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Abstract. The deflection of light from distant sources by the foreground mass
distribution can be quantified and mined for interesting cosmological information.
Within the last decade, observers have moved from making the first detections of
this phenomenon to planning ambitious future surveys. These surveys may teach us
much about fundamental physics such as dark energy and neutrino mass. After a
qualitative review of some of this, we present new results regarding the accuracy with
which cluster masses can be determined through a detailed study of the way in which
the clusters distort the cosmic microwave background.

1. Introduction

Gravitational lensing has recently become a powerful tool for extracting cosmological
information (see, e.g., [1, 2] for general reviews or [3] for a review of lensing of the
CMB). The state of weak lensing in particular seems similar today to the state of the
cosmic microwave background (CMB) ten years ago: the first detections of cosmic
shear were made several years ago, the theory and the relevant predictions are still
new enough that work clearly needs to be done, and there is uncertainty about which
class of measurements will prove most useful. The stakes are high. Weak lensing has
the potential to measure quantities as important and fundamental as the dark energy
equation of state and the neutrino mass. To date, we have probed the cosmic shear field
by looking at distortions in the shapes of background galaxies. In the future, we have
hopes of using a different probe: the photons in the CMB. After briefly reviewing the
success and promise of probing the cosmic shear field, we report results on the accuracy
with which cluster masses can be determined when one studies the lensing of the CMB.

2. Two Point Statistics

Cosmic shear is a random two-component field on the sky. We are not particularly
interested in the shear in a given spot on the sky since no theory makes such definite
predictions. Rather we do cosmology by studying the statistics of the cosmic shear. This
is another sense in which cosmic shear is similar to the cosmic microwave background
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Figure 1. Power spectrum of cosmic shear from ray tracing through numerical
simulations (data points with error bars) and via an integration of the power spectrum
along the line of sight. Adapted from Ref. [4].

(CMB). We do not care at all where the hot spots and cold spots of the microwave
background are. We simply are interested in their statistics.

The means of each of the two shear components are zero, so the first relevant
statistic is the two-point function. This situation is again similar to the cosmic
microwave background. In fact, we will borrow quite a bit of the notation to discuss
cosmic shear.

The power spectrum of the cosmic shear can be written as an integral along the line
of sight of the power spectrum of fluctuations in the gravitational potential. Explicitly,

C) = ZZ/OXS dx W (x)Ps(l/x;x) (1)

where y is the comoving distance to an object, Ps is the power spectrum of the
gravitational potential, and W is a weighting function which peaks halfway in between
the source (at xs) and us. As Fig. 1 shows, we can predict quite accurately — given a
model — the power spectrum of cosmic shear.

The first detections of cosmic shear using background galaxies as probes were
reported in 2000, and since then over a dozen groups have measured this small signal,
moving to increasingly large surveys (for a review, see, e.g., [5]). Currently, the surveys
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Figure 2. Projected constraints from a survey designed to do weak lensing on a tenth
of the sky. Adapted from Ref. [6].

are too small to fulfill all the promise of weak lensing, but it is encouraging to note
that cosmic shear currently provides among the best constraints on two cosmological
parameters: og the amplitude of fluctuations and €2, the matter density.

The future is bright: a half dozen wide, deep galaxy surveys are planned, and there
is little doubt that we will one day have an all-sky map of the cosmic shear out to high
enough redshift to learn some very important things. For example, the Dark Energy
Task Force confirmed recently that weak lensing is one of four most promising methods
for attacking dark energy. Lensing is sensitive to two effects which depend on the
nature of the dark energy. First, the weighting function in equation [1] depends on the
redshift-distance relationship. Second, using background galaxies in multiple redshift
bands, one can measure the evolution of the gravitational potential, an evolution which
is non-trivial as long as dark energy exists. This power leads to some odd degeneracies.
In particular, another cosmological parameter, the neutrino mass, also leads to the decay
of the gravitational potential. So, as shown in Fig. 2, the dark energy equation of state
is degenerate with the neutrino mass.

©
0

0.15

o
[—

m,(eV [Q_h2/0.13])

oc]@)



Gravitational Lensing, the Cosmic Microwave Background and Cluster Masses 4

3. Beyond the Two-Point Function

Having stressed the similarity between cosmic shear and the temperature of the CMB,
we now turn to a very important difference. The measured CMB is Gaussian. To
some extent this is not surprising: anisotropies in the CMB are small; any deviation
from Gaussianity in the form of a non-zero three-point function, e.g., would necessarily
be down by a factor of 107°. This is not true of inhomogeneities in the matter
distribution. After decoupling, these inhomogeneities grow. After all, this is the
essence of gravitational instability. So, even though the matter distribution starts off
as Gaussian with mean zero, the distribution becomes skewed due to gravity. It must
be skewed because the smallest value of the density is zero, while the largest is many
orders of magnitude larger than the mean.

