
3
η0 π+ K+

π− − 1√
2
π0 +

1√
6
η8 +

1√
3
η0 K0

K− K
0 −

√
2

3
η8 +

1√
3
η0




,

(62)
contains a singlet term besides the octet term ; appropriatecombinations ofη8 andη0 corre-
spond to the physical pseudoscalar fieldsη andη′. Here and throughout this paper we restrict
ourselves to three flavours.

However, besides the global symmetryGglobal, the chiral Lagrangian possesses a local sym-
metryHlocal = SU(3)V which is included in the HLS approach by splitting upU as :

U(x) = ξ†LξR (63)

where theξ fields undergo the local transformation. These variables are parametrized as :

ξR,L = eiσ/fσe±iP/fπ (64)

and the scalar fieldσ is usually eliminated through a gauge choice, and can be considered ab-
sorbed into the gauge bosons and removed. However, the decayconstantfσ goes on appearing
in the model through the HLS fundamental parametera = f 2

σ/f
2
π . Using this parametrization

Eq. (61) can be rewritten :

Lchiral = −f
2
π

4
Tr[(∂µξLξ

†
L − ∂µξRξ

†
R)2] (65)

This Lagrangian can be gauged for electromagnetism, weak interaction and the hidden local
symmetry by changing the usual derivatives∂µ to covariant derivativesDµ [1, 2] and one then
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gets : 




LHLS = LA + aLV

LA = −f
2
π

4
Tr[(DµξLξ

†
L −DµξRξ

†
R)2] ≡ −f

2
π

4
Tr[L−R]2

LV = −f
2
π

4
Tr[(DµξLξ

†
L +DµξRξ

†
R)2] ≡ −f

2
π

4
Tr[L+R]2

(66)

using obvious notations.
Now let us turn to the covariant derivatives. These are givenby[2] :






DµξL = ∂µξL − igVµξL + iξLLµ

DµξR = ∂µξR − igVµξR + iξRRµ

(67)

(where we have factored out the universal vector meson coupling constant) with :





Lµ = eQAµ +
g2

cos θW
(Tz − sin2 θW )Zµ +

g2√
2
(W+

µ T+ +W−
µ T−)

Rµ = eQAµ −
g2

cos θW
sin2 θWZµ

(68)

Eqs. (67, 68) introduce the matrix of vector meson fields (thegauge bosons of the
hidden local symmetry) which is :

V =
1√
2




(ρI + ωI)/
√

2 ρ+ K∗+

ρ− (−ρI + ωI)/
√

2 K∗0

K∗− K
∗0

φI




(69)

in terms of the so–called ideal field combinations (indicated by the superscriptI) for the neutral
vector mesons, which should be distinguished from the physical fields introduced in the main
text.Aµ is the electromagnetic field ande the unit electric charge,g2 andθW are respectively the
gauge weak coupling constant and the weak (Weinberg) angle.Zµ andW±

µ are, of course the
weak gauge boson fields.Q, the quark charge matrix and theT matrices are SU(3) matrices :
Q = 1/3 Diag(2,−1,−1) andTz = 1/2 Diag(1,−1,−1) , whileT+ = (T−)† with :

T+ =




0 Vud Vus

0 0 0
0 0 0


 (70)

in terms of elements of the Cabibbo-Kobayashi-Maskawa matrix elements. In this work, theZµ

terms have not to be considered ; they have been given for completeness. The HLS Lagrangian
given above should be completed with the vector meson kinetic energy term[2] but also with
the usual free Lagrangian for electromagnetic and weak boson fields. The leptonic sector also
has to be added ; it is written as per usual :

Lℓ,ν =
∑

ℓ=(e,µ,τ)

[
qℓ ℓ

−γµℓ+Aµ −
g2

2
√

2
νℓγ

µ(1− γ5)ℓ
−W+ + · · ·

]

(71)

44



From a practical point of view,g2 defined above is related with the Fermi constantGF and
the W boson mass by :

g2 = 2mW

√
GF

√
2 (72)

and it is useful to note that at theτ lepton mass scale one has [54] :

g2 = 0.629 (and e = 0.30286) .

