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An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent trans-
verse beam motion in a synchrotron. By observing this coherent motion, the optical parameters can be directly
measured at the beam position monitor locations. The driven oscillation induced by an AC dipole will generate
a phase space ellipse which differs from that of the free oscillation. If not properly accounted for, this difference
can lead to a misinterpretation of the actual optical parameters, for instance, of 6% or more in the cases of the
Tevatron, RHIC, or LHC. The effect of an AC dipole on the linear optics parameters is identical to that of a thin
lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion
produced by an AC dipole becomes easier to interpret. Beam position data taken under the influence of an AC
dipole, with this new interpretation in mind, can lead to more precise measurements of the normal Courant-
Snyder parameters. This new parameterization of the driven motion is presented and is used to interpret data
taken in the FNAL Tevatron using an AC dipole.

PACS numbers: 29.27.-a, 41.85.-p

I. INTRODUCTION

An AC dipole produces a sinusoidally oscillating dipole
magnetic field and excites coherent transverse beam motion
in a synchrotron for machine diagnosis (Fig 1). Unlike a con-
ventional single turn kicker/pinger magnet, it drives the beam
close to the betatron frequency typically for several thou-
sands of revolutions. If the amplitude of its oscillating mag-
netic field is adiabatically ramped up and down, it can create
large coherent oscillations without decoherence and emittance
growth [1]. This property makes it a useful diagnosis tool for
a proton synchrotron, especially when it is used with an ade-
quate beam position monitor (BPM) system.

AC dipoles have been used in the BNL RHIC [2, 3] and
were also tested in the BNL AGS [1] and CERN SPS [4, 5].
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FIG. 1: A diagram of the incoherent free oscillations (gray) and ex-
cited coherent oscillations (black) in the Tevatron. Since the oscilla-
tions of individual particles within the beam are incoherent, coherent
oscillations must be excited to observe betatron motion and measure
optical parameters. An AC dipole is a tool to excite sustained coher-
ent transverse oscillations.

Facilitated by its recently upgraded BPM system [6] (now
with a resolution of 20 µm), a vertical AC dipole has been
used in the FNAL Tevatron [7–9]. There is an ongoing project
to develop AC dipoles for LHC as well.

When the beam is driven by an AC dipole, the beam mo-
tion is governed by two driving terms and the influence of
the lesser driving term makes the driven oscillation different
from the free oscillation. Although this difference has typi-
cally been ignored in previous analyses [3, 10], it could affect
the interpretation of the linear optics more than 12% in the
Tevatron and 6% in the RHIC and LHC.

This paper proceeds as follows. Section II discusses the
two driving terms produced by an AC dipole and presents a
new formulation of the driven motion which is suited to treat
the two driving terms at the same time. By introducing a new
amplitude function βd for the driven motion, the difference
between the free and driven oscillations becomes clear. Sec-
tion III discusses the difference between the ordinary ampli-
tude function for the free oscillation β and the newly defined
amplitude function for the driven oscillation βd . It is shown
that the AC dipole has an analogy with a gradient error and,
relative to β , βd behaves as if there is a gradient error. Section
IV presents a few properties of the driven motion which were
observed in the Tevatron. The new formulation matches the
observed data well.

II. A MODEL OF THE DRIVEN OSCILLATION

A. Two Driving Terms of an Oscillating Dipole Field

The tune of an AC dipole νacd is defined as the ratio be-
tween the frequencies of the AC dipole facd and the beam
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FIG. 2: The amplitude of the driven motion versus the machine tune.
A circulating beam is influenced by both (solid and dashed) of the
resonant amplitudes. In typical operations of an AC dipole, δd is the
order of 0.01 so that the primary driving tune νd is outside of the tune
spread (shaded area).

revolution frev: νacd = facd/ frev. In the following, for any
tunes, only their fractional parts are considered. For instance,
if facd/ frev is larger than one, νacd means the fractional part
of facd/ frev. Since the beam sees an AC dipole only once
per revolution, the tune of an AC dipole νacd and 1−νacd are
equivalent (cf. Nyquist sampling theorem). Hence, under the
influence of an oscillating dipole field a beam is driven by a
pair of driving terms at νacd and 1−νacd. Obviously, the driv-
ing term closer to the machine tune ν (0 < ν < 1) has bigger

effects on a beam. In the following, the driving term closer to
ν is called the primary and the other is called the secondary.
A symbol νd is used for the primary driving tune:

νd ≡
{

νacd when |νacd−ν |< |(1−νacd)−ν |
1−νacd when |(1−νacd)−ν |< |νacd−ν | . (1)

For example, the frequencies of the AC dipole and beam rev-
olution in the Tevatron are facd ' 20.5 kHz and frev ' 47.7
kHz, respectively, and hence the tune of the AC dipole is
νacd = 20.5/47.7' 0.43. Since the machine tune of the Teva-
tron is ν ' 0.58, 1− νacd ' 0.57 is the primary driving tune
and νacd ' 0.43 is secondary in this case (Table I).

