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A discriminating probe of gravity at cosmological scales
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The standard cosmological model is based on general relativity and includes dark matter and
dark energy. An important prediction of this model is a fixed relationship between the gravitational
potentials responsible for gravitational lensing and the matter overdensity. Alternative theories of
gravity often make different predictions for this relationship. We propose a set of measurements
which can test the lensing/matter relationship, thereby distinguishing between dark energy/matter
models and models in which gravity differs from general relativity. Planned optical, infrared and
radio galaxy and lensing surveys will be able to measure EG, an observational quantity whose
expectation value is equal to the ratio of the Laplacian of the Newtonian potentials to the peculiar
velocity divergence, to percent accuracy. We show that this will easily separate alternatives such as
ΛCDM, DGP, TeVeS and f(R) gravity.

PACS numbers:

Introduction.— Predictions based on general relativ-
ity plus the Standard Model of particle physics are at
odds with a variety of independent astronomical obser-
vations on galactic and cosmological scales. This failure
has led to modifications in particle physics. By introduc-
ing dark matter and dark energy, cosmologists have been
able to account for a wide range of observations, from
the overall expansion of the universe to the large scale
structure of the early and late universe [1]. Alternatively,
attempts have been made to modify general relativity at
galactic [2] or cosmological scales [3, 4]. A fundamental
question then arises: Can the two sets of modifications

be distinguished from one another?

The answer is “No” if only the zero order expansion
of the universe is considered. By allowing the dark
energy equation of state wDE to be a free function,
the expansion history H(z) produced by any modified
gravity can be mimicked exactly. Fortunately, struc-
ture formation in modified gravities in general differs
[5, 6, 7, 8, 9, 10, 11, 12] from that in general relativ-
ity. The difference we focus on here is the relationship
between gravitational potentials responsible for gravita-
tional lensing and the matter overdensity. Lensing is
sensitive to ∇2(φ − ψ) along the line of sight where φ
and ψ are the two potentials in the perturbed Friedman-
Robertson-Walker metric: ds2 = (1 + 2ψ)dt2 − a2(1 +
2φ)dx2 and a is the scale factor. In standard general
relativity (GR), in the absence of anisotropic stresses,
φ = −ψ, so lensing is sensitive to ∇2φ. The Poisson
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equation algebraically relates ∇2φ to the fractional over-
density δ, so lensing is essentially determined by δ along
the line of sight. This is a prediction of the standard,
GR-based theory that is generally not obeyed by alter-
nate theories of gravity.

Testing this prediction is non-trivial. Astronomers of-
ten use the galaxy overdensity as a probe of the underly-
ing matter overdensity, but the two are not exactly equal.
Here we propose a test of this prediction which is rela-
tively insensitive to the problem of galaxy bias. The basic
idea is simple:

• Extract the matter overdensity at a given redshift
by measuring the velocity field. Matter conser-
vation relates velocities to the overdensities. The
measurement of the velocity field can be accom-
plished by studying the anisotropy of the galaxy
power spectrum in redshift space.

• Extract the lensing signal at this redshift by cross-
correlating these galaxies and lensing maps recon-
structed from background galaxies.

More quantitatively, the galaxy-velocity cross power
spectrum Pgθ ≡ −〈δg(k)θ(−k)〉 can be inferred from
redshift distortions in a galaxy distribution. Here, θ ≡
∇ · v/H(z) and v is the comoving peculiar velocity. In
the linear regime, matter conservation relates θ to δ by
θ = −δ̇/H = −βδ, where β ≡ d lnD/d lna and D is
the linear density growth factor. So, Pgθ = βPgδ , sat-
isfying the first goal above. Cross correlating the same
galaxies with lensing maps constructed from galaxies at
higher redshifts, P∇2(φ−ψ)g can be measured. The ra-
tio of these two cross-spectra therefore is a direct probe
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of ∇2(φ − ψ)/(βδ). It does not depend on galaxy bias
or on the initial matter fluctuations, at least in the lin-
ear regime. Modifications in gravity will in general leave
signatures in either β and/or the Poisson equation.

Galaxy-Velocity Cross-correlation.— A galaxy’s
peculiar motion shifts its apparent radial position from
xz to xsz = xz+vz/H(z) in redshift space, where vz is the
comoving radial peculiar velocity. The coherent velocity
component changes the galaxy number overdensity from
δg to δsg ≃ δg−∇zvz/H(z). The stochastic velocity com-
ponent mixes different scales and damps the power spec-
trum on small scales. The redshift space galaxy power
spectrum therefore has the general form

P sg (k) =
[

Pg(k) + 2u2Pgθ(k) + u4Pθ(k)
]

F

(

k2u2σ2
v

H2(z)

)

(1)

where u = k‖/k is the cosine of the angle of the k vector
with respect to radial direction; Pg, Pgθ , Pθ are the real
space galaxy power spectra of galaxies, galaxy-θ and θ,
respectively; σv is the 1D velocity dispersion; and F (x)
is a smoothing function, normalized to unity at x = 0,
determined by the velocity probability distribution. This
simple formula has passed tests in simulations on scales
where δ <∼ 1 [13]. The derivation of Eq. (1) is quite
general, so it should be applicable even when gravity is
modified.

The distinctive dependence of P sg on u allows for si-
multaneous determination of Pg, Pgθ and Pθ [14]. The
parameters we want to determine are the band powers of
Pgθ(k)

1 defined such that P (k) = Pα if kα ≤ k < kα+1,

where k1 < k2 < · · · < kα < · · · . We denote P
(1)
α

as the band power of Pgθ. For a ki in each k bin,
we have a measurement of P sg , which we denote as Pi.

