First Observation of Heavy Baryons Σ_b and Σ_b^*

(CDF Collaboration*)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 Institutul de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
4 Baylor University, Waco, Texas 76708
5 Istituto Nazionale di Fisica Nucleare, Università di Bologna, I-40127 Bologna, Italy
6 Brandeis University, Waltham, Massachusetts 02254
7 University of California, Davis, Davis, California 95616
8 University of California, Los Angeles, Los Angeles, California 90024
9 University of California, Santa Barbara, Santa Barbara, California 93106
10 University of California, Santa Barbara, Santa Barbara, California 93106
11 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
12 Carnegie Mellon University, Pittsburgh, PA 15213
13 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
14 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Košice, Slovakia
15 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
16 Duke University, Durham, North Carolina 27708
17 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
18 Florida University, Gainesville, Florida 32611
19 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
20 University of Geneva, CH-1211 Geneva 4, Switzerland
21 Glasgow University, Glasgow G12 8QQ, United Kingdom
22 Harvard University, Cambridge, Massachusetts 02138
We report an observation of new bottom baryons produced in $p\bar{p}$ collisions at the Tevatron. Using 1.1 fb$^{-1}$ of data collected by the CDF II detector, we observe four $\Lambda_b^0\pi^\pm$ resonances in the fully reconstructed decay mode $\Lambda_b^0 \to \Lambda_c^+\pi^-$, where $\Lambda_c^+ \to pK^-\pi^+$. We interpret these states as the $(\Sigma_b^{(*)}\pm)$ baryons and measure their masses to be:

$m_{\Sigma_b^{(*)}} = 5807.8^{+2.0}_{-2.2}$ (stat.) ± 1.7 (syst.) MeV/c^2
$m_{\Sigma_c^+} = 5829.0^{+1.6}_{-1.8}$ (stat.) $^{+1.7}_{-1.8}$ (syst.) MeV/c^2
$m_{\Sigma_c^-} = 5815.2 \pm 1.0$ (stat.) ± 1.7 (syst.) MeV/c^2
$m_{\Sigma_c^0} = 5836.4 \pm 2.0$ (stat.) $^{+1.7}_{-1.8}$ (syst.) MeV/c^2

PACS numbers: 14.20.Mr, 13.30.Eg
Recently the CDF II detector at the Fermilab Tevatron has accumulated the world's largest sample of fully reconstructed $Λ^0_b$ baryons, which consist of the u, d, and b quarks, with 3180 ± 60 (stat.) $Λ^0_b \to Λ^+_c π^−$ candidates. This is made possible by the large $b\bar{b}$ production cross-section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV and the ability of the CDF II experiment to select fully hadronic decays of b hadrons with a specialized trigger system. In this Letter, we present an observation of four $Λ^0_b π^\pm$ resonances, where $Λ^0_b \to Λ^+_c π^−$ and $Λ^+_c \to pK^− π^+$, using 1.1 fb$^{-1}$ of data. The $Λ^0_b π$ states are interpreted as the lowest-lying charged $Σ_b$ baryons and will be labeled $Σ_b^{(*)}$. The symbol $Σ_b$ refers to $Σ_b^−$, while $Σ_b^+$ refers to $Σ_b^{+*}$. Unless otherwise noted, any reference to a specific charge state implies the antiparticle state as well.

The $Σ_b^{(+)}$ baryons contain one b and two u quarks, while the $Σ_b^{(-)}$ baryons contain one b and two d quarks; these states are expected to exist but have not been observed. Baryons containing one bottom quark and two light quarks can be described by heavy quark effective theory (HQET) [1]. In HQET a bottom baryon consists of a b quark acting as a static source of the color field surrounded by a diquark system comprised of the two light quarks. In the lowest-lying $Σ_b^{(*)}$ states, the diquark system has strong isospin $I = 1$ and $J^P = 1^+$, which couples to the heavy quark spin and results in a doublet of baryons with $J^P = \frac{3}{2}^+$ (Σb^+) and $J^P = \frac{1}{2}^+$ (Σb^0). This doublet is degenerate for infinite b quark mass. As the b quark mass is finite, there is a hyperfine mass splitting between the $\frac{3}{2}^+$ and $\frac{1}{2}^+$ states. There is also an isospin mass splitting between the $Σ_b^{(-)}$ and $Σ_b^{(+)}$ states.