The distance from the primary driving term to the machine
tune δd ≡ νd −ν is an important parameter of the driven be-
tatron oscillation. As seen later, the secondary driving term
generates a difference between the free and driven oscillations
and affects linear optics measurements. Ideally, if the beam is
driven very close to the machine tune ν (δd → 0), the influ-
ence of the primary driving term becomes dominant and the
secondary driving term can be ignored. In reality, however,
the finite tune spread of the beam causes beam losses if |δd |
is too small and there is always a lower limit for |δd | (Fig 2).
AC dipoles are currently used in the Tevatron and RHIC and
planned for the LHC. In these synchrotrons, the lower limit of
|δd | is about 0.01 to prevent beam losses.

When the amplitude of the field is constant, the position of
the driven beam xd is given by [10, 11]

xd(nC +∆s)' θacd
√

βacd

4sin[π(νacd−ν)]

√
β (∆s)cos[2πνacdn+ψ(∆s)+π(νacd−ν)+ χacd]

+
θacd

√
βacd

4sin[π((1−νacd)−ν)]

√
β (∆s)cos[2π(1−νacd)n+ψ(∆s)+π((1−νacd)−ν)−χacd] , (2)

where C is the circumference of a ring, ∆s (0≤ ∆s < C) is the
longitudinal position measured from the location of the AC
dipole, θacd is the maximum kick angle of the AC dipole, βacd
is the amplitude function at the location of the AC dipole, ψ
is the phase advance of the free oscillation measured from the
location of the AC dipole, and χacd is the initial phase of the
AC dipole. The two terms in Eq 2 are completely symmetric
and represent the influences of the two driving terms [14]. To
quantify the effect of the secondary driving term, it is useful
to define a parameter which describes the ratio between the
primary (larger) and secondary (smaller) modes in Eq 2:

λd(δd)≡ sin[π(νd −ν)]
sin[π((1−νd)−ν)]

=
sin(πδd)

sin(2πν +πδd)
. (3)

When |δd |= 0.01, |λd | ' 0.06 for the Tevatron with ν ' 0.58
and |λd | ' 0.03 for the RHIC and LHC with ν ' 0.3 and 0.7
(Table I). This is the effect of the secondary driving term on

the amplitude of the driven oscillation. When the machine
tune is closer to the half-integer, the two driving terms are
closer to each other and the influence of the secondary driving
term gets larger. This is why |λd | of the Tevatron is larger than
that of the RHIC and LHC.

TABLE I: Parameters related to the driven oscillation in the Teva-
tron, RHIC, and LHC when |δd |= 0.01. The secondary driving term
affects the amplitude of the driven motion by |λd | and, as seen later,
produces an effect like β -beat with the amplitude of 2|λd |.

Parameter Tevatron RHIC LHC
Machine Tune ν .58 .7 .3

AC Dipole Tune νacd .42 .7
|λd | 6% 3% 3%

Amplitude of the β -beat 12-13% 6-7% 6-7%
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B. A New Parametrization of the Driven Betatron Oscillation

Eq 2 can be written in the following compact form which
includes the influences of both driving terms:

xd(s;δd) = Ad(δd)
√

βd(s;δd)cos(ψd(s;δd)±χacd) . (4)

Here, Ad is a quantity with dimensions of (length)1/2:

Ad(δd) =
θacd

4sin(πδd)

√
(1−λd(δd)2)βacd , (5)

βd is a newly defined amplitude function of the driven oscil-
lation which satisfies

βd(s;δd)
β (s)

=
1+λd(δd)2−2λd(δd)cos(2ψ(s)−2πν)

1−λd(δd)2 , (6)

ψd is a newly defined phase advance of the driven oscillation
measured from the location of the AC dipole:

ψd(s;δd) =
∫ s

0

ds̄
βd(s̄;δd)

, (7)

and the sign in front of χacd is positive when νd = νacd and
negative when νd = 1−νacd. Hence, the driven oscillation can
be parametrized in the same form as the free oscillation even
when the influences of the both driving terms are included.
Since Ad is a constant of motion, the difference between the
free and driven oscillations comes from the amplitude func-
tion βd and phase advance ψd . As discussed previously, in the
limit, νd → ν , the primary driving term becomes dominant
and the secondary driving term can be ignored. In this limit
λd → 0 and βd and ψd converge to β and ψ .

