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Evidence for nearby universe structures in the ultra-high energy sky
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2Università “Federico II”, Dipartimento di Scienze Fisiche, Napoli, Italy & INFN Sezione di Napoli

3Instituto de F́ısica Corpuscular (CSIC-Universitat de València),
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We compare the clustering properties of the combined dataset of ultra-high energy cosmic rays
events, reported by the AGASA, HiRes, Yakutsk and Sugar collaborations, with a catalogue of
galaxies of the local universe (redshift z <

∼ 0.06). We find that the data reproduce particularly well
the clustering properties of the nearby universe within z <

∼ 0.02. There is no statistically significant
cross-correlation between data and structures, although intriguingly the nominal cross-correlation
chance probability for displacements within ∼50◦ drops from O(50%) to O(10%) using the catalogue
with a smaller horizon. Also, we discuss the impact on the robustness of the results of deflections
in some galactic magnetic field models used in the literature. These results suggest a relevant role
of magnetic fields (possibly extragalactic ones, too) and/or possibly some heavy nuclei fraction in
the UHECRs. The importance of a confirmation of these hints by Auger data is emphasized.

PACS numbers: 98.70.Sa

I. INTRODUCTION

One of the keys towards the solution of the mysteri-
ous origin of ultra-high energy cosmic rays (UHECRs)
is the study of their anisotropy pattern. The chances
to perform (some kind of) UHECR astronomy increase
significantly at extremely high energy, in particular due
to the decreasing of deflections in the galactic and pos-
sibly extragalactic magnetic fields. Moreover, at E >

∼
(4 − 5) × 1019 eV the opacity of the interstellar space
to protons drastically grows due to the kinematically al-
lowed photo-pion production on Cosmic Microwave Back-
ground (CMB) photons, known as the Greisen-Zatsepin-
Kuzmin or GZK effect [1, 2]. A similar phenomenon at
slightly different energies occurs for heavier primaries via
photo-disintegration energy losses. Recently, an observa-
tional evidence for a flux suppression consistent with the
GZK feature has been reported by the HiRes collabo-
ration [3]. Within reasonable astrophysical assumptions,
these energy-losses phenomena impose a conservative up-
per limit to the distance from which the bulk of UHECRs
is emitted, of the order of a few hundreds Mpc at most,
which may enhance the chances of identifying structures.
In Ref. [4] a forecast analysis for the Pierre Auger Ob-
servatory [5, 6] was performed to derive the minimum
statistics needed to test the “zeroth order” hypothesis
that UHECRs trace the baryonic distribution in the uni-
verse. Assuming proton primaries, it was found that a
few hundred events at E >

∼ 5 × 1019 eV are necessary at
Auger to have reasonably high chances to identify the sig-
nature. On the other hand, available catalogues from the
experiments of the previous generation contain O(100)
events above E >

∼ (4 − 5) × 1019 eV, thus motivating a
search for possible angular patterns already in the present
data [7, 8]. In particular, after renormalizing the energy
scales of the different experiments to the HiRes one at

4 × 1019 eV, the authors of [8] found some evidence of
a broad maximum of the two-point autocorrelation func-
tion of UHECR arrival directions around 25 degrees (This
feature has been confirmed by the Auger data alone as
well, as recently reported in [9].) In [10], the present au-
thors tested their qualitative interpretation of the result
as reflecting the large-scale structure (LSS) of UHECR
sources on the light of our previous map templates ob-
tained from the IRAS PSCz galaxy catalogue [11]. The
observed data and the Monte Carlo events from the cata-
logue share several features, which are even more promi-
nent if a quadratic correlation with LSS is assumed. On
the other hand, no relevant cross-correlation has been
found, which would be the smoking gun to test such sce-
narios. However, this is not particularly surprising: apart
for the sake of simplicity, there is no a-priori reason to ex-
pect that cosmic rays are 100% made of protons, that the
effects of magnetic fields are negligible above 4× 1019 eV
for the angular scales considered, and that the sources
trace in an unbiased way the LSS. In this paper, we ex-
tend our previous analysis in two ways: (i) we assume
a smaller horizon, i.e. biasing the correlation with LSS
towards closer sources; (ii) we study the impact of the
galactic magnetic field (GMF) on the autocorrelation sig-
nature and on the cross-correlation signal. We anticipate
that the data reproduce particularly well the clustering
properties of the nearby universe within z <

∼ 0.02 and
they are also quite robust with respect to deflections in
galactic magnetic fields. We summarize our assumptions
and techniques in Sec. II, while devoting Sec. III to
present our results. In Sec. IV we briefly discuss our
findings and conclude.
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FIG. 1: Skymap of the UHECR arrival directions of events
in galactic coordinates with rescaled energy E > 4× 1019 eV.
The solid line is the celestial equator.