Single gluon exchanges between the heavy quark and the light diquark system determine the spectroscopic properties of baryons [2]. There exists a variety of predictions for the $Σ_b^{(*)}$ masses from non-relativistic and relativistic potential quark models [3], 1/N_c expansion [4], quark models in the HQET approximation [5], sum rules [6], and lattice quantum chromodynamics calculations [7]. On the basis of [3–7], we expect $m(Σ_b^0) - m(Λ^0_b) \sim 180 - 210$ MeV/c2, $m(Σ_b^+) - m(Σ_b^0) \sim 10 - 40$ MeV/c2, and $m(Σ_b^{(*)}) - m(Σ_b^{(*)}) \sim 5 - 7$ MeV/c2. The difference between the isospin mass splittings of the $Σ_b^0$ and $Σ_b^+$ multiplets is predicted to be $|m(Σ_b^{(*)}) - m(Σ_b^{(*)})| = 0.40 \pm 0.07$ MeV/c2 [8].

The natural width of $Σ_b^{(*)}$ baryons is expected to be dominated by the P-wave one pion transition $Σ_b^{(*)} \to Λ^0_b π$, whose partial width depends on the available phase space and the pion coupling to a constituent quark. For the range of predicted $Σ_b^{(*)}$ masses, the natural widths $Γ(Σ_b^{(*)})$ calculated from an HQET prediction vary between 2 and 20 MeV/c2 [9].

The CDF II detector is described in detail elsewhere [10]. Its components and capabilities most relevant to this analysis are the tracking system and the ability to select displaced tracks from heavy flavor decays. The tracking system lies within a uniform axial magnetic field of 1.4 T. The inner tracking volume, with radii between 2.5 and 28 cm from the beam line, is occupied by a system of double-sided silicon microstrip detectors [11]. An additional layer of single-sided silicon microstrip detectors is mounted directly on the beampipe at an average radius of 1.5 cm. The remainder of the tracking volume is occupied by a cylindrical drift chamber [12], with a radial extent of 40 to 137 cm.

A displaced track trigger is employed to select bottom and charmed hadrons [13]. This trigger requires a pair of tracks with opposite charge, identified in the transverse view [14]. The tracks must have impact parameters d_0 which fall within the range $|d_0| \in [0.12, 1.00]$ mm, where d_0 is defined as the distance of closest approach of the track to the primary vertex in the transverse plane [15]. Each track is required to have transverse momentum $p_T > 2.0$ GeV/c. The scalar sum of the tracks’ transverse momenta must exceed 5.5 GeV/c and the azimuthal angle between the tracks is required to be within the range $2^\circ - 90^\circ$. In addition, the intersection point of the triggered tracks is required to have a transverse displacement of at least 200 μm with respect to the beam line.

In reconstructing the decays $Λ^0_b \to Λ^+_c π^−$ and $Λ^+_c \to pK^− π^+$, the proton from the $Λ^+_c$ decay and the $π^−$ from the $Λ^0_b$ decay are most likely to satisfy the displaced track trigger requirements. Therefore, we require that both must have $p_T > 2$ GeV/c, while the $K^−$ and $π^+$ candidates have $p_T > 0.5$ GeV/c to ensure well-understood tracking efficiency. We also require $p_T(p) > p_T(π^+) \times 10^{-5}$ to suppress $Λ^+_c$ combinatorial background. No particle identification is used in this analysis. All particle hypotheses consistent with the candidate decay structure are considered. In a 3-D kinematic fit, the $Λ^+_c$ daughter tracks are constrained to originate from a single point. The $Λ^+_c$ candidate is constrained to the known $Λ^+_c$ mass, and the $Λ^+_c$ momentum vector is extrapolated to intersect the $π^−$ momentum vector to form the $Λ^0_b$ vertex. The probability of the 3-D $Λ^0_b$ kinematic vertex fit must exceed 0.1%, and the $Λ^+_c$ and $Λ^0_b$ must have p_T greater than 4.5 and 6.0 GeV/c, respectively. To suppress prompt backgrounds from the primary interaction, we make the following decay time requirements: $ct(Λ^0_b) > 250$ μm and its significance $ct(Λ^0_b)/σ_{ct} > 10$.