If the lesser mode in Eq 2 is ignored, the oscillation phase
has an apparent jump of 2πδd at the location of the AC dipole.
However, if the influences of both driving terms are properly
included as Eq 4, the phase advance is smooth at the location
of the AC dipole. A relation between the phase advances of
free and driven oscillations, ψ and ψd , is given by

tan(ψd −πνd) =
1+λd

1−λd
tan(ψ−πν)

=
tan(πνd)
tan(πν)

tan(ψ−πν) . (8)

For the free oscillation, the phase advance in a single revo-
lution is ψ(s +C)−ψ(s) = 2πν (mod 2π). In the equation
above, ψd = 2πνd when ψ = 2πν . Hence, the phase advance
in a single revolution is 2πνd for the driven motion.

III. DIFFERENCE BETWEEN THE AMPLITUDE
FUNCTIONS β AND βd

As seen in the previous section, the difference between the
free and driven oscillations lies in the difference of their am-
plitude functions, β and βd . It is crucial to understand this
difference between β and βd in detail when an AC dipole is
used to diagnose a synchrotron.

In free betatron oscillations tune and amplitude function are
coupled, and a change in tune involves a change in amplitude
function and vice versa. This is true for the driven betatron
oscillation, too. As seen in the previous section, for the driven
oscillation, both the amplitude function and tune, βd and νd ,
are different from those for the free oscillation, β and ν . As a
matter of fact, the relation between these changes of the tune
and amplitude function is the same as that for a gradient error.
Hence, reviewing the effect of a gradient error is helpful to
understand the driven oscillation.

A. Review of a Gradient Error

If a synchrotron has a gradient error, its machine tune ν
and amplitude function β change [12]. Suppose a synchrotron
has a gradient error with the strength qerr = B′`/(Bρ) at the
longitudinal position s = 0. Then, the equation of motion is
given by

x′′+ k(s)x =−qerr

[
∞

∑
n=−∞

δ (s−Cn)

]
x , (9)

where the prime denotes the derivative with the longitudinal
coordinate s, k is the spring constant, and δ is the Dirac’s delta
function.

By comparing the single turn transfer matrices with and
without the gradient error, the new tune νq and amplitude
function βq satisfy the following two equations [12]:

qerr = 2
cos(2πν)− cos(2πνq)

βerr sin(2πν)
(10)

βq

β
=

sin(2πν)
sin(2πνq)

−qerrβerr
sinψ sin(2πν−ψ)

sin(2πνq)
, (11)

where βerr is the amplitude function at the gradient error and
ψ is the phase advance measured from the gradient error. By
substituting the first equation into the second, the ratio be-
tween the new and original amplitude functions βq/β is given
by

βq

β
=

1+λ 2
q −2λq cos(2ψ−2πν)

1−λ 2
q

. (12)

Here, λq is a parameter similar to λd in Eq 3:

λq ≡ sin(πδq)
sin(2πν +πδq)

, (13)

where δq is the tune shift by a gradient error δq ≡ νq − ν .
When the gradient error qerr is small, the new and original
amplitude functions satisfy

βq−β
β

'−2λq cos(2ψ−2πν) . (14)

This quantity behaves like a standing wave in a synchrotron
and is called the β -beat (or sometimes β -wave). The ampli-
tude of the β -beat is 2|λq|.
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B. Analogy to a Gradient Error

As seen in Eqs 6 and 12, the relation between βd and δd for
an oscillating dipole field is the same as the relation between
βq and δq for a gradient error. The following argument gives
insight why an oscillating dipole field changes the observed
phase space motion as like a gradient error.