B The HLS Anomalous Sector

QCD admits a non-abelian anomaly which explicitly breaks chiral symmetry. This anomaly
is well reproduced by the Wess–Zumino–Witten Lagrangian [90, 91] ; this has been incorpo-
rated within the HLS context by Fujiwara, Kugo, Terao, Uehara and Yamawaki along with
vector mesons [3, 2]. In this way, it becomes possible to provide a framework which allows
one to describe most decays of vector mesons, and especiallymodes likeω → π+π−π0 and
others more relevant in the present context.

Let us briefly outline the derivation and its assumptions which has been presented in com-
prehensive reviews [7, 92, 2]. The anomalous action can be cast under the form :

Γ = ΓWZW + ΓFKTUY

ΓFKTUY =
∑4

i=1 ci
∫
d4x Li

(73)

whereΓWZW is the original WZW Lagrangian. The Lagrangian piecesLi where first given in
[3] and each of them containsAPPP andAAP pieces which would contribute to the anoma-
lous decays, but are cancelled byAPV terms. These Lagrangians contain alsoV PPP and
V V P pieces [3, 2]. A priori, the weighting coefficientsci are arbitrary. However, in order
to reconcile this Lagrangian with decay data, especiallyω → π+π−π0, FKTUY [3, 2] finally
choose the following combination :

LFKUTY = − 3g2

4π2fπ
ǫµνρσTr[∂µVν∂ρVσP ]− 1

2
LγPPP , (74)

which turns out to complement the usual WZW term forγPPP interaction with only aV V P
term. In this model, for instance the decayπ0 → γγ occurs solely throughπ0 → ωρ0 followed
by the (non–anomalous) transitionsω → γ andρ0 → γ and the partial width is identical to the
Current Algebra prediction reproduced byLγγP :

LγγP = − Nce
2

4π2fπ
ǫµνρσ∂µAν∂ρAσTr[Q2P ] (75)

The model given by Eq. (74) with :

LγPPP = − ieNc

3π2f 3
π

ǫµνρσAµTr[Q∂νP∂ρP∂σP ] (76)
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(Nc = 3) has been also shown [85] to reproduce perfectly the data onη/η′ → π+π−γ, es-
pecially the most precise ones [88]. Indeed, with no free parameter, the distortion of theρ
lineshape is accurately accounted for and this can be considered as the signature for the box
anomaly in experimental data.

Accounting for the light meson radiative decays of theAV P orAAP forms is then aV V P
coupling followed by one or twoV → γ transition(s). From a practical point of view, it has
been also shown [9] that the corresponding couplings can be directly derived from the following
Lagrangian piece :

L = CǫµνρσTr[∂µ(eQAν + gVν)∂ρ(eQAσ + gVσ)P ] , C = − 3

4π2fπ

. (77)

Let us note that in the meson decays we are interested in, the weak boson sector is irrelevant.
Finally, one can find theV V P Lagrangian expanded in [8], more precisely in Appendix 1 and
4 for respectively the fully flavor symmetric case and the SU(3)/U(3) broken case32

C SU(3)/U(3) Symmetry Breaking of the HLS Model

The HLS Lagrangian we are interested in is the lowest order expansion of Eq. (66) sup-
plemented with Eq. (77). However, in order to use it with mostreal data, one cannot avoid
defining an appropriate symmetry breaking mechanism. Several breaking schemes have been
proposed [7, 4, 5, 6] as there is no unique way to implement such a mechanism in the HLS
model. We will prefer the method proposed in [6] which looks to be the simplest that automat-
ically fulfills the hermiticity requirement. This symmetrybreaking scheme turns out to modify
the non–anomalous Lagrangian terms in Eq. (66) to :





LA = −f
2
π

4
Tr[(L− R)XA]2

LV = −f
2
π

4
Tr[L+R)XV ]2

(78)

where the SU(3) symmetry breaking matricesXA andXV can be written :





XA = Diag(1, 1,
√
zA)

XV = Diag(1, 1,
√
zV ) .