FIG. 2: Single and combined exposures for the various exper-
iment considered: Sugar (red), Hires (green), Agasa (blue),
Yakutsk (yellow), combined (black).

FIG. 3: The UHECR flux contrast map (or excess map) prop-
erly smoothed with a Gaussian filter of 10◦ width.

II. ASSUMPTIONS AND METHODS

A. The data

In our analysis, we closely follow the approach reported
in [8, 10], using a similar dataset extracted from available
publications or talks of the AGASA [12], Yakutsk [13],
SUGAR [14], and HiRes collaborations [15, 16]. Note
that we rescale a priori the energies of the experiments to
the HiRes one and consider events above E ≥ 4×1019 eV
in this renormalized sample. This approach is applied
hereafter in the analysis and we address the reader to [8]
for further details. In Fig. 1 we show the points used in
this analysis in galactic coordinates, while Fig. 2 reports
the single and combined exposure for the various experi-
ments as a function of the declination, in the limit of sat-
urated acceptance and mediated over the right ascension
(see e.g. [17]). In Fig. 3 we show the derived UHECR
excess map (flux over average expected flux, minus one)
properly smoothed by a gaussian filter of 10◦. Such a
choice for the width amplitude (which has only illustra-
tive purposes) represents an acceptable compromise be-
tween the few degrees of the experimental uncertainty on
the arrival direction of UHECR, and the typical angular
length of the nearby astrophysical structures of several
tens of degrees. Of course, the data have been properly
weighted by the exposure.

The smoothed map in Fig. 3 clearly shows that the
most apparent visual feature in the data is the medium
scale clustering, with the data clustered in few spots of
20◦-30◦ degrees each, that in their turn are distributed
almost uniformly in the sky. This is of course the reason
of the signal found in [8] with a proper statistical anal-
ysis. The clustering seen in the southern hemisphere is
due to the Sugar data only and has thus a weak statis-
tical evidence. However, the clustering signal is indeed
present and statistically significant also considering the
data from the northern hemisphere only [8]. Indeed, hints
of this clustering in the northern hemisphere were recog-
nized already some years ago [18]. Finally, lowering the
energy threshold the signature disappears, excluding the
possibility that the signal is only a systematic feature
coming from an incorrect modeling of the exposures [8].

The degree of clustering observed is quite pronounced
and exceeds also the anisotropy expected in the minimal
case of proton primaries (with a GZK horizon z ≃ 0.06),
only in marginal agreement with the data (see [10] and
section III). Instead, the few prominent structures vis-
ible naturally suggest either a scenario where the UHE
sky is dominated by few nearby very powerful sources or
one where UHECRs are produced by a relatively larger
number of sources significantly biased with overdensities
in the local universe (within z ≃ 0.02). Both scenar-
ios require a important role of magnetic fields, in the
former case to explain the large smearing of the point
sources emission and in the latter to justify the lack of
correspondence between the data an the nearby galaxy
clusters.
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B. The models

The previous discussion motivates an extension of the
previous analysis reported in [10] along two directions:

(I) assuming a smaller horizon, i.e. biasing the corre-
lation with LSS towards closer sources;

(II) studying the impact of the GMF on the autocorre-
lation signature and on the cross-correlation signal.

Both extensions should be regarded as “first order” re-
finements of our previous study. The point (II) does not
need much justification: it is important to establish the
robustness of the previous results with respect to the ef-
fects of astrophysical magnetic fields. Even if extragalac-
tic magnetic fields may have a major role in shaping or
preserving the UHECR anisotropies, very little is known
about them (see [19] and [20]). On the other hand we
know for sure that a regular GMF exists—although we
have only rough ideas on its magnitude and structure—
and it is in principle relevant for UHECR deflections,
even in the case of pure proton composition. In the fol-
lowing, we shall then consider how our results change
when data are corrected for the effects of a few GMF
models available in the literature. In particular, we shall
use the three models HMR, TT, and PS employed in
[21], which we refer to for details. To account for the
deflections in the GMF in our analyses we shall follow
the back-tracking technique described in [22, 23]. The
technique consists in mapping the arrival CRs directions
on the Earth backward outside the GMF to obtain a
map of the GMF deflections. We then apply the map-
ping to the extragalactic expected CR map and correct
it for the GMF displacements. The extragalactic CRs
map F (Ecut, Ω̂) expected at an energy greater than Ecut