1University of Heidelberg, D-69120 Heidelberg, Germany, 2Universidad Iberoamericana, Mexico D.F., Mexico, 3University of Manchester, Manchester M13 9PL, England, 4Nagasaki Institute of Applied Science, Nagasaki, Japan, 5Universidad de Oviedo, Oviedo, Spain, 6University of London, Queen Mary College, London, E1 4NS, England, 7University of California Santa Cruz, Santa Cruz, CA 95064, 8Texas Tech University, Lubbock, TX 79409, 9Texas State University, Irvine, Irvine, CA 92697, 10IFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain,
We define \(ct(L_0^0) = L_0^0 \times 2c/p_T(L_0^0) \) as the \(L_0^0 \) proper time, where \(L_0^0 \) is defined as the length of the projection, onto the two-track momentum vector, of the transverse plane vector from the primary vertex to the \(L_0^0 \) vertex. We use a primary vertex determined event-by-event when computing this vertex displacement. To reduce combinatorial backgrounds and partially reconstructed decays, we also require \(|d_0(L_0^0)| < 80 \mu m \), where \(d_0(L_0^0) \) is the impact parameter of the \(L_0^0 \) candidate. To suppress the contributions from \(B^0 \to \pi^+ \pi^- \) decays, we require \(m(pK^-\pi^+) \) to be within 16 MeV/c\(^2\) of the known \(\Lambda_c^+ \) mass [16], and \(ct(\Lambda_c^+) \in [-70,200] \mu m \). We define \(ct(\Lambda_c^+) = L_0^0 \times 2c/p_T(\Lambda_c^+) \) as the \(\Lambda_c^+ \) proper time, where \(L_0^0 \) is defined as the length of the projection, onto the three-track momentum vector, of the transverse plane vector from the \(L_0^0 \) vertex to the \(\Lambda_c^+ \) vertex.

The invariant mass distribution of \(\Lambda_c^+ \pi^- \) candidates is shown in Fig. 1 overlaid with a binned maximum likelihood fit. A clear \(L_0^0 \to \Lambda_c^+ \pi^- \) signal is observed at the expected \(L_0^0 \) mass. The invariant mass distribution is described by several components: the \(L_0^0 \to \Lambda_c^+ \pi^- \) signal, a combinatorial background, partially and fully reconstructed \(B \) mesons which pass the \(\Lambda_c^+ \pi^- \) selection criteria, partially reconstructed \(L_0^0 \) decays, and fully reconstructed \(L_0^0 \) decays other than \(\Lambda_c^+ \pi^- \) (e.g. \(L_0^0 \to K^-\pi^+ \)). The combinatorial background is modeled with an exponentially decreasing function. All other components are represented in the fit by fixed shapes derived from Monte Carlo (MC) simulations [17, 18]. Within the \(L_0^0 \) baryon and \(B \) meson groups of shapes, the normalizations are constrained by Gaussian terms to branching ratios that are either measured (for \(B \) meson decays) or theoretical predictions (for \(L_0^0 \) decays). The branching ratios of many yet-unobserved \(L_0^0 \) decay modes are extrapolated from \(B(\Lambda_0 \to \Lambda_c^+ \pi^-) \) [19] and \(B(\Lambda_0 \to \Lambda_c^+ \pi^-) \) [20] using the ratios of branching ratios in analogous \(B \) decays [16]; factorization is assumed in two-body \(b \to c \) decays of \(L_0^0 \). In the fit, the \(L_0^0 \) components are normalized relative to the \(L_0^0 \to \Lambda_c^+ \pi^- \) signal. To normalize the \(B \) meson components, we explicitly reconstruct a \(B^0 \to (K^-\pi^+\pi^-)\pi^- \) signal in the \(\Lambda_c^+ \pi^- \) sample by replacing the proton mass hypothesis with the pion mass hypothesis. The yield is \(N_{B^{0}} = 774 \pm 72 \) (stat.) events. We scale this number by the ratio of all \(B \) decays into four tracks observed in the MC simulation to the subset which results in a \((K^-\pi^+\pi^-)\pi^- \) signature; this ratio is found to be 1.75 [16]. The fit to the invariant \(\Lambda_c^+ \pi^- \) mass distribution results in \(3180 \pm 60 \) (stat.) \(L_0^0 \to \Lambda_c^+ \pi^- \) candidates.

