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We search for evidence of resonant top quark pair production in 955 pb−1 of pp̄ collisions at
√

s = 1.96 TeV recorded with the CDF II detector at the Fermilab Tevatron. For fully reconstructed
candidate tt̄ events triggered on leptons with large transverse momentum and containing at least
one identified b-quark jet, we compare the invariant mass spectrum of tt̄ pairs to the expected
superposition of standard model tt̄, non-tt̄ backgrounds, and a simple resonance model based on a
sequential Z′ boson. We establish upper limits for σ(pp̄ → Z′) ·Br(Z′ → tt̄) in the Z′ mass interval
from 450 GeV/c2 to 900 GeV/c2. A topcolor leptophobic Z′ is ruled out below 720 GeV/c2, and
the cross section of any narrow Z′-like state decaying to tt̄ is found to be less than 0.64 pb at 95%
C.L. for MZ′ above 700 GeV/c2.
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Resonant top pair production in hadronic collisions has
been discussed in the context of extended gauge theo-
ries with massive Z-like bosons [1–3], in theories with
topcolor [4], or with axigluons [5]. Decays to tt̄ are of
special interest in leptophobic models that would evade
detection in traditional searches based on dielectron or
dimuon signatures. More recently, resonant top pairs
have been suggested as signatures for Kaluza-Klein (KK)
states of gluons, weak bosons, and gravitons [6–8]; in
some of these models the KK excitation couples strongly
to the top quark and tt̄ is the dominant decay mode.

A tt̄ resonance would appear as unexpected structure
in the spectrum of the invariant mass of tt̄ pairs Mtt̄.
Previous searches using ≈ 100 pb−1 samples from Fer-
milab Tevatron Run I have ruled out the production of
a narrow leptophobic topcolor resonance with mass less
than 480 GeV/c2 [9, 10]. Here, we search for resonant
structure in the Mtt̄ spectrum in 955 pb−1 of pp̄ colli-
sions at

√
s = 1.96 TeV recorded with the CDF II de-

tector in Tevatron Run II. Modeling the resonance as a
narrow massive vector boson Z ′, and calculating its mass
with techniques used in precision measurement of the top
quark mass [11], we set limits on the cross section times
branching ratio σB = σ(pp̄ → Z ′)·Br(Z ′ → tt̄) as a func-
tion of MZ′ . This study is complementary to Ref. [12],
which uses a different event selection and reconstruction
of the tt̄ kinematics.

The CDF II detector comprises a spectrometer in a
1.4 T magnetic field surrounded by projective electro-
magnetic and hadronic calorimeters and muon detectors
[13]. The spectrometer, consisting of silicon microstrip
detectors surrounded by a large open cell drift chamber,
provides precision track reconstruction and displaced sec-
ondary vertex detection. We use coordinates where φ is
the azimuthal angle, θ is the polar angle with respect to
the proton beam axis, transverse energy is ET = E sin(θ),
and the pseudorapidity is η = −ln[tan(θ/2)]. The data
used here were recorded between March 2002 and Jan-
uary 2006.

We collect a sample of tt̄ → W+bW−b̄ candidate events
with one leptonic W boson decay using triggers that re-
quire a central (|η| ≤ 1.0) electron with ET >18 GeV or
central muon with transverse momentum pT >18 GeV/c.
After offline reconstruction, we select events with an
isolated electron with ET ≥ 20 GeV or muon with

hUniversity of Cyprus, Nicosia CY-1678, Cyprus, iUniversity Col-
lege Dublin, Dublin 4, Ireland, jUniversity of Edinburgh, Edin-
burgh EH9 3JZ, United Kingdom, kUniversity of Heidelberg, D-
69120 Heidelberg, Germany, lUniversidad Iberoamericana, Mexico
D.F., Mexico, mUniversity of Manchester, Manchester M13 9PL,
England, nNagasaki Institute of Applied Science, Nagasaki, Japan,
oUniversity de Oviedo, E-33007 Oviedo, Spain, pQueen Mary, Uni-
versity of London, London, E1 4NS, England, qTexas Tech Univer-
sity, Lubbock, TX 79409, rIFIC(CSIC-Universitat de Valencia),
46071 Valencia, Spain,

pT ≥ 20 GeV/c, missing transverse energy 6ET ≥ 20 GeV
consistent with a neutrino from W decay, and at least
four hadronic jets with |η| ≤ 2.0, of which three must
have ET ≥ 15 GeV, and a fourth must have ET ≥ 8 GeV
[14]. The jets are clustered in fixed cones of radius