(79)

As the parameterzA = [fK/fπ]
2 is fixed here by kaon decay data, it can hardly be con-

sidered as a truly free parameter, even if one allows it to vary within errors [54] : zA =
1.495± 0.031. As shown in the Lagrangian pieces given in the main text, thesecond breaking
parameter,zV , allows one to shift theφ meson mass away from those of theρ andω mesons ;
practically we have more freedom in varying it. The full SU(3) broken HLS Lagrangian pro-
duced by this mechanism (withoutW± interaction terms) has been given in [6]. Using this

32In the Appendix 4, the two breaking parametersℓW andℓT (denotedzT in the present paper) have been found
in this reference to fulfillℓW ℓ2

T = 1.
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mechanism, however, the pseudoscalar kinetic energy term of the HLS Lagrangian is no longer
canonical and a renormalization of the pseuscalar fields is required [7] :

P ′ = X
1/2
A PX

1/2
A (80)

whereP andP ′ stand respectively for the bare and renormalized pseudoscalar field matrices.
With this redefinition, the kinetic energy term of the SU(3) broken Lagrangian is once again
canonical. However, the coupling constants to kaons have tobe changed correspondingly by
introducing renormalized fields.

With this symmetry breaking mechanism, the realm of practical relevance for the HLS
model extends to pions and kaons, as far as pseudoscalar mesons are concerned. In order to
bring η andη′ mesons into the game, one needs first to define them in terms of theη8 andη0

fields, second to extend the breaking scheme from SU(3) to U(3).
We use the one angle traditional mixing expression :



η

η′


 =




cos θP − sin θP

sin θP cos θP






π8

η0


 (81)

It has been shown [11] that the one–angle description was equivalent at the first two leading
orders to the two–angle, two–decay constant description infavor since the Extended Chiral
Perturbation Theory (EChPT) [13, 14, 15].

Now the question is how Nonet Symmetry Breaking (NSB) can be incorporated within the
(SU(3) broken) HLS Lagrangian already defined. This can be done by means of determinant
terms [12] which break theUA(1) symmetry :

L = LHLS +
µ2f 2

π

12
ln detU · ln detU † + λ

f 2
π

12
ln det ∂µU · ln det ∂µU † (82)

whereU is defined by Eqs.(63) and (64) after removal of theσ field matrix. This can be
rewritten more explicitly :

L = LHLS + L′
HLS ≡ LHLS +

1

2
µ2η2

0 +
1

2
λ∂µη0∂

µη0 (83)

Therefore, in this manner, one provides both a mass to the singlet and a modification of
the kinetic singlet term which is thus no longer canonical and, then, calls for a renormalization.
The exact renormalization relation is given in [11], where it has also been shown that, at leading
order, this transformation is equivalent to using the HLS Lagrangian but replacing Eq. (80) by :

P ′
8 + xP ′

0 = X
1/2
A (P8 + P0)X

1/2
A (84)

(with obvious notations). The Nonet Symmetry Breaking (NSB) mechanism introduces a pa-
rameterx which can be related [11] withλ by :

x = 1− λ

2
B2 ≃ 1√

1 + λB2
=⇒ λ ≃ 0.20− 0.25, (85)
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(B = (2zA + 1)/3zA) with a precision better than≃ 5%.
Therefore one has only to equip the SU(3) broken HLS Lagrangian with the U(3) broken

renormalization condition given by Eq.(84). Ref. [11] showed that, at leading order in breaking
parameters one recovers the ChPT expectations.