When the oscillation amplitude of the AC dipole field is
constant, the Hill’s equation of motion is given by

x′′+ k(s)x =−∑
n

θacd cos(2πνdn±χacd)δ (s−Cn) . (15)

The right-hand-side describes the kicks by the AC dipole lo-
cated at s = 0. The summation runs over the time period when
the oscillation amplitude of the AC dipole field is constant and
the sign in front of the initial phase χacd is the same conven-
tion as Eq 4. Eq 4 is the particular solution of this inhomo-
geneous Hill’s equation when the oscillation amplitude of the
AC dipole field is adiabatically ramped to a constant ampli-
tude. Since the phase of the driven oscillation ψd increases by
2πνd (mod 2π) in one revolution, the position of the driven
oscillation at the location of the AC dipole s = Cn is given by

xd(Cn;δd) = Ad(δd)
√

βd(0;δd)cos(2πνdn±χacd) . (16)

Notice the phases of the driven oscillation xd and the kicks by
the AC dipole in Eq 15 are both 2πνdn±χacd at the location of
the AC dipole. Hence, when the beam passes the AC dipole,
its magnetic field is proportional to the position of the driven
oscillation xd like a quadrupole magnet. This is the physical
reason why an oscillating dipole field changes the amplitude
function like a gradient error. The phases of the driven oscil-
lation and the AC dipole are synchronized like this only when
the oscillation amplitude of the AC dipole field is constant af-
ter the adiabatic ramp up. Since xd is the solution of Eq 15, it
formally satisfies the following equation

x′′d + k(s)xd =−qacd

[
∑
n

δ (s−Cn)
]

xd . (17)

Here, Eq 16 is used to change the right-hand-side and qacd is
a constant given by

qacd =
θacd

Ad
√

βd(0;δd)
= 2

cos(2πν)− cos(2πνd)
βacd sin(2πν)

. (18)

Eq 17 is exactly the same as the Hill’s equation with a gradient
error, Eq 9. By comparing Eqs 9, 10, 18, and 17, it is trivial
that the relation between βd and δd is the same as the relation
between βq and δq.

C. Ring-wide Behavior of βd

As discussed in the previous two sections, for the driven
motion, the observed amplitude function βd differs from the
actual β as if there is a gradient error. Hence, βd is beating
relative to β and the beating amplitude is about 2|λd | from
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FIG. 3: The amplitude functions of the free and driven oscillations,
β (solid) and βd when δd =−0.01 (dashed). Both of them are calcu-
lated from turn-by-turn data of the driven oscillation. As expected,
βd shows the 10-15% beating relative to β . If the difference of β and
βd is simply ignored, the β measurement has this much error and the
real β -beat cannot be distinguished from the beating of βd .

Eq 14. Remember the effect of the secondary driving term
on the beam motion is the order of λd . Since the amplitude
function is proportional to the square of the position, its ef-
fect on the amplitude function is of the order of 2|λd |. Since
the minimum difference between the primary driving tune and
machine tune |δd | is about 0.01 for the Tevatron, RHIC, and
LHC, the beating amplitude of βd relative to β is 12-13% for
the Tevatron and 6-7% for the RHIC and LHC (Table I).

When turn-by-turn beam positions at all BPMs are given for
the free oscillation, the relative β -function can be determined
by simply comparing the square of the oscillation amplitude at
each BPM. If the same analysis is applied to the turn-by-turn
data of the driven oscillation, what is calculated is βd instead
of β . If the difference between βd and β is simply ignored and
β is determined in this way, the error may be as large as 2|λd |.
Furthermore, since the beating of βd cannot be distinguished
from the real β -beat caused by gradient errors, the real β -
beat cannot be measured in this way without depending on a
machine model.

To calculate the true β -function from turn-by-turn data of
the driven oscillation without depending on a machine model,
multiple sets of data are necessary [8]. Fig 3 shows am-
plitude functions of the free and driven oscillations, β and
βd(δd = −0.01). They are both measured from data of the
driven oscillation. Multiple data sets are used to calculate β as
described in [8] and βd is calculated by comparing the square
of the amplitude at each BPM. As expected, βd is showing the
beating of 10-15% relative to β .

D. Relation between βd and δd

The previous section discussed the global behavior of βd
compared to β . This section considers how βd changes de-
pending on δd at one location of a synchrotron. From Eq 6,
the relation between βd and β becomes nonlinear when λd is
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FIG. 4: The relation between the amplitude functions of the free and driven betatron oscillations β and βd . The ratio βd/β is numerically
calculated based on Eq 6 by changing the difference between the primary driving tune and machine tune δd and the phase advance ψ . The left
plot is when the machine tune 0.58 like the Tevatron and the right is when 0.3 like the RHIC and LHC. Since the secondary driving term gets
closer and λd gets larger when the machine tune is closer to the half integer, βd/β is larger and the nonlinearity is stronger in the left plot. The
nonlinearity gets larger when ψ−πν gets closer to 45 deg and cos(2ψ−2πν) gets closer to zero.