The reconstruction of \(\Sigma_c^{(*)} \) proceeds by combining \(L_0^0 \) candidates in the \(\Lambda_0^0 \) signal region with all remaining high quality tracks. A pion mass hypothesis is used when computing the invariant mass of the \(\Sigma_c^{(*)} \) candidate. To minimize the contribution of the mass resolution of each \(L_0^0 \) candidate, we search for narrow resonances in the mass difference distribution of \(Q = m(\Lambda_0^0 \pi^-) - m(\Lambda_0^0) - m_{\pi} \). The \(\Sigma_c^{(*)} \) candidates are divided into two subsamples using the charge of the pion from \(\Sigma_b^{(*)} \) decay, denoted by \(\pi_{\Sigma_b} \); in the \(\Lambda_0^0 \) signal region, \(L_0^0 \) has the same charge as the pion from \(\Lambda_0^0 \), while in the \(L_0^0 \) sample the \(\pi_{\Sigma_b} \) has the opposite charge as the pion from \(\Lambda_0^0 \).

On the basis of the theoretical predictions in [3-7], the \(\Sigma_c^{(*)} \) signal region is defined as \(Q \in [30,100] \) MeV/c\(^2\). We optimize the \(\Sigma_c^{(*)} \) selection criteria using the pure background sample in the upper and lower sideband regions of \(Q \in [0,30] \) MeV/c\(^2\) and \(Q \in [100,500] \) MeV/c\(^2\). These sideband regions are parameterized by a power law multiplied by an exponential. The signal is modeled by the Pythia [21] event generator where only the decays \(\Sigma_c^{(*)} \to \Lambda_0^0 \pi^- \pi^- \), \(\Lambda_0^0 \to \Lambda_c^+ \pi^- \), and \(\Lambda_c^+ \to pK^-\pi^+ \) are allowed. For the optimization, we combine the \(\Lambda_c^+ \pi^- \) and \(\Lambda_0^0 \pi^- \) subsamples. We optimize cuts on the \(p_T \) of the \(\Sigma_b^{(*)} \) candidate, the impact parameter significance \(|d_0/\sigma_{d_0}| \) of the \(\pi_{\Sigma_b} \) track, and the cos \(\theta^* \) of the \(\pi_{\Sigma_b} \) track, where \(\theta^* \) is defined as the angle between the momentum of the \(\pi_{\Sigma_b} \) in the \(\Sigma_b^{(*)} \) rest frame and the direction of the total \(\Sigma_c^{(*)} \) momentum in the lab frame. In this optimization, we maximize \(\epsilon(S_{MC})/\sqrt{B} \), where \(\epsilon(S_{MC}) \) is the efficiency of the \(\Sigma_b^{(*)} \) signal measured in the MC simulation and \(B \) is the number of background events in the signal region estimated from the upper and lower sidebands. The maximum of \(\epsilon(S_{MC})/\sqrt{B} \) is realized for \(p_T(\Sigma_b) > 9.5 \) GeV/c, \(|d_0/\sigma_{d_0}| < 3.0 \), and \(\cos \theta^* > -0.35 \).

In the \(\Sigma_b^{(*)} \) search, the dominant background is from the combination of prompt \(\Lambda_0^0 \) baryons with extra tracks produced in the hadronization of the \(b \) quark. The
remaining backgrounds are from the combination of hadronization tracks with B mesons reconstructed as Λ^0_b baryons, and from combinatorial background events. The percentage of each background component in the Λ^0_b signal region, computed from the Λ^0_b mass fit, is (89.5 ± 1.7)% Λ^0_b baryons, (7.2 ± 0.6)% B mesons, and (3.3 ± 0.1)% combinatorial events. Other backgrounds such as 5-track decays of B^+ mesons are negligible, as confirmed in inclusive single b hadron simulations [17, 18].

The high mass region above the $\Lambda^0_b \rightarrow \Lambda^+_c \pi^-$ signal in Fig. 1 determines the combinatorial background. Reconstructing $B^0 \rightarrow D^+ \pi^-$ data as $\Lambda^0_b \rightarrow \Lambda^+_c \pi^-$ gives the B hadronization background. The Λ^0_b hadronization background is obtained from a $\Lambda^0_b \rightarrow \Lambda^+_c \pi^-$ PYTHIA simulation.

The mass fit is (89.5 ± 1.7)% Λ^0_b baryons, (7.2 ± 0.6)% B mesons, and (3.3 ± 0.1)% combinatorial events. Other backgrounds such as 5-track decays of B^+ mesons are negligible, as confirmed in inclusive single b hadron simulations [17, 18].

The high mass region above the $\Lambda^0_b \rightarrow \Lambda^+_c \pi^-$ signal in Fig. 1 determines the combinatorial background. Reconstructing $B^0 \rightarrow D^+ \pi^-$ data as $\Lambda^0_b \rightarrow \Lambda^+_c \pi^-$ gives the B hadronization background. The Λ^0_b hadronization background is obtained from a $\Lambda^0_b \rightarrow \Lambda^+_c \pi^-$ PYTHIA simulation.