In order to achieve this general presentation of the broken HLS model, we recall in
a few words the breaking procedure of the anomalous Lagrangian. A priori, the transforma-
tion to renormalized fields given by Eq. (84) induces a breaking mechanism into the anoma-
lous HLS Lagrangian given by Eqs. (74) and (76). It has been shown [8, 9] that, alone,
this breaking scheme (as well as no breaking at all, both) implies that the coupling constant
ratio GK∗0K0γ/GK∗±K±γ equals 0.5 in sharp disagreement with experimental data [54]. In-
terestingly, the non–relativistic quark model (NRQM) allows more freedom by exhibiting a
dependence of this ratio upon the ratio of quark magnetic momentsr [93] :

GK∗0K0γ

GK∗±K±γ

= −1 + r

2− r (86)

In [8, 9], it has been shown that this effect can be obtained bymixing a symmetry breaking
scheme proposed by Bramon, Grau and Pancheri [4, 5] with somesort of vector field renor-
malization. Numerical analysis implies that these two mechanisms are highly correlated with
the neat result that the broken VVP Lagrangian in Eq. (77) becomes :

L = CǫµνρσTr[XT∂µ(eQAν + gVν)X
−2
T ∂ρ(eQAσ + gVσ)XTP ]. (87)

with P being replaced by renormalized fields using Eq. (84) above. Therefore, the Lagrangian
we use in order to account for anomalous decays is33 Eq. (87) with :

XT = Diag(1, 1,
√
zT ) (88)

wherezT is a parameter to be fitted. We should stress that this specificbreaking, which al-
lows one to recover Eq. (86) leaves all other couplings of physical interest (AVP and AAP)
unchanged. One should note that, except for (conceptually unavoidable) mixing angles, the
model we use introduces only two parameterszA andzT in the anomalous sector, the former
being essentially fixed by pure kaon physics. Taking into account that our broken anomalous
Lagrangian aims at accounting for 14 decay modes, the parameter freedom is actually very
limited.

D Radiative and Leptonic Coupling Constants

In order to simplify the main text we prefer to list here the coupling constants entering
decay widths expression which will be treated in this paper.Most of them can be derived
trivially from expressions already given in Appendix E in [9].

33 Eq. (76) might have also to be broken similarly. However, existing data on box anomalies allow access only
to the limited sectorπ0/η/η′ → π+π−γ not affected by more breaking than reflected by Eq. (84) ; it has been
shown [85] that Eq. (76) as it already stands, suffices for satisfactorily accounting for the data. There is therefore
no need to go beyond for this term.
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D.1 Radiative Decays

Starting from the Lagrangian in Eq. (87), and using the breaking procedure as defined by
Eq. (84), one can compute the coupling constants for all radiative decays of relevance. Let us
define :

G = − 3eg

8π2fπ

, G′ = − 3eg

8π2fK

, Z =

[
fπ

fK

]2

=
1

zA

, δP = θP −θ0 (tan θ0 = 1/
√

2).

(89)
SomeV Pγ coupling constants are not affected by Isospin Symmetry breaking :





Gρ±π±γ =
1

3
G

GK∗0K0γ = − G′

3

√
zT (1 +

1

zT
)

GK∗±K±γ =
G′

3

√
zT (2− 1

zT

) .

(90)

TheρIPγ coupling constants are :





GρIπ0γ =
1

3
G

GρIηγ =
1

3
G

[√
2(1− x) cos δP − (2x+ 1) sin δP

]

GρIη′γ =
1

3
G

[√
2(1− x) sin δP + (2x+ 1) cos δP

]
.

(91)

The other single photon radiative modes provide the following coupling constants :




GωIπ0γ = G

GφIπ0γ = 0

GωIηγ =
1

9
G

[√
2(1− x) cos δP − (1 + 2x) sin δP

]

GωIη′γ =
1

9
G

[
(1 + 2x) cos δP +

√
2(1− x) sin δP

]

GφIηγ =
2

9
G

[
Z(2 + x) cos δP −

√
2Z(1− x) sin δP

]

GφIη′γ =
2

9
G

[√
2Z(1− x) cos δP + Z(2 + x) sin δP

]
.