∆R =
√

(∆η)2 + (∆φ)2 ≤ 0.4. At least one of the jets is
required to be b-tagged, i.e. contain a reconstructed sec-
ondary vertex displaced from the primary event vertex
as expected from the decay of a bottom hadron in the jet
[15]. We find 347 events fulfilling these criteria.

The sample is dominated by s-channel qq̄ annihila-
tion into tt̄ pairs [16, 17]. The tt̄ acceptance and ef-
ficiencies are calculated using the herwig generator [18]
and a detector simulation, assuming a top mass Mt =
175 GeV/c2. The simulated detector response, particu-
larly with respect to lepton isolation, jet energies, and
b-tagging, has been tuned in an earlier measurement of
the top pair production cross section [14]. The total com-
bined trigger and reconstruction efficiency is 3.5 ± 0.5%.
Non-tt̄ backgrounds include W bosons produced in as-
sociation with jets (W+jets), where a light flavor jet
is incorrectly b-tagged; W+jets events with real heavy-
flavor jets; mismeasured QCD multi-jet events with one
jet identified as a lepton; and smaller contributions from
electroweak processes such as diboson (WW,WZ,ZZ)
and single–top production. The rates and kinematics
of these processes are modeled with simulated and data
control samples as employed in the top cross section mea-
surement [14]. A total of 73±9 non-tt̄ background events
are expected.

The final state of four jets, a high-pT lepton, and 6ET

allows an over-constrained reconstruction of the top pair
kinematics. The assignment of jets to quarks most con-
sistent with the tt̄ hypothesis is determined using the χ2

minimization algorithm employed in the measurement of
the top mass [11]. Here, following [19], we include the
known top mass as a constraint, which improves the ac-
curacy of the parton assignments. The measured jet ener-
gies are corrected back to parton values using calibrations
derived from photon-jet balancing and detector simula-
tion [20]. In the χ2 minimization the parton energies
are varied within their uncertainties and the W and top
masses are constrained to the values MW = 80.4 GeV/c2

and Mt = 175.0 GeV/c2 within their natural widths (2.1
and 1.5 GeV/c2 respectively). The effect of variation in
the central value of Mt is included later as a systematic
uncertainty. Jets with b-tags must be associated with b
quarks. The jet-quark assignment giving the lowest χ2

consistent with these constraints is chosen as the solu-
tion. In simulated tt̄ events we find a small number of
poorly reconstructed events flagged by extreme χ2. We
find the sensitivity of the search is optimized by requir-
ing χ2 < 50; this cut removes 4% of tt̄ events and 9% of
non-tt̄ backgrounds.

We model the resonant tt̄ production mechanism as
a sequential Z ′, a heavy neutral boson with the same
couplings as the Z, here including decay to tt̄ with
Mt = 175 GeV/c2. This electroweak channel has no in-
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terference with the strong tt̄ production processes and the
model lineshape is purely Lorentzian. To facilitate com-
parison to other results [9, 10, 12] we assign the same
narrow width used there, ΓZ′ = 0.012MZ′ . A strictly
sequential Z ′ with open tt̄ decays has ΓZ′ ≃ 0.03MZ′ .
Since our reconstructed mass resolution is greater than
60 GeV/c2 (see below) the analysis is insensitive to model
dependent width differences at this level, and applies to
any narrow tt̄ state appearing as a single enhancement
in the Mtt̄ spectrum. Signal models are generated using
the pythia simulation [21] with Z ′ masses between 450
and 900 GeV/c2 in increments of 50 GeV/c2.
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FIG. 1: Simulated Mtt̄ spectrum for 955 pb−1 in presence of
a 750 GeV/c2 Z′ with σB = 1 pb (shaded curve). The points
are a simulated data set. The solid line is the best fit to a
superposition of the Z′ signal (solid histogram) and the ex-
pected tt̄ (dot) and non-tt̄ (dot-dash) backgrounds. The inset
shows a magnified view of the reconstructed Mtt̄ spectrum
for a 750 GeV/c2 Z′. The low mass tail arises from incorrect
jet-parton associations.

