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We propose new physical processes based on the axial vector anomaly and described by the
Wess-Zumino-Witten term that couples the photon, Z-boson, and the w-meson. The interaction
takes the form of a pseudo-Chern-Simons term, ~ €uvpocw!Z” FP?. This term induces neutrino-
photon interactions at finite baryon density via the coupling of the Z-boson to neutrinos. These
interactions may be detectable in various laboratory and astrophysical arenas. The new interactions
may account for the MiniBooNE excess. They also produce a competitive contribution to neutron
star cooling at temperatures > 10° K. These processes and related axion—photon interactions at
finite baryon density appear to be relevant in many astrophysical regimes.
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I. INTRODUCTION

The axial vector anomaly plays a fundamental role
in the structure of the Standard Model and describes
many physical processes, including the classic decay
7% — 2y [1, 12, 13]. One can summarize the traditional
current algebra manipulations used to treat anomalous
processes by an effective action. This is a functional,
(U, AL, Ar), of a chiral field of the pseudoscalar mesons,
U = exp(in®t®/f;), and background gauge fields Ay,
AR, coupled to left- and right-handed chiral currents. It
generates (consistent) anomalies under local gauge trans-
formations and is known as the Wess-Zumino-Witten
(WZW) term [4, 15].

The WZW term has been developed into a phe-
nomenologically useful form by Kaymakcalan, Rajeev
and Schechter (KRS) [6] following Witten’s pioneering
work. It can be understood as arising from a Chern-
Simons term built of Yang-Mills gauge fields in D = 5,
suitably compactified such that As zero modes emerge
as the mesons [7]. It applies to any effective theory of
pseudo-Nambu-Goldstone bosons (pNGB’s) coupled to
gauge fields, e.g., as in the case of Little Higgs theories
[8]. The WZW term arises naturally in connection with
topological physics in extra dimensions, and occurs in
both top-down [9] and bottom-up |10, [11] approaches to
holographic QCD in order to correctly match the flavor
anomalies of QCD.

The WZW term for spontaneously broken SU(3) x
SU(3)g flavor symmetry describes anomalous processes
involving the pseudoscalar pNGB’s and fundamental
gauge fields such as the photon. For example, we
have 7% n — 2y with A, = Ar = AQ and Q =
diag(2/3,—1/3,—-1/3). However, the WZW term also
summarizes processes containing effective vector mesons
in pole approximation, such as ® — 37, ® — KK,

where A, = Ag = ®)X%/2; and w — pr — 3w,
w — w0y, etc.., where Ay = Arp = wB + pl3, with
Is = diag(1/2,-1/2,0) and B = diag(1/3,1/3,1/3) [6].

To leading order in an expansion in 7% the WZW
term is seen to contain “pseudo-Chern-Simons” terms
(pCS) [25], such as Tr(eupoAf ALI?AT). Recently it
has been proposed that terms involving A;wdp may be
of phenomenological interest |12], which has stimulated
the present work.

Presently we note that the Standard Model implies a
pCS term in the Lagrangian involving the photon, the
Z-boson, and the isoscalar w vector meson of the form:
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The derivation of this result requires a careful account-
ing of anomalies. In the absence of w, gauge invariance
is maintained by the combination of the WZW term and
anomaly cancelling contributions from the lepton sector.
In the presence of w, SU(2)r x U(1)y gauge invariance
must be enforced by including appropriate counterterms,
€uvpoe AL A%LOP AT | ete.. This uniquely specifies the coef-
ficient of eq.(), apart from coupling constant normal-
izations. Z,, in eq.(d) should be thought of as a gauge-
invariant Stueckelberg field, i.e., we are in unitary gauge
for the broken SU(2); x U(1)y generators. For simplic-
ity, we restrict attention to two light flavors and the w
is coupled to baryon number B = diag(1/3,1/3), induc-
ing the coupling to the nucleon isodoublet N = (p,n),
as guw"N7,N [26]. We also note that the one-loop di-
agram responsible for the pCS term is closely related to
the electroweak baryon number anomaly. The full details
will be presented elsewhere [13].

Physically interesting effects arise when we integrate
out the w and the Z, replacing them with the baryon cur-
rent and neutrino current respectively. The new anoma-
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FIG. 1: Triangle diagram at chiral constituent quark level
treating v, Z and w as background gauge fields. This is
contained in the Wess-Zumino-Witten term, I'(U, Ar, Ar),
which is an effective action expressing the full anomaly physics
of pseudoscalars, axial- and vector mesons and fundamental
gauge fields. Integrating out Z and w leads to a neutrino-
photon interaction at finite baryon density.

lous interaction is then:

Sing = Z/@/dﬁr P, P{'YuVina ) (2)
f

where J, = NWMN is the isosinglet baryon current and
we sum over all left-handed neutrino flavors. The nor-
malization factor is:

Nc gf} eGF
K= ==
12m2m2 /2’

VL= —5 V. (3)

One could include similar terms for the p and ® mesons,
but w is expected to dominate.
Interesting effects will arise in processes such as:

v+ N — v+v+N (or N) (4)
Yy+N — v+7+ N (or N'). (5)

Coherent enhancements to these basic processes can oc-
cur in situations described by an ambient background
baryon density.