(92)

In order to go from ideal field couplings to physical vector field couplings, one has to use
linear combinations of the couplings in Eqs. (91-92) weighted by elements of the transforma-
tion matrixR(s) given in the body of the paper.
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D.2 Pγγ and V − γ Modes

The 2–photon decay modes are not affected by Isospin Symmetry breaking in the vector
sector and keep their usual form within the HLS model [8, 9, 11] :





Gηγγ = − αem

π
√

3fπ

[
5− 2Z

3
cos θP −

√
2
5 + Z

3
x sin θP

]

Gη′γγ = − αem

π
√

3fπ

[
5− 2Z

3
sin θP +

√
2
5 + Z

3
x cos θP

]

Gπ0γγ = −αem

πfπ
.

(93)

As stated in the text, we actually replace this last couplingby using the world average value for
fπ as given in the RPP [54].

Finally, in the non–anomalous sector, the leptonic decay widths of vector mesons depend
on the HLSV − γ couplings. For the ideal combinations, we have :





fρIγ = af 2
πg

fωIγ =
fρIγ

3

fφIγ = −fρIγ

3

√
2zV .

(94)

It was shown in [11] that the pseudoscalar mixing angle is nota free parameter, but is related
with the SU(3) breaking parameterZ(= 1/zA) and the Nonet Symmetry breaking parameterx
by :

tan θP =
√

2
Z − 1

2Z + 1
x (95)

with a very good accuracy. This relation is used in our fits as aconstraint.

D.3 Partial widths

We list for completeness in this Section the expressions forthe partial widths in terms of
the coupling constants for the various cases which are examined in the text.

The two–photon partial widths are :

Γ(P → γγ) =
m3

P

64π
|GPγγ|2 , P = π0, η, η′ . (96)

The leptonic partial widths are :

Γ(V → e+e−) =
4πα2

3m3
V

|fV γ|2 . (97)

The radiative widths are :

Γ(V → Pγ) =
1

96π

[
m2

V −m2
P

mV

]3

|GV Pγ|2 , (98)
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whereV is either ofρ0, ω, φ andP is either ofπ0, η, η′, and :

Γ(P → V γ) =
1

32π

[
m2

P −m2
V

mP

]3

|GV Pγ|2 . (99)

The decay width for a vector meson decaying toV + P is :

Γ(V ′ → V P ) =
1

96π




√
[m2

V ′ − (mV +mP )2][m2
V ′ − (mV −mP )2]

mV ′




3

|GV ′V P |2 . (100)

Finally, the partial width for a vector meson decaying into two pseudoscalar mesons of
equal masses is :

Γ(V → PP ) =
1

48π

[m2
V − 4m2

P ]3/2

m2
V

|GV PP |2 . (101)

E The Loop Functions

The loop functions can be written quite generally as :

Π(s) = f(s)K(s) + P (s) (102)

wheref(s) is a polynomialQ(s) divided by some power ofs. The degree of the polynomial
P (s) is fixed always at second degree and we requireP (0) = 0. we have :






ImK(s) = −(s− sc)
1/2(s− s0)

1/2 , (s ≥ s0)

K(s) = c0 + c1s+ c2s
2 +

s3

π

∫ ∞

s0

ImK(z)

z3(z − s+ iǫ)
dz

(103)

where s0 is the (direct) threshold mass squared, whilesc is the (crossed) threshold mass
squared.

E.1 The PP loop

In the case of equal masses,sc = 0 and we have [9] :

Π(s) =
g2

V PP

48π

s− s0

s
K(s) + P (s) (104)
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and the solution is




Π(s) = d0 + d1s+Q(s)

Q(s) =
g2

V PP

24π2
[G(s) + s0]

s ≤ 0 : G(s) =
1

2

(s0 − s)3/2

(−s)1/2
ln

(s0 − s)1/2 − (−s)1/2

(s0 − s)1/2 + (−s)1/2

0 ≤ s ≤ s0 : G(s) = −(s0 − s)3/2

s1/2
arctan

√
s

(s0 − s)

s ≥ s0 : G(s) = −1

2

(s− s0)
3/2

s1/2

[
ln
s1/2 − (s− s0)

1/2

s1/2 + (s− s0)1/2

]

−iπ
2

(s− s0)
3/2

s1/2

(105)

The behavior ofΠ(s) nears = 0 is simplyO(s), andQ(s) behaves likeO(s) near the origin.
This result coincides with the one of [52, 9]. By performing more subtractions, one could
choose to fix externally the actualsn behavior of the loop near the origin.