The inset of Fig. 1 shows the Mtt̄ distribution recon-
structed for a simulated 750 GeV/c2 Z ′. There is a peak
near the expected value and a low mass tail which arises
from the incorrect jet-parton assignments where a jet
from initial or final state radiation has been used instead
of a jet from top decay. The rms of the peak region is ap-
proximately 60 GeV/c2 and the full rms is 137 GeV/c2.
Other Z ′ masses show similar behavior: the MZ′ peak
width is preserved and the low mass tail extends down
to the kinematic threshold at 350 GeV/c2. The full rms
of the Mtt̄ distribution varies between 67 and 178 GeV/c2

over our Z ′ mass range. The fraction of Z ′ removed by
the χ2 cut varies between 4% and 9% over the Z ′ mass
range.

We use a three-parameter binned likelihood maximiza-
tion to fit the Mtt̄ spectrum to a superposition of the
expected shapes for Z ′ → tt̄, standard model tt̄, and
non-tt̄ processes. In the ith bin, we expect

µi =

[

σBAǫ

∫

Ldt

]

PZ′,i + Ntt̄Ptt̄,i + NbkgPbkg,i (1)

where PZ′,i, Ptt̄,i, and Pbkg,i are the probabilities of ob-
serving a signal event, tt̄ event or non-tt̄ background
event in bin i, respectively. Ntt̄ and Nbkg are the number
of non-resonant tt̄ and the non-tt̄ background events. The
σBAǫ

∫

Ldt term contains the product of cross-section
and tt̄ branching ratio, acceptance, and efficiency for the
Z ′, and the luminosity.

A likelihood function L for the distribution can be writ-
ten as

L =
∏

i,k

Pi(ni|µi)G(νk|ν̄k, σνk
). (2)

The function Pi(ni|µi) is the Poisson probability for ob-
serving ni events in a bin i where µi are expected. The
functions G(νk|ν̄k, σνk

) constrain the nuisance parame-
ters νk, which include the non-tt̄ background normaliza-
tion Nbkg, b-tag efficiency, acceptances and luminosities,
with Gaussian probability around their central values ν̄k

and uncertainties σνk
. The tt̄ and non-tt̄ background val-

ues are taken from [14], and the Z ′ acceptances and effi-
ciencies are determined from the pythia simulation. We
find σB, Ntt̄, Nbkg, and νk that maximize the likelihood
function for each MZ′ .

The algorithm is tested with simulated samples where
the tt̄, non-tt̄, and Z ′ models are combined in the ex-
pected ratios and sampled with the expected level of sta-
tistical fluctuations. The points in the main part of Fig. 1
show the Mtt̄ distribution for a simulated data sample
corresponding to an integrated luminosity of 955 pb−1

in the case of a 750 GeV/c2 Z ′ with σB = 1 pb. The
histograms show the components as resolved by the likeli-
hood fit. The extraction of the Z ′ component uses shape
information from the low mass part of the specturm as
well as the peak area.