The unbiased minimum variance estimator of P
(1)
α is

P̂ =
∑

WiPi, where Wi = Fi

2σ2

i

(λ1 + λ2u
2
i + λ3u

4
i ). Here,

Fi ≡ F (kuiσv/H), σ2
i is the variance of Pi and the three

Lagrange multipliers λα (α = 1, 2, 3) is determined by

λ = (0,
1

2
, 0) · A−1 ; Amn =

∑

i

u
2(m+n−2)
i

F 2
i

2σ2
i

. (2)

Galaxy-galaxy lensing.— Weak lensing is sensitive
to the convergence κ, the projected gravitational poten-
tial along the line of sight:

κ =
1

2

∫ χs

0

∇2(φ− ψ)W (χ, χs)dχ . (3)

1 The determination of k relies on the angular diameter distance
DA(z) and H(z). Since both quantities can be measured by
other methods with high accuracy, we will assume DA and H(z)
to be known. We further approximate σv = 300 km/s, since we
restrict our analysis to the linear regime where k2σ2

v/H2
≪ 1 and

F (k2u2σ2
v/H2) ≃ 1. The error caused by this approximation is

at the 1% level and negligible.

Here, W is the lensing kernel. For a flat universe, χ, χs
are the comoving angular diameter distance to the lens
and source, respectively. Eq. 3 is a pure geometric result
and can be applied to any modified gravity models where
photons follow null geodesics.

A standard method to recover the redshift information
is by the lensing-galaxy cross correlation. For galaxies in
the redshift range [z1, z2], the resulting cross correlation
power spectrum under the Limber’s approximation is

Cκg(l) =

(

4

∫ χ2

χ1

ng(χ)dχ

)−1

(4)

×

∫ χ2

χ1

W (χ, χs)ng(χ)P∇2(φ−ψ)g(
l

χ
, z)χ−2dχ

≃
W (χ̄, χs)

4l∆χ

∫ l/χ1

l/χ2

P∇2(φ−ψ)g(k, z̄)dk

=
∑

α

fα(l)P (2)
α .

Here, χ1,2 are the comoving angular diameter distance to
redshift z1,2 and χ̄ is the mean distance. The band power

P
(2)
α of P∇2(φ−ψ)g is defined at the same k range as P

(1)
α .

In practice, we measure the band power Cκg(l,∆l). The
weighting fα(l,∆l) is defined correspondingly. For each
l, only a fraction of α having fα(l,∆l) 6= 0 contribute.

A discriminating probe of gravity.— With the
above measurements, one can construct an estimator

ÊG =
Cκg(l,∆l)

3H2
0a

−1
∑

α fα(l,∆l)P
(1)
α

, (5)

whose expectation value is

〈ÊG〉 =

[

∇2(φ− ψ)

−3H2
0a

−1θ

]

k= l
χ̄
,z̄

=

[

∇2(φ− ψ)

3H2
0a

−1βδ

]

k= l
χ̄
,z̄

. (6)

The fractional error on ÊG is

〈∆E2
G〉

E2
G

≃
∆C2

C2
κg

+

∑

α f
2
α∆P

(1),2
α

(
∑

α fαP
(1)
α )2

, (7)

where ∆C2 = [C2
κg + (Cκ + CNκ )(Cg + CNg )]/(2l∆lfsky).

Here, Cκ, C
N
κ , Cg, C

N
g are the power spectra of weak

lensing convergence, weak lensing shot noise, galaxy and
galaxy shot noise, respectively, and fsky is the fractional
sky coverage. Errors on EG at any two adjacent bins are
correlated, since they always share some same k modes.
However, by requiring lα/χ1 = lα+1/χ2, where l1 < l2 <
· · · < lα < · · · and kα = lα/χ2, EG measurement at each
l bin only involves two k bins and thus only errors in
adjacent bins are correlated.

We choose spectroscopic surveys AS2, ADEPT and
SKA as targets of redshift distortion measurements, and
LSST and SKA as targets of lensing map reconstruction.
SKA lensing maps can be constructed through cosmic
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FIG. 1: EG as a smoking gun of gravity. We only show those
k modes well in the linear regime (∆2

m(k, z) ≤ 0.2) in four
redshift bins. For clarity, we shift the error bars of AS2+LSST
and ADEPT+LSST slightly rightward. Irregularities in the
error-bars are caused by irregularities in the available discrete
k modes of redshift distortion. Dotted lines are the results
of a flat DGP model with Ω0 = 0.2. Dashed lines are for
f(R) = −λ1H

2
0 exp(−R/λ2H

2
0 ) with λ2 = 100. They have

roughly the same expansion history as the fiducial cosmology
at z < 2. Solid lines with wiggles are for TeVeS with KB =
0.08, 0.09, 0.1, where the lines with most significant wiggles
have KB = 0.1.

magnification utilizing its unique flux dependence, with
S/N comparable to that of LSST through cosmic shear
[15]. Survey specifications are summarized in TABLE I.
The fiducial cosmology adopted is the ΛCDM cosmology,
with the WMAP best fit parameters Ω0 = 0.26,ΩΛ =
1 − Ω0, h = 0.72, σ8 = 0.77 and ns = 1. The result
is shown in figure 1. We find that, errors in Cκg mea-
surements are in general much larger than errors in Pgθ
measurements. At k < 0.1h/Mpc, cosmic variance in Cκg
measurements in general dominates the EG error budget,
resulting in decreasing error-