E.2 ThePP ′ Loop

In this case, we have :

Π(s) =
g2

V PP

48π

(s− s0)(s− sc)

s2
K(s) + P (s) (106)

Let us define




s ≤ sc : ϕ(s) =
1

π
(s0 − s)1/2(sc − s)1/2 ln

(s0 − s)1/2 − (sc − s)1/2

(s0 − s)1/2 + (sc − s)1/2

sc ≤ s ≤ s0 : ϕ(s) =
2

π
(s0 − s)1/2(s− sc)

1/2 arctan

√
s− sc

s0 − s

s ≥ s0 : ϕ(s) =
−1

π
(s− s0)

1/2(s− sc)
1/2

[
ln

(s− sc)
1/2 − (s− s0)

1/2

(s− sc)1/2 + (s− s0)1/2

]

− i(s− s0)
1/2(s− sc)

1/2

(107)

The solution forK is obtained by subtracting a polynomial in such a way that thebehaviour of
Eq. (106) is not singular at origin :

K(s) = ϕ(s)− [c0 + c1s+ c2s
2] (108)
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with (s0 = m2
0 andsc = m2

c) :






c0 =
m0mc

π
ln
m0 −mc

m0 +mc

c1 = − 1

2π
ln
m0 −mc

m0 +mc

(m0 −mc)
2

m0mc

c2 = − 1

8π

[
(m2

0 −m2
c)

2

m3
0m

3
c

ln
m0 −mc

m0 +mc
+ 2

m2
0 +m2

c

m2
0m

2
c

]
(109)

The exact behaviour forΠ(s) at origin is then detemined by the choice ofP (s).

E.3 ThePP ′ Loop In the Complex s–Plane

The expressions in the two Subsections above give the value of the loop functions for any
real values ofs. It is interesting to know how these functions extend into the complexs–plane,
i.e. for complex values ofs. It is actually in this manner that the expressions above have been
derived. One can check that :

ϕ(z) = − i
π

(z − sc)
1/2(s0 − z)1/2 ln

(s0 − z)1/2 + i(z − sc)
1/2

(s0 − z)1/2 − i(z − sc)1/2
(110)

is – up to a polynomial with real coefficients – the (single) analytic function of z real for
sc < z < s0, having as imaginary part for reals > s0, ImK(s), given by Eq. (103). The most
general solution to Eq. (103), is then written:

K(z) = ϕ(z) + Pn(z) (111)

with a polynomial,Pn(z), with real coefficients chosen in such a way that the behaviour atz =
0 is the required one. The other coefficients have to be fixed by other external (renormalization)
conditions. Eq. (110) gives the loop function on the so–called physical sheet of the Riemann
surface. The expression forϕ(z) on the unphysical sheet close to the physical regions > s0 is
obtained by a winding of2π radians around the threshold (branch–point)s = s0.

E.4 The Leptonic Loop

In order to compute the photon vacuum polarization, one needs to have at one’s disposal
the analytic expression of theℓ+ℓ− loop. More precisely, one needs the ratio of this loop
(lepton contribution to the photon self–energy) divided bys, the off–shell photon invariant
mass. This can easily be derived from the functionΠ0(s) given34 in [94] or computed from
detailed information from [95] :

Π(s) =
α

4π

[
20

9
+

4

3z
− 4(1− z)(1 + 2z)

3z
G(z)

]
(112)

34In this reference, the computed loop is actually the quark–antiquark one and therefore the color factor 3 has
to be removed.
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where :