The 95% C.L. upper limit on σB at a given mass
is found by integrating the likelihood along σB, re-
optimizing at each point, to find the value that contains
95% of the area. We measure our expected sensitivity
using large ensembles of simulated samples like the one
shown in Fig. 1. The main sources of systematic un-
certainty are the acceptance change due to energy scale
uncertainty on the jet thresholds, and the shape change
in Mtt̄ from the top mass uncertainty. Model dependent
shape effects associated with initial and final state gluon
radiation and non-tt̄ backgrounds are small. Simulated
samples with reasonable variations for systematic effects
are used to measure the apparent shifts in the fitted σB
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as a function of the true value. The sum of the shifts
in quadrature is used as the width of a Gaussian reso-
lution function that is convolved with the likelihood as
a function of σB. The systematic uncertainties worsen
the limits by roughly 0.2 pb, independent of the Z ′ mass,
with the increase dominated by the effects of jet energy
scale and the top mass uncertainty in equal measure. The
expected 95% C.L. upper limits including all sources of
uncertainty are shown as a function of MZ′ in the middle
column of Table I. If no Z ′ is present our expected cross
section limit at high MZ′ is 0.55 pb.
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FIG. 2: The invariant mass of top quark pairs Mtt̄ observed
in the data is compared to the no Z′ expectation. The non-tt̄
backgrounds are constrained to the expected value and the
sum of tt̄ and non-tt̄ equal the number of data events.

The Mtt̄ distribution measured in the data is shown in
Fig. 2. A final sample of 327 candidates remains after
the χ2 requirement. In this figure we compare the ob-
servation to the expected spectrum in the case of no Z ′.
The non-tt̄ component is fixed at the expected value and
the tt̄ normalization is scaled to match the total num-
ber of events. The inferred top production cross sec-
tion is σ(tt̄) = 7.8 ± 0.7 pb (statistical error only), to
be compared with the predicted standard model value of
6.7 pb for Mt = 175 GeV/c2 [16, 17]. The inset shows
the measurement on a logarithmic scale. The simulated
Mtt̄ spectra for tt̄ and non-tt̄ describe the data well.

Applying the full limit procedure to the spectrum in
Fig. 2 we find 95% C.L. upper limits on σ(pp̄ → Z ′) ·
Br(Z ′ → tt̄) as listed in the rightmost column of Table I.
The limits at high mass are consistent with expectation.
At lower masses our measurement shows an excursion

above the expected value of approximately one standard
deviation.

TABLE I: Expected and observed limits (95% C.L.) on
σ(pp̄ → Z′) · Br(Z′ → tt̄) as a function of MZ′ for 955 pb−1,
including both statistical and systematic uncertainties.

MZ′(GeV/c2) Expected Limit (pb) Observed Limit (pb)

450 2.27+0.79
−0.57 3.39

500 1.92+0.63
−0.40 2.72

550 1.37+0.45
−0.30 1.57

600 0.97+0.33
−0.18 0.83

650 0.78+0.24
−0.13 0.65

700 0.70+0.14
−0.12 0.64

750 0.64+0.15
−0.11 0.61

800 0.58+0.15
−0.07 0.60

850 0.55+0.10
−0.05 0.57

900 0.55+0.08
−0.06 0.57

]
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FIG. 3: Upper limits (95% C.L.) on the production cross
section for tt̄ resonance along with expected cross sections for
several models.

The result is represented graphically and compared to
some theoretical predictions in Fig. 3. The observed limit
is the solid black line and the shaded band around the
grey line denotes the ±1σ uncertainties around the ex-
pected upper limit. A leptophobic Z ′ predicted by the
topcolor theory [4], shown as a large-dotted line, is ruled
out below 720 GeV/c2 at 95% C.L. The small-dotted
curve at the bottom of the figure is the expected cross
section for a sequential Z ′, calculated with the herwig

simulation using a multiplicative factor of 1.3 to account
for NLO effects. A leptophobic Z ′ with these couplings
would evade direct searches in dilepton final states, and
because the tt̄ detection efficiency is small, is still out of
range of our sensitivity in the tt̄ mode. The Tevatron
cross section for the KK gluon excitation in the Randall-
Sundrum model of Ref. [6] is shown as a dot-dash line
[22]. Since the KK resonance is broad (Γ ≈ 0.17M), our
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limits derived in the “narrow width” assumption are not
strictly applicable; we show the curve here for qualitative
comparison. The cross section of any narrow Z ′-like state
produced in pp̄ collisions at

√
s = 1.96 TeV and subse-

quently decaying to tt̄ is less than or equal to 0.64 pb
(95% C.L) for all MZ′ above 600 GeV/c2.
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