This leads to one of the most pressing questions in gravitational lensing: is there
important information contained beyond the two-point function (there would not be if
the distribution was purely Gaussian), and if so how can we extract it?

There are two complementary approaches to this problem. First, one can proceed
systematically. ~ We've computed the 2-point function (the power spectrum) and
projected what can be learned from it. We can move on to the 3-point function (the
bispectrum) and 4-point function (the trispectrum), etc. and see what can be learned
from them. A completely different approach involves identifying big things (this is called
cluster counting in optical astronomy), or more technically, regions in which the shear is
large. This second approach is powerful because the number of clusters as a function of
redshift depends sensitively on the underlying cosmology. Given a theory, a cosmologist
can predict how many clusters there should be in a given mass and redshift range. So
for this approach to work, we need to be able to (i) identify clusters and (ii) determine
their masses.

A consensus is emerging that looking at the cosmic shear field is not a good way to
find clusters. Rather, we can probably find clusters more efficiently with standard optical
or X-ray techniques or even with surveys of the Sunyaev-Zel’dovich effect. Lensing is
more powerful for the second purpose: once we have found a cluster, we need a way
of determining its mass. In principle lensing offers a direct way of measuring masses
without going through an intermediary such as the X-Ray temperature or the optical
richness.

4. CMB Lensing by Clusters

Measuring a foreground cluster’s mass by observing distortions in the shapes of
background galaxies has a long history. Newer is the notion that we might be able to use
the CMB as the background “source”, and from this estimate the mass of foreground
clusters [7, 8,9, 10, 11, 12, 13, 14, 15]. Seljak and Zaldarriaga [7] initially studied this
and wrote down a very simple formula for the observed temperature field:

—

T(0) = T(0+ &) ~T(0) + g—;;ai (2)
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where T is the unlensed primordial temperature field, T is the lensed field that we
observe, 0 is the angular position on the sky, and & is the deflection due to structure
along the line of sight. Seljak and Zaldarriaga noted that there is little structure on
small scales in the primordial CMB, so the first term on the right and the coefficient
of the second are likely to be quite simple across the field of a cluster. Under these
assumptions, Seljak and Zaldarriaga and others have estimated how accurately one could
determine cluster masses by measuring the deflection angle @. Roughly, one would need
an experiment with angular resolution of order an arcminute with sensitivity of order
a few microKelvin. Since a number of such experiments are in the planning stages (for
other reasons), it makes sense to look carefully at how well we really can do on cluster
masses. To do this, we employ a maximum likelihood technique (which we describe in
Section 5) on simulated maps of the lensed CMB.

4.1. Simulations of the lensed CMB

The methods we use are described more fully elsewhere [11], so we provide only a brief
outline here. We first generate unlensed CMB temperature anisotropies as a random
realization of a Gaussian field with a power spectrum computed using CMBfast [16]. To
make lensed maps, we must first know the mass distribution, which we model using an
N-body simulation to create a sample distribution of dark matter which we expect to
be statistically similar to that of our universe. The simulation uses a TreePM code [17]
to evolve structure in a periodic cube 300 Mpc/h on a side, which is large enough to
ensure a fair sample of clusters relevent for our purposes, and employs 5123 dark matter
particles of mass 1.7 x 10'° Mg /h, so that even the smallest of our clusters comprise
thousands of particles, and are sufficiently well resolved for our needs. The cluster’s
shapes are less regular (and hopefully more realistic) than a simple fit to a spherical
profile, and they are located in their appropriate cosmological context, which inlcudes
lots of other structure when it is projected to make lensing maps. Since the simulation
is dark matter only, it neglects all forces except gravity. This simplifiction allows us to
simulate many clusters at reasonable cost, although they are likely to be somewhat less
accurate than more sophisticated methods.

The effect of lensing is computed from maps of the convergence, k, assuming
the weak lensing approximation, which is adequate in this case. The convergence is
computed from the density contrast along the past lightcone

= SO [ dy (0300 ©

where  is the comoving distance, ¢ is the density contrast, €2,, and Hy are the present
day matter and Hubble parameters, and g(x) is a geometrical factor. From this, the
deflection angle @ is obtained

a=V(V %) (4)

and the lensed temperature field is then computed using Equation 2.
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Figure 3 shows a simulated region of CMB sky lensed by a massive cluster. The
dimple introduced by lensing is not visible in the picture but it is clear that the
approximation of a very simple CMB field is not exactly accurate. So here we present
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an analysis method which accounts for this complication.