large or the phase term cos(2ψ−2πν) is close to zero. Since
the difference between β and βd has a considerable impact on
the linear optics measurement, it is important to understand
the properties of Eq 6 over wide ranges of parameters. Fig 4
shows the numerical calculations of βd/β based on Eq 6. The
two plots are for two different machine tunes: ν = 0.58 like
the Tevatron and ν = 0.3 like the RHIC and LHC. Since λd
is almost twice as large for the same δd when ν = 0.58 com-
pared to ν = 0.3, the nonlinearity grows much faster with δd
in the Tevatron. It is also seen in the left plot that the non-
linearity becomes larger when |cos(2ψ−2πν)| gets closer to
zero. Such a nonlinear relation between βd and δd can be ac-
tually seen for the driven oscillation excited in the Tevatron.
An example is shown in the next section.

IV. EVIDENCE OF THE SECONDARY DRIVING TERM

A. Rotation of the Phase Space Ellipse

The previous section discussed the amplitude function of
the driven motion βd . Parameters corresponding to the other
Courant-Snyder parameters α and γ can be also defined as for
the free oscillation:

αd(s;δd)≡−1
2

dβd(s;δd)
ds

(19)

γd(s;δd)≡ 1+αd(s;δd)2

βd(s;δd)
. (20)

The explicit forms of these parameters are given by

αd =
1+λ 2

d −2λd cos(2ψ−2πν)
1−λ 2

d
α

− 2λd sin(2ψ−2πν)
1−λ 2

d
(21)

and

γd =
1+λ 2

d +2λd cos(2ψ−2πν +2arctanα)
1−λ 2

d
γ . (22)

When βd , αd , γd , and Ad are defined this way, they satisfy the
Courant-Snyder invariance:

A2
d = γdx2

d +2αdxdx′d +βdx′2d . (23)

Hence, the turn-by-turn position and angle of the driven os-
cillation also form an ellipse on the phase space, like the free
oscillation. Since not only Ad but also the Courant-Snyder-
like parameters βd , αd , and γd depend on the difference be-
tween the primary driving tune and the machine tune δd , both
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FIG. 5: Measured phase space ellipses of the driven oscillations
when δd = ±0.02 and ±0.04. Here, δd is the difference between
the primary driving tune and the machine tune. The figure shows
the phase space at one of the low-β locations (B0) in the Tevatron
where the derivative of the amplitude function α is zero by design.
Since the Courant-Snyder-like parameters of the driven oscillation
βd , αd , and γd depend on δd , not only the area but also the shape of
the ellipse changes with δd .
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FIG. 6: The relation between the amplitude function of the driven
oscillation βd and the difference between the primary driving tune
and the machine tune δd . The location is the same low-β point of the
Tevatron (B0) in Fig 5. The amplitude function βd at each data point
is determined from the shape of an ellipse in Fig 5. The curve is the
fit of Eq 6 to the data points. Despite the strong nonlinearity, Eq 6 is
fitting well. In the figure, βd(δd = 0) corresponds to the true value
of β at the location.

the area and shape of the phase space ellipse changes with δd
for the driven oscillation. In two collision straight sections
of the Tevatron, B0 and D0, there are pairs of BPMs with no
magnetic element in-between. The beam travels along straight
lines between these pairs and, hence, both position and angle
can be directly measured at these locations. Fig 5 shows the
measured phase ellipses of the driven oscillations by using
a pair of such BPMs. The frequency of the AC dipole was
changed to adjust δd to ±0.04 and ±0.02, while the kick an-
gle of the AC dipole θacd was kept the same. As expected, the
shape of the phase space ellipse changes with δd . Since δd de-
pendence of βd , αd , and γd comes from the secondary driving
term, the rotation of the phase space ellipse is its qualitative
evidence.

By fitting Eq (23) to an ellipse in Fig 5, its area πA2
d and the

parameters βd , αd , and γd can be determined. Fig 6 shows βd
determined from the fits to ellipses in Fig 5 (and three more).
The curve in the figure is the fit of Eq 6 to the data with pa-
rameters β and ψ . The model of Eq 6 is fitting well to the data
even though the nonlinearity is strong in the relation between
βd and δd at the location. The β -function at the location can
be calculated as one of the fit parameters. In the figure it is the
value of βd when δd = 0.