at the direction Ω̂ is obtained as described in [4]. The
map is then convolved with the GMF deflections to have
F (Ecut, Ω̂(Ω̂′)) where Ω̂(Ω̂′) is the mapping produced by
the back-tracking technique. This method is fully suited
for the cases in which energy losses along the particle
track are negligible and when the particle energy is large
enough to exclude loops and/or trapped regions during
the propagation. Both these conditions are satisfied for
the UHECRs and for the GMFs we considered. Also note
that an isotropic sky remains isotropic under the GMF
transformation, in agreement with the expectation from
the Liouville theorem. We refer to [21, 22, 23] for details.
A further possible problem is given by the fact that the
mask region present in the catalogue and excluded from
the analysis is distorted by the effect of the GMF, so that
in principle one should exclude, case by case, the regions
which the mask is mapped into by the GMF. We ne-
glect this effect assuming the the mask is approximately
mapped in itself by the GMF transformation. This is a
quite good approximation for the region near the galactic
plane while it is not satisfied by the two narrow stripes.
However, the the stripes amount to about 10% of the to-
tal mask and only roughly 2% of the whole sky, which is

a very small bias for our purposes in this work.

From a qualitative point of view, the point (I) is rea-
sonable, too. In many scenarios, only relatively nearby
sources (if any) may be identifiable in cosmic ray maps.
There are several plausible reasons for that. Even in ab-
sence of magnetic fields, an heavier composition implies
a different energy-loss horizon for UHECRs [24, 25]. For
the energy threshold considered here (E >

∼ 4 × 1019 eV),
this is smaller than the proton one. In presence of ex-
tragalactic magnetic fields, the propagation of a UHECR
may greatly differ from a straight line and in principle
may even happen in a diffusive regime [26, 27, 28, 29].
Although it is unlikely that the propagation is truly dif-
fusive, Gpc-scale pathlengths for protons injected within
a few hundreds Mpc may be common even above 10 EeV
[30]. A non-negligible role of magnetic fields would have
two consequences: for a given energy-loss mechanism, it
is clear that the true horizon may be significantly shorter
than the expected one. Thus, UHECRs above a given Eth

may be largely collected within a region smaller than the
linear energy-loss horizon. More important, apart for en-
ergy losses, the longer the propagation time, the smaller
the chance that intrinsic anisotropies may survive (in
some form). Finally, since UHECR source likely have to
meet special accelerator requirements, it is reasonable to
conceive a relatively rare population of sources, possibly
strongly biased with respect to LSS.

However, how to implement in practice point (I) is ad-
mittedly not model independent. One possibility may be
to cut arbitrarily a LSS catalogue to some redshift zcut,
and consider only correlations with structures within this
distance, assuming for the rest that UHECRs are un-
biased tracers of LSS (i.e. neglecting otherwise energy
loss effects). Another possibility is to create anisotropy
map templates of specific scenarios for UHECR compo-
sition, sources, and extragalactic magnetic fields, com-
paring them with the observed configurations of data in
order to infer the best model. Although this will be the
way to proceed when high statistics will be achieved, at
the moment it could just dilute the basic consequence
of our assumption (I) under a large number of unknown
parameters. To keep some physical-inspired input in a
toy model, we shall compare the distribution of data as
in Fig. 1 with the LSS maps obtained by convolution
of the PSCz catalogue with an energy-loss window func-
tion corresponding to protons twice more energetic, i.e.
E = 8 × 1019 eV, implying an effective horizon z ≃ 0.02
[4]. We shall denote this scenario as “small horizon”
(SH), as opposed to the “proton horizon” (PH) as treated
in [10] and corresponding to the minimal assumption of
protons primaries with E ≥ 4 × 1019 eV propagating in
a negligible EGMF (usual GZK horizon z ≃ 0.06). In
the top two panels of Fig. 4 we report the PH and SH
maps. The smoothing is variable and it is related to the
adaptive smoothing applied to the PSCz catalogue to
minimize the effect of the shot noise. We emphasize that
this should be considered a toy model, and not a realistic
scenario for UHECR sources or composition. However,
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FIG. 4: Top row: Excess maps of PH (left) and SH models (right) in galactic coordinates. The grey contour bounds the blind
region of PSCz catalogue. Bottom row: Galactic excess maps of the PH (left) and SH models (rigth) taking into account the
Galactic magnetic field correction for a specific model (HMR in [21]) and assuming proton primaries (Z = 1).

our toy model may be indicative of a plausible situation
where at least for anisotropy searches the useful UHECR
horizon is relatively short.