—4 -2 0 2 4

Figure 3. Simulated CMB field behind a cluster at redshift 0.5 with mass 5.6 x
10—t M, .

5. Likelihood estimator

Several estimators have emerged in the literature [18, 19, 20, 21] which are aimed
at recovering the large scale mass distribution using CMB lensing, while others aim
to estimate the mass of large local distortions such as clusters [7, 12, 14]. Here we
present one of the latter variety. The likelihood function for observing a set of CMB
temperatures T in N pixels is Gaussian:

(2m)~N/2 L~ 1+
L= det(C)172 exp {—iTiCilej} . (5)
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Here the covariance matrix can be obtained by noting that

. - 1 0*T;
T, ~T; + VT, - a; b
1 A + v ¥ aZ + 2 890‘89b az (6)

To compute the covariance matrix, let’s first rewrite the lensed temperature in pixel

7 as a linear combination of the unlensed temperature in all pixels:

T, = AyT; (7)
with

Aij = 0i5 + Vi + 104 abAab no sum on 7. (8)

The index a runs over the 2 transverse dimensions. The V operator can be written
explicitly given a pixelization scheme. For example, for the pixelization shown in

Fig. 4, V3, = —1/2A, V3 = +1/2A and V;; = 0 for all other j. Similarly,
V3s = —1/2A,V3, = +1/2A and V3; = 0 for all other j. Meanwhile A® is the
second derivative operator; e.g.,
1 j=1+2
Tx 1 . .
1 j=1i—2

and zero for all other j. More generally, Agj’ = V;‘Z»/Vé’,j. Armed with this notation, we
immediately see that

Cij = Aii/C’;fj,Ajj/ + Cg (10)

where C% is the covariance matrix of the unlensed CMB and C¥ includes, e.g.,
instrumental noise.

As it stands, the covariance matrix, and hence the likelihood function, depends on
the cluster profile via its impact on the deflection angle a. We will adpot a parametric
approach, assuming that a cluster at redshift z has an NFW profile, parametrized by
its mass and concentration. That is, @ depends on the mass mqygy and concentration
c. Other structures along the line of sight also affect the deflection angle though. We
will assume that these other structures are random with values drawn from a Gaussian
distribution, so that

a; = ayt™vV 4 a, (11)

The last term is the deflection angle due to large scale structure along the line of sight
not associated with the cluster.

The covariance matrix therefore depends on a random variable at each pixel, @,
The correct thing to do would be to integrate these random variables weighted by their
distribution functions, P(a"*), for example. The likelihood then would be

[ / d —»lss] (@) (12)
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Figure 4. Pixelization scheme. Observed temperature at pixel 2 depends on
temperature at adjacent pixels because of gravitational lensing.

This however is an N2-dimensional integral, so we need to find approximations. One
possible approximation is to let

C(&res,&lss) N <C(&res,&lss)> (13)

where the angular brackets denote the same integrals as before over the same probability
distribution. This time, though, the integrals become trivial, because they reduce simply
to the one-point functions (which vanish) and the two-point functions which can be
computed easily. Under this approximation then,

C — Cy = AYVOu, AV + N + o'V, vh.Ch
- % [Clrad,Cl, + (i - §)] (14)
with no sum on 7, j in the last two terms.

Fig. 5 illustrates one example of projected constraints using the likelihood
technique. In this case, the analysis gets the correct result, although with fairly large
errors. This confirms what a number of people have suggested about CMB-Cluster
lensing: the power of this technique will be to stack clusters. The errors from the

CMB on the mass of a single cluster will be too large to provide useful constraints on
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Figure 5. Likelihood contours in mass/concentration space from a 0.5’ pixel CMB
experiment with 1 yK noise per pixel.

cosmological parameters, but we can combine many clusters in a given bin (say with
the same SZ signal) and beat down the errors.

Fig. 6 illustrates a potential problem with this technique: in addition to being noisy,
the likelihood estimates are biased. That is, the estimator got the right answer for the
cluster in Fig. 5, but in general it does not get the right answer. The average mass
estimate is a litte more than 20% smaller than the true mass, and there are large tails.
The shape of this bias is similar to the shape of the distribution function of large scale
structure: low peak but high tails. Given our faulty approximation in equation [14],
it is not surprising that this bias emerges. An important problem will be to introduce
more sophisticated estimators to address this bias.

Indeed there is even more work remaining that fixing the bias. In this work, we have
analyzed maps which are free from the kinetic SZ effect. When we analyze those maps
using this technique, we get results which are much less impressive. So the likelihood
estimator needs to evolve to handle data from upcoming experiments.
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Figure 6. Histogram of the ratio of the cluster mass estimate from CMB to the true
cluster mass.