B. Asymmetric Amplitude Response

When the secondary driving term is negligible, by ignor-
ing the smaller term of Eq 2 or taking the limit of λd → 0 in
Eqs 4, 5, and 6, the amplitude of the driven oscillation can be
approximated by

a(0)
d (s;δd)≡

θacd
√

βacdβ
4|sin(πδd)|

. (24)
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FIG. 7: Measured relation between the amplitude of the driven os-
cillation and the primary driving tune νd at three BPM locations in
the Tevatron. In the measurements, only νd was changed. The solid
and dashed lines are fits with and without the effect of the secondary
driving term. The asymmetry around the tune ν ' 0.5785 increases
with |cos(2ψ−2πν)|. In the second plot where cos(2ψ−2πν) > 0,
the amplitude is larger in the region νd > ν . As expected from Eq
26, the relation flips in the third plot where cos(2ψ−2πν) < 0.

In this case, the amplitude of the driven oscillation depends on
the primary driving tune νd only through |sin(πδd)| (remem-
ber δd = νd − ν) and is symmetric around the machine tune
ν . From Eqs 4, 5, and 6, the amplitude including the effect of
the secondary driving term ad(s;δd) is given by

ad(s;δd) = a(0)
d

√
1+λ 2

d −2λd cos(2ψ−2πν) . (25)
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Now, the amplitude depends on νd through the factor [1 +
λ 2

d − 2λd cos(2ψ(s)− 2πν)]1/2 as well. To the first order in
δd , the amplitude is approximated by

ad ' a(0)
d

[
1− π cos(2ψ(s)−2πν)

sin(2πν)
δd

]
. (26)

Hence, the secondary driving term makes the νd dependence
of the amplitude asymmetric around the machine tune ν . The
magnitude of this asymmetry at each location is determined
by the factor cos(2ψ−2πν).

Fig 7 shows the relation between the amplitude of the
driven oscillation and νd at three BPM locations in the Teva-
tron. In the measurements, only the frequency of the AC
dipole was changed while its kick angle θacd was kept the
same. The dashed and solid lines represent the fits of Eq 24
and Eq 25 to the data. The fit parameters are θacd[βacdβ ]1/2

and ν for Eq 24 and θacd[βacdβ ]1/2, ν , and ψ for Eq 25 [15].
At two locations where |cos(2ψ − 2πν)| is close to one, the
asymmetry around the machine tune (ν ' 0.5785) is large and
the result of the fits without the secondary driving term (Eq
24) is not well matched.

Although the existence of a secondary driven term effect is
clear in Fig 7, there is better evidence that Eq 25 fits the data
better than 24. From the fits in Fig 7, the machine tune ν can
be determined at each BPM location. Fig 8 shows machine
tunes determined at all BPM locations from the fits of the am-
plitude versus νd . The dashed and solid lines represent ma-
chine tunes from the fits of Eqs 24 and 25. Since the machine
tune ν is a global parameter of a synchrotron, the variation of
the measured machine tune over BPMs shows the inaccuracy
of the measurement. From the figure, it is clear the model
including the secondary driving fits to the data much better.
This also shows the importance of the secondary driving term
in the driven oscillation.
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FIG. 8: Measured machine tune at all BPM locations from the fits of
the amplitude versus the primary driving tune in Fig 7. The solid line
includes the influence of the secondary driving term and the dashed
line does not. Since the tune is a global parameter of a synchrotron,
the equation with the secondary driving term is the better model of
the driven oscillation. The beating of the dashed line is caused by
ignoring the beating of βd relative to β .

V. CONCLUSION

Under the influence of a sinusoidally oscillating magnetic
field of an AC dipole, the beam is driven by two driving terms.
As a result the phase space trajectory of the driven motion
is different from that of the free betatron motion. If the dif-
ference is simply ignored, interpretation of the linear optics
based on the data of the driven motion can have 12-13% error
for the Tevatron and 6-7% error for the RHIC and LHC. This
difference on the phase space is identical to the influence of a
gradient error at the same location as the AC dipole. Hence,
as a gradient error changes the amplitude function around the
ring, the expression of the driven motion can be simplified by
introducing a new amplitude function for the driven motion.

This paper presented a few examples of the difference be-
tween the free and driven motions as observed in the Tevatron.
It also showed that the new parametrization of the driven mo-
tion clarifies the data interpretation and multiple data sets are
necessary to better resolve the true optical parameters of the
free oscillation.

With this knowledge, very precise and direct measurements
of the amplitude function in a hadron synchrotron can be ob-
tained quickly without degradation of the beam quality, using
a small number of data sets obtained at different frequencies
of the AC dipole. This technique will be especially useful in
the LHC, for example, to adjust the beam envelope at critical
locations such as at beam collimation devices.
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