The events in this simulation are reweighted so that the $p_T(\Lambda^0_b)$ distribution agrees with data. As the simulation has fewer low momentum tracks around the Λ^0_b than found in data, the simulated events are further reweighted until the p_T spectrum of tracks around the Λ^0_b is consistent with data. After establishing the shape and normalization of each background Q distribution, the background shapes are parameterized by a power law multiplied by an exponential. The total background shape shown in Fig. 2 (inset) is compatible with the Q sidebands and is a fixed component in the Σ^b_0 fit.

In the Q signal region we observe an excess of events over the total background as shown in Fig. 2. The excess in the $\Lambda^0_b \pi^-$ subsample is 118 over 288 expected background candidates. In the $\Lambda^0_b \pi^+$ subsample the excess is 91 over 313 expected background candidates.

We perform a simultaneous unbinned maximum likelihood fit to the $\Lambda^0_b \pi^-$ and $\Lambda^0_b \pi^+$ subsamples for a signal from each expected Σ^b_0 state plus the background, referred to as the “four signal hypothesis.” Each signal consists of a Breit-Wigner distribution convoluted with two Gaussian distributions describing the detector resolution, with a dominant narrow core and a small broad component for the tails. The natural width of each Breit-Wigner distribution is computed from the central Q value [9].

The expected difference of the isospin mass splittings within the Σ^b_0 and Σ_b multiplets is below our sensitivity with this sample of data. Consequently, we constrain $m(\Sigma^b_0^+)=m(\Sigma^b_0^-)=m(\Sigma^b_0^*)\equiv\Delta\Sigma_b$. The four Σ_b signal fit to data, which has a fit probability of 76% in the range $Q \in [0, 200]$ MeV/c2, is shown in Fig. 2.

Systematic uncertainties on the mass difference and yield measurements fall into three categories: mass scale, $\Sigma_b^{(*)}$ background model, and $\Sigma_b^{(*)}$ signal parameterization. The systematic uncertainty on the mass scale is determined by the discrepancies of the CDF II measured masses of the D^*, Σ_c, and Λ^*_c hadrons from the world average mass values [16].

The Q value dependence of this systematic uncertainty is modeled with a linear function, which is used to extrapolate the mass scale uncertainty for each $\Sigma_b^{(*)} Q$ value. This is the largest systematic uncertainty for the mass difference measurements, ranging from 0.1 to 0.3 MeV/c2. The systematic effects related to assumptions made on the $\Sigma_b^{(*)}$ background model are: the sample composition of the Λ^0_b signal region, the normalization and functional form of the Λ^0_b hadronization background taken from a PYTHIA simulation, and our limited knowledge of the shape of the Λ^0_b hadronization background (the largest systematic uncertainty on the yield measurements, ranging from 2 to 15 events).

The systematic effects related to assumptions made on the $\Sigma_b^{(*)}$ signal parameterization are: underestimation of the detector resolution, the uncertainty in the natural width prediction from [9], and the constraint that $m(\Sigma_b^{(*)})-m(\Sigma_b^0)=m(\Sigma_b^{(*)})-m(\Sigma_b^-)$.

The significance of the signal is evaluated using the likelihood ratio, $LR \equiv L/L_{alt}$, where L is the likelihood of the four signal hypothesis and L_{alt} is the likelihood of an alternative hypothesis [22]. We study the alternate hypotheses of no signal, two Σ_b states (one per $\Lambda^0_b \pi$ charge combination), and three $\Sigma_b^{(*)}$ states, performed by eliminating one of the states in the four signal hypothesis. Systematic variations are included in the fit as nuisance parameters over which the likelihood is integrated. The resulting likelihood ratios are given in Tab. I. To assess the significance of the signal, we repeat the four signal hypothesis fit on samples randomly generated from alternate signal hypotheses. In 12 million background samples, none had a LR equivalent or
greater than the one found in data. We evaluate the probability for background only to produce four signals of this or greater significance to be less than 8.3×10^{-8}, corresponding to a significance of greater than 5.2 σ. The probabilities for each of the alternate hypotheses to produce the observed signal structure is also given in Tab. I. The final results for the Σ_b measurement are quoted in Tab. II. Using the CDF II measurement of $m_{\Lambda_b^0} = 5619.7 \pm 1.2$ (stat.) ± 1.2 (syst.) MeV/c2 [23], we find the absolute masses of the Λ_b^0 states given in Tab. II. The systematic uncertainties on the absolute Σ_b mass values are dominated by the total Λ_b^0 mass uncertainty.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>LR</th>
<th>p-value</th>
<th>Significance (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Signal</td>
<td>$2.6 \times 10^{18} < 8.3 \times 10^{-8}$</td>
<td>> 5.2</td>
<td></td>
</tr>
<tr>
<td>Two Σ_b States</td>
<td>4.4×10^{3}</td>
<td>9.2×10^{-5}</td>
<td>3.7</td>
</tr>
<tr>
<td>No Σ_b^- Signal</td>
<td>1.2×10^{5}</td>
<td>3.2×10^{-4}</td>
<td>3.4</td>
</tr>
<tr>
<td>No Σ_b^+ Signal</td>
<td>49</td>
<td>9.0×10^{-3}</td>
<td>2.4</td>
</tr>
<tr>
<td>No Σ_b^{++} Signal</td>
<td>4.9×10^{4}</td>
<td>6.4×10^{-4}</td>
<td>3.2</td>
</tr>
<tr>
<td>No Σ_b^{--} Signal</td>
<td>8.1×10^{4}</td>
<td>6.0×10^{-4}</td>
<td>3.2</td>
</tr>
</tbody>
</table>

TABLE I: Likelihood ratios (LR) in favor of the four signal hypothesis over alternative hypotheses. Also shown is the probability for each hypothesis to produce the observed data (p-value), calculated using the LR as a test statistic on randomly generated samples. The final column gives the equivalent standard deviations from the normal distribution.

<table>
<thead>
<tr>
<th>State</th>
<th>Yield</th>
<th>Q or Δm_χ (MeV/c2)</th>
<th>Mass (MeV/c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ_b^+</td>
<td>39\pm^{+13+9}_{-12-3}</td>
<td>$Q_{\Sigma_b^+}$ = 48.5$^{+2.0+0.2}_{-2.2-0.3}$</td>
<td>5807.8$^{+2.0}_{-2.2} \pm 1.7$</td>
</tr>
<tr>
<td>Σ_b^-</td>
<td>59\pm^{+15+9}_{-14-4}</td>
<td>$Q_{\Sigma_b^-}$ = 55.9$\pm 1.0 \pm 0.2$</td>
<td>5815.2$\pm 1.0 \pm 1.7$</td>
</tr>
<tr>
<td>Σ_b^+</td>
<td>77\pm^{+17+10}_{-16-6}</td>
<td>$\Delta m_{\chi_b^+}$ = 21.2$\pm 2.0_{+0.4}$</td>
<td>5829.0$^{+1.8}_{-1.6} \pm 1.7$</td>
</tr>
<tr>
<td>Σ_b^{--}</td>
<td>69\pm^{+18+16}_{-17-5}</td>
<td>$\Delta m_{\chi_b^{--}}$ = 1.9± 0.3</td>
<td>5836.4$^{+2.0}_{-1.8} \pm 1.7$</td>
</tr>
</tbody>
</table>

TABLE II: Final results for the Σ_b measurement. The first uncertainty is statistical and the second is systematic. The absolute Σ_b mass values are calculated using a CDF II measurement of the Λ_b^0 mass [23], which contributes to the systematic uncertainty.

In summary, using a sample of 3180 \pm 60 (stat.) $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ candidates reconstructed in 1.1 fb$^{-1}$ of CDF II data, we search for resonant $\Lambda_b^0 \pi^\pm$ states. We observe a signal of four states whose masses and widths are consistent with those expected for the lowest-lying charged $\Sigma_b^{(*)}$ baryons. This result represents the first observation of the $\Sigma_b^{(*)}$ baryons.

We thank T. Becher, A. Falk, D. Pirjol, J. Rosner, and D. Ebert for useful discussions. We also thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme under contract HPRN-CT-2002-00292; and the Academy of Finland.

[15] The transverse plane (x, y) is perpendicular to the direction of the proton beam. The azimuthal angle ϕ is measured from the x-axis. The transverse momentum p_T is
the magnitude of the projection of the momentum in the transverse plane.

[17] We use a variety of single b hadron simulations, all using the $p_T(B)$ and $y(B)$ distributions obtained from B decays in data (D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005)). The simulated $p_T(A_{B}^{0})$ distribution is reweighted to match the sideband-subtracted data.