6. Conclusions

Gravitational lensing is likely to be a powerful tool for probing cosmology over the next
decade. Here, we have focused on one potential application: cluster mass determination
from fine-scale measurements of the CMB. Our analysis suggests that this technique
has a lot of potential but sophisticated algorithms will be needed to extract the relevant
information.

SD would like to thank Joan Sola and the other organizers of IRGAC 2006 for an
interesting conference. This work is supported by the US Department of Energy and by
NASA grant NAG5-10842.

Appendix A. Large Scale Structure Noise

Compute C'il;fs’ab. The deflection angle is an integral along the line of sight, so using the
Limber approximation, we can immediately write down its power spectrum:

- co W2
cmei) =t [ D pa . (A1)
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The covariance matrix is the Fourier transform of this:
C!ss,ab _ _/ d*l eil_:é;-jlalb /OO dXWZ(X)
K (2m)? 0 x?

Rewrite the vectors [* and [ as derivatives with respect to §. Then, the polar integral

becomes simply

Py (1/x: x)- (A.2)

27 .
/ dge™®s ¢ — 27 J (10;;). (A.3)
0
So the covariance matrix is
0? < dll < TW2(y)
Iss,ab __
Ci' - aeaaeb /0 (27T) JO(ZQ) /0 dX X4 P‘I’(Z/Xv X) (A4)
We can carry out the derivatives here using properties of Bessel functions:
o? 0 [0(10)
agrar 10 = ~ g [ o0 109)]
o [6
= — laaa lgt}l(w)]
5abJ1(l9) 4 b 1d Jl(.T)
= —|——= - 1700 { ——
0 xdx [ x ]
SapJ1(10) 5, . [ J2(16)
= —|————=+1°00 . A.
;T B (A.5)
So we finally have for the covariance matrix
ss,al a 303
O™ = =0 11(0y) + —53 1o(0;) (A.6)
ij
with the two integrals defined as
1 e dll? < W3(y)
1) =g | 5 h0) [ Pt/ )
_ el o W2(x)
B(6) = [ 5 hl0) [ A= Pall/ ). (A7)

The two integrals are shown in Fig. Al.
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References
[1] Bartelmann M and Schneider P 2001 Phys. Rep. 340 291-472 (Preprint astro-ph/9912508)

2]

3]
[4]
[5]

Dodelson S 2003 Modern cosmology (Modern cosmology / Scott Dodelson. Amsterdam
(Netherlands): Academic Press. ISBN 0-12-219141-2, 2003, XIIT + 440 p.)

Lewis A and Challinor A 2006 Phys. Rep. 429 1-65 (Preprint astro-ph/0601594)

Dodelson S, Shapiro C and White M J 2006 Phys. Rev. D73 023009 (Preprint astro-ph/0508296)

Hoekstra H, Yee H and Gladders M 2002 New Astron. Rev. 46 7T67-781 (Preprint
astro-ph/0205205)

Abazajian K N and Dodelson S 2003 Phys. Rev. Lett. 91 041301 (Preprint astro-ph/0212216)

Seljak U and Zaldarriaga M 2000 Astrophys. J 538 57—64 (Preprint astro-ph/9907254)

Nagai D, Kravtsov A V and Kosowsky A 2003 Astrophys. J. 587 524-532 (Preprint
astro-ph/0208308)

Dodelson S 2004 Phys. Rev. D 70 023009— (Preprint astro-ph/0402314)

Holder G P and Kosowsky A 2004 Astrophys. J. 616 8 15 (Preprint astro-ph/0401519)

Vale C, Amblard A and White M 2004 New Astronomy 10 1-15 (Preprint astro-ph/0402004)

Maturi M, Bartelmann M, Meneghetti M and Moscardini L 2005 Astron. Astrophys. 436 37—46
(Preprint astro-ph/0408064)

Lewis A and King L 2006 Phys. Rev. D 73 063006—+ (Preprint astro-ph/0512104)

Hu W, DeDeo S and Vale C 2007 (Preprint astro-ph/0701276)

Vale C, De Deo S and Hu W 2007 in preparation



Gravitational Lensing, the Cosmic Microwave Background and Cluster Masses 13

[18] Zaldarriaga M 2000 Phys. Rev. D 62 063510 (Preprint astro-ph/9910498)

[19] Hu W 2001 Astrophys. J Lett. 557 L.7T9 (Preprint astro-ph/0105424)

[20] Hirata C M and Seljak U 2003 Phys. Rev. D67 043001 (Preprint astro-ph/0209489)
[21] Okamoto T and Hu W 2003 Phys. Rev. D 67 083002 (Preprint astro-ph/0301031)