We presently turn to two such classes of phenomena:
neutrino scattering on nucleons; and the cooling of a
young neutron star. We briefly mention that an analo-
gous axion-photon-baryon current interaction arises with
similarly important implications.

II. NEUTRINO-NUCLEON COLLISIONS

We consider an incident neutrino of any flavor with
4-momentum p = (E,,p) colliding with a stationary nu-
cleon, producing an outgoing neutrino of momentum k,
and a photon of momentum ¢ = (E,,q). We assume
E, < M, where M is the nucleon mass and recoil is
treated as negligible. The action then becomes:

Sint — fﬁ/d% coijvrY v FIF 83 (). (6)

The resulting total cross-section is:

_ ag.Gy 6
480m6m4
= 2.6 x107"(E,/GeV)5(g,/10.0)* cm?.  (7)

We remark that there is considerable uncertainty in the
value of g,, generally extracted from nuclear potential
models |14], and the value we use here is “conservative.”

To assess the possible experimental sensitivity to this
effect we note that MiniBooNE observes an excess of
~ 10% events with electromagnetic energy and with re-
constructed mean neutrino energies of order ~ 400 MeV
[16,[17]. These events look like 400 MeV v+ N — e+ N’
charged current events, but the electron could be faked
by the hard photon in our process.

The MiniBooNE v, beam spectrum is fairly flat from
300 MeV to 1GeV, peaking at ~ 700 MeV. We focus
on E, ~ 700 MeV v,’s and assume that these produce
photons with E, ~ 400 MeV via our process. In this
energy range MiniBooNE accepts ~ 2 x 10° charged cur-
rent quasi-elastic (CCQE) v, N — uN' events with cross-
section, ogp ~ 0.9 x 10738 cm? [18]. Thus we expect to
produce ~ 2 x (2 x 10°)a(700 MeV) /ogr ~ 140 (g,,/10)*
events. The extra factor of 2 arises from the fact that our
process involves both n and p while CCQE involves only
n in a carbon target. Our cross-section has a distinctly
flat angular distribution, do/dcos6, = o(E,)/2 where
cosf, =p-q/E,E,. We note, however, that the photon
will be pulled forward as form-factor effects, which we
have ignored, set in.

While this estimate is extremely naive, it is encourag-
ing that existing experiments may already have sensitiv-
ity to our effect. For a more refined analysis we require
an improved o(E,) on nuclear (carbon) targets, includ-
ing coherence and form-factor effects, and convolution of
o(E,) with the beam spectrum.

Additional anomaly mediated interactions can also be
studied systematically starting from the WZW term. For
instance, a term ~ Ew,pga‘uWOZVFPU involves pion ex-
change with the nucleus in place of w exchange. How-
ever, this process contains 1/f2 < g /m?, and is not the
dominant effect. Also, in contrast to (II), the amplitude
for this process does not add coherently over individual
nucleons at low energy [217].

We thus conjecture that the anomaly mediated process
may be relevant to the MiniBooNE excess. Moreover,
it could lead to multiple enhanced prospects for observ-
ing quasi-elastic neutrino scattering on nuclei. Modern
neutrino experiments could ultimately provide a normal-
ization of the uncertain input parameter, g,,. While the
anomaly mediated neutrino process is higher order, it
contains a hard photon. Even for relatively low energy
reactor neutrinos, E,, ~ 3MeV, the enormous flux avail-
ability suggests that the anomaly process may be observ-
able. The hard photon also provides a possible observable
for a quartz-Cerenkov detector, or liquid halogen bubble
detectors, etc..



IIT. NEUTRON STAR COOLING

The anomaly mediated process is competitive with the
conventional processes for neutron star cooling. For il-
lustration, we consider a particular coherent subprocess
in a superconducting neutron star core, but the anomaly
mediated process will have a more general applicability.
Neutron star cooling is reviewed in [19, 120, 21, 122].

The full set of processes contributing to neutron star
cooling is complex. In the ultra-high density inner core
the energy loss is dominated by the direct Urca process,

n—p+e +7,, e +p—on+re. (8)

Throughout most of star the nucleons are at lower den-
sities, < 109 gem ™3, and are Fermi degenerate. In this
case, the direct Urca process is highly suppressed. En-
ergy is then typically lost by the modified Urca (mUrca)
process where a bystander nucleon is included to conserve
energy and momentum. The mUrca process is affected
by the superfluid phase, which appears below a criti-
cal temperature T, ~ 10'°K. This reduces the mUrca
rate. However, new cooling mechanisms associated with
Cooper pairing of nucleons may turn on at 7 < 10°K,
compensating the mUrca suppression.