G(z) =
2u lnu

u2 − 1
, u =

√
1− 1/z − 1

√
1− 1/z + 1

, z =
s

4m2
ℓ

(113)

andmℓ is the lepton mass andα is the fine structure constant.
However, for explicit computation in a minimization code, on needs the explicit expression

along the real axis. This is :






Π(z) =
α

4π

[
20

9
+

4

3z
+Q(z)

]

z ≤ 0 : Q(z) = − 2

3

1 + 2z

z2
[−z(1− z)]1/2 ln

(1− z)1/2 − (−z)1/2

(1− z)1/2 + (−z)1/2

0 ≤ z ≤ 1 : Q(z) = −4

3

1 + 2z

z2
[z(1− z)]1/2 arctan

√
z

1− z

z ≥ 1 : Q(z) =
2

3

1 + 2z

z2
[z(z − 1)]1/2

[
ln
z1/2 − (z − 1)1/2

z1/2 + (z − 1)1/2
+ iπ

]

(114)

This function will be summed up with the (parametrized) hadronic vacuum polarization
provided to us by M. Davier [68] and H.Burkhardt [69] for, respectively the region above
and below the 2–pion threshold. The functionΠ(z) just defined is analytic and vanishes at
z = 0. The term of orderα2 can be derived from the functionΠ(1) given in [94] but is difficult
to handle in fitting procedures. Other expressions for the function we use can be found in
[62, 96]. Finally, even if possible in principle, we do not have the freedom of subtracting more
the functionΠ(z) as conditions at theZ boson mass for the full photon vacuum polarization
seem to fix it to be zero [65, 66, 67].
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Figure 1: Schematic representation of the Feynman diagramscontributing to the pion form
factor. Left plots (referred to as a1 and a2) sketch the case of the pion form factor ine+e−

annihilations, while right plots (referred to as b1 and b2) figure out theτ decay. The upper
plots show the non–resonant HLS specific diagrams, the lowerplots describe the resonance
contributions. The shaded blobs represent the photon vacuum polarization. theγV andWV
transitions are dressed bys–dependent terms.
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Figure 2: Data and fits for the pion form factor ine+e− timelike data. Left figure gives the
fit cross section with, superimposed, the data from the Olya and CMD Collaborations [75],
the data set [76] from the DM1 Collaboration and the first (corrected) data from CMD2 [27].
Right figure shows the form factor curve with superimposed all data sets collected recently at
Novosibirsk [27, 28, 29, 30]. Theφ region is commented upon in the body of the text.

Figure 3: Data and fits for the pion form factor inτ decay. Letft figure shows the case for
ALEPH data [31], right figure shows the case for CLEO data [33].
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Figure 4: Left Figure shows the fit in the spacelike region close tos = 0 together with the data
from NA7 [59] and Fermilab [80] ; the fit scale factors (1.008 and 1.006 respectively) have been
applied. Rightside figure shows theprediction for theP11 phase shift with the Cern-Munich
data [82] and the data from [83] superimposed.

Figure 5: Residual distribution for all thee+e− new timelike data over the whole invariant mass
interval. The inset magnifies theρ peak invariant mass region.
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Figure 6: Distribution of fit residuals for theτ data. The upper two plots give the residuals
for ALEPH and CLEO data within the model presented. The lowerplots shows theτ data
residuals when fitting without aρ0− ρ± mass shift (i.e. δm2 ≡ 0 is required) ; one should note
the vanishing of the structure around theρ peak in ALEPH data produced by theρ0 − ρ± mass
shift. One should also note that the CLEO residual is not modified.
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Figure 7: Matrix elements producing the neutral vector meson mixing. The functions shown
are those given in Eqs. (58) with their name recalled in each Figure. The upper part of each
plot gives the real part of the function, the lower part, its imaginary part.
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Figure 8: Isospin symmetry breaking effects following fromtheρ0 − ω − φ mixing scheme.
The upper plot shows the difference between|F e

π(s)|2 and |F τ
π (s)|2 normalized to the latter.

The lower plot instead shows theρ part of|F e
π(s)|2.
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