C. Statistical tools

For the statistical analysis we define the (cumulative)
autocorrelation function w as a function of the separation
angle δ as

w(δ) =

Nd∑

i=2

i−1∑

j=1

Θ(δ − δij), (1)

where Θ is the step function, Nd the number of
CRs considered and δij = arccos(cos ρi cos ρj +
sin ρi sin ρj cos(φi − φj)) is the angular distance between
the two cosmic rays i and j with coordinates (ρ, φ) on
the sphere. Analogously, one can define the correlation
function ξ(δ) as

ξ(δ) =

Nd∑

i=1

Ns∑

a=1

Θ(δ − δia) , (2)

where δia is the angular distance between the CR i and
the candidate source a and Ns is the number of source
objects considered.

We perform a large number M ≃ 105 of Monte Carlo
simulations of N data sampled from a distribution on
the sky corresponding to the hypothesis H (e.g., uniform,
LSS, etc.) and for each realization j we calculate the au-
tocorrelation function wH

j (δ). The sets of random data
match the number of data for the different experiments
passing the cuts after rescaling, and are spatially dis-
tributed according to the exposures of the experiments.
The formal probability PH(δ) to observe an equal or
larger value of the autocorrelation function by chance
is

PH(δ) =
1

M

M∑

j=1

Θ[wH
j (δ) − w⋆(δ)], (3)

where w⋆(δ) is the observed value for the cosmic ray
dataset and the convention Θ(0) = 1 is being used. Rel-
atively high values of P and 1−P indicate that the data
are consistent with the null hypothesis being used to gen-
erate the comparison samples, while low values of P or
1 − P indicate that the model is inappropriate to ex-
plain the data. That is, in the following we shall plot the
function P (δ)× [1−P (δ)], which vanishes if any of P or
1−P vanishes and has the theoretical maximum value of
1/4. Thus, the higher its value is the more consistent the
data are with the underlying hypothesis. Note also that
by construction the values at different δ of the function
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FIG. 5: Chance probability of auto correlation taking as reference model an uniform distribution, the linear correlation model
of [10] (LSS-PH model) and the presently considered model with a smaller horizon (LSS-SH model).

P (δ) are not independent.
To calculate the cross-correlation probability, we per-

form a large number M(≃ 105) Monte Carlo realization
of N events is sampled according to the LSS probabil-
ity distribution, and for each realization i we calculate
the function ξLSS

i (δ). We generate analogously M ran-
dom datasets from an uniform distribution, and calculate
ξuni
j (δ). We have thus M2 independent couples of func-

tions (i, j). The fraction of the M2 simulations where the
condition ξuni(δ) ≥ ξLSS(δ) is fulfilled is the probability

Pξ(δ) =
1

M2

M∑

i=1

M∑

j=1

Θ[ξuni

i (δ) − ξLSS

j (δ)] . (4)

A technical detail of the analysis is related to the pres-
ence of the catalogue mask. This includes a zone centered
on the galactic plane and caused by the galactic extinc-
tion and a few, narrow stripes which were not observed
with enough sensitivity by the IRAS satellite. These
regions are excluded from our analysis with the use of
the binary mask available with the PSCz catalogue it-
self. This reduces the available sample by about 10%.

III. RESULTS

By repeating our analysis in [10] following the SH
model and without considering for the moment the effects
of the GMF, we obtain the results shown in Fig. 5. The
SH model seems to explain extremely well the clustering
properties of the data, with the related P × (1−P ) curve
almost coincident with the ideal P = 0.5 expectation.

Not surprisingly, this can be understood after a visual
inspection of the maps in Fig. 3 (data) and Fig. 4 (mod-
els). While the map from protons with E ≥ 4 × 1019 eV
(the PH model) is still too much isotropic with respect
to the data, in the SH map the number of clusters and
their distribution resemble much more the data, in that
it leaves typical “voids” between clustered hot-spots ob-
served.

Our next step is to investigate the effects of the galac-
tic magnetic field. In the two bottom panels of Fig. 4 we
show the effective modification of LSS structures happen-
ing for the PH and the SH scenario, assuming as example
the HMR model in [21]. In general, besides the shifting
of the positions of the structures, as expected the GMF
introduces in the deflected maps also other peculiar lens-
ing phenomena like shearing and (de)magnification [23].
More quantitatively, the effects of the GMFs are studied
in the following through the modifications induced in the
auto and cross-correlation functions. In Fig. 6 we inves-
tigate the effect of the GMF on the signature in the au-
tocorrelation function. We also show the effect of chang-
ing the rigidity of the particles. Actually, the equations
of motion for CRs in the GMF only depend on the pa-
rameter C = B×Z/E where B, Z, E are respectively the
GMF normalization, the particle atomic number (electric
charge of the nucleus) and the particle energy. A com-
bination of parameters that leaves unchanged C is thus
completely degenerate from the point of view of propa-
gation in the GMF (of course, not for the energy losses in
the propagation in the extragalactic sky.) As a general
consideration, we see that at least for the baseline cases
considered, the correction for the GMF does not destroy
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FIG. 6: Chance probability of autocorrelation of the data for different GMF models and for the PH model maps (left) and SH
model maps (right) taken as reference sample. The cases Z = 1 and Z = 2 are shown in each panel.

the pattern in P (1−P ), but can improve or worsen it at
most by a factor of a few. On the other hand, extreme
changes in C may significantly alter the pattern of the
function.

Finally, in Fig. 7 we report the results of the cross
correlation analysis. In no case there is a statistically
significant signal. Yet, all the SH maps show some im-
provement with a Pξ ∼ 10% (with respect to Pξ ∼ 50%
for the PH case), even without use of the GMF correc-
tion. This is understood since we have about the some
number of clusters in the data and in the map and typ-
ically one can find a correspondence between the two
within a radius of roughly 50◦. A more significant signal
of cross-correlation should eventually peak within ∼ 25◦

(the typical size of the clusters) signaling a superposition
of the data and map clusters. Once again, no signif-

icant difference arises when the data are corrected for
the GMF. Although the minimum of the probability can
change by up to a factor of a few, it does not move to-
wards δ ≃ 0◦, as it should be if the GMF were correctly
shifting the hot-spots. If the signal corresponds to ex-
tragalactic structures, we conclude that: (i) if UHECRs
are dominated by light nuclei, then there are significant
deflections by extragalactic magnetic fields. Indeed, al-
though the GMF may be not well reproduced by current
models, even changing within reasonable ranges the GMF
geometry and intensity no appreciable cross-correlation
at small angles appears. (ii) If there is a significant frac-
tion of heavy nuclei in the UHECR flux, results may be
also explained with a negligible role of extragalactic mag-
netic fields, attributing to GMF deflections the significant
(∼ 30◦–50◦) displacement between the observed clusters
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FIG. 7: Cross-correlation chance probability between the dif-
ferent LSS models and the data, with the solid lines represent-
ing the result uncorrected for the GMF. Upper set of curves
in each panel refer to the PH model while lower ones to the
SH model.

in the data and the real galaxy clusters.

IV. DISCUSSION AND CONCLUSION

The anisotropy pattern of the combined UHECRs data
(re-scaled energy E = 4 × 1019 eV in HiRes scale), al-
though compatible with isotropy at very large angular
scales, shows a peculiar medium scale clustering corre-
sponding to 6-7 spots of roughly 20◦-30◦ degrees of ex-
tension distributed uniformly in the sky. If confirmed,
this could be the first hint that UHECR astronomy may
be possible.

Yet, the interpretation of the signature is puzzling, es-
pecially in absence of a significant statistics at higher
energy and of chemical composition constraints. The
comparison between significant sets of data at different
energy cuts may reveal the importance of magnetic de-
flection effects. At the moment, we can only speculate on
the possible implications of the signal—assuming it is not
a statistical fluke—under some simplifying hypotheses.

One possibility is that these excesses may trace LSS
overdensities in the near universe (within the GZK-
sphere). The autocorrelation analyses reported in this
paper show that this interpretation is indeed favored in
particular if the effective horizon is smaller than the GZK
one for protons of the assumed energy. Both a significant
fraction of heavier nuclei and a significant role of extra-
galatic magnetic fields may cause this effect (the former
might be favored by recent Auger data [31].) Although
not statistically significant, this interpretation may be
supported by a weak hint of a broad minimum in the
cross correlation function (at the level of nominal chance
probability of 10%-15%) around 50◦ if a small horizon
(z <

∼ 0.02) is assumed. Both signatures are relatively ro-
bust with respect to deflections in typical GMF models,
although some marginal improvement or worsening may
arise for some choices of the GMF model and effective
rigidities. Of course, an interpretation of the data as due
to very few powerful and nearby sources in a strongly
magnetized environment is well possible [26, 27].

However, the hints for some structures in the data are
very exciting, and we urge an independent cross-check
with the nowadays large statistics collected by Auger. If
confirmed, together with the indication for the presence
of a GZK-like feature in the energy spectrum of HiRes
data [3], this likely implies that UHECR are dominated
by astrophysical sources (as opposed to exotic scenarios).
However, far from being the end of the UHECR saga, the
combined use of spectral information, chemical composi-
tion constraints, and anisotropy maps at different ener-
gies would offer the tools for the long-awaited hunt for
the UHECR accelerators.
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