We presently consider typical neutron star densities of
2p0 = 5.6 x 101 gecm™3 (twice nuclear density pg) and
assume that the regime 10° < T < 109K contains the
standard mUrca processes. We summarize these effects
by (see e.g., Table 2 of |21])):

QU = (10'® — 10?!) x (Tp)® ergs™t em™,  (9)

at temperature T = Ty x 10°K. This describes a collec-
tion of various processes, ignoring superfluidic suppres-
sion, and permits a naive comparison to our process.
We now want to estimate the cooling rate due to the
anomaly mediated process. Our basic assumptions are:

1. The degenerate protons pair to make a supercon-
ductor. This spontaneously breaks U(1)gas and
gives a mass to the photon, also known as the
inverse penetration length of the superconductor.
The mass depends sensitively on strong interaction
models, we take m, ~ 1 MeV as a typical value.

2. The (massive) photons are in thermal equilibrium
with the neutrons, protons and electrons in the su-
perconducting interior of the neutron star and we
work in the limit 7' < m,.

The photons are therefore characterized by the phase-
space distribution function and number density,

fpy) = [GEW/T - 1} - y o My = 9/ é3f;3 (py), (10)

with ¢ = 3 for a massive spin-one particle. For T' <
109K ~ m.,, we can approximate E, ~ m. +|p,|>/2m..
The emissivity of neutrinos due to v — v7 is

3
Qinom _ 3/ é:;; EV FPW (’y — l/v) f(pV)7 (11)

thus requiring the decay rate of the photon, I'; .

In the star rest frame the baryon number current is
Ju = (nB,ﬁ), and the photon 4-momentum is p, ~
(m., Py). However, it is convenient to work in the pho-
ton rest-frame, where p/ = (m.,,0). In this frame the
nucleon current is slightly boosted: J;L = npnyu, where
Ny ~ (1,5) and B ~ —py/m~. In the nonrelativistic
limit we thus have:

L nend / dpr_dpy
Py 2m., | 2F:1(2m)3 2E5(2m)3
[M*2m) '8t (0l —p1 —p2),  (12)

and the invariant final-state spin-summed and initial
state spin-averaged matrix element is:

2m?2
M2 = =2 e, P00 Tr[(1 = )b 19614 ]

(13)

This results in the decay rate:

2m~k2n% |
r,, = —alby e, (14)
and emissivity:
anom —m G%mzn%
Q2 = Ce w/T(mvT)f’)/?TZ,
/2 4

¢ = Y% _ 0012 — 0.96. (15)
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The range of C corresponds to a range of g, = 10.0
to g, = 30.0. We note that both g, and m, run with
nuclear density, e.g., Refs. [15] obtain m,, reduced by a
factor ~ 0.6 — 0.8 at p 2 po. Holding m,, fixed, larger
values of g, account for this effect, as well as other ef-
fects, e.g., higher resonance contributions. For standard
density 2pp = 5.6 x 10" g cm ™3, this yields an emissivity
of

Q™™ = 231 x 10%2ergs ' ecm ™ x
m9/2(gw/10)48(711'6m/Tg)(T9)5/2 , (16)

where m = m., /(1 MeV).

We see in Fig.(2) that this is competitive with the cool-
ing rate from mUrca processes [28]. We note that in the
early phase of neutron star formation with 7" > 101 K,
our process may actually dominate. This will be devel-
oped and reported elsewhere [13].

IV. CONCLUSIONS

Anomaly mediated interactions between photons and
neutrinos at finite baryon density may play an important
role in laboratory neutrino experiments and astrophysi-
cal processes. The new interaction (Il) may be relevant
in accounting for the MiniBooNE low energy excess. It
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FIG. 2: log(Q2"°™), with Q measured in ergs™* cm ™, versus
log(Ts) for the range g, = 10 — 30 (hatched) compared to
the range of standard mUrca processes of eq.(@). The curves
for mUrca do not include superfluidic suppression factors.

may also play a significant role in neutron star cooling
and early stage evolution. There are many potentially
important applications in various other physical regimes.
We will present a more detailed analysis and discussion
elsewhere, including the detailed derivation of pCS and
axion interactions from the WZW term [13]]24].

We further remark that the axion will have a similar
induced coupling to the photon and the w, leading to an
interaction of the form:

eN. g2 ota

Cazionmm_geyupafFUpN'yng (17)

where caxion is calculable from a given axion model. An
important application is to consider axion emission and
the resulting bounds on axion couplings from supernovae

(SN1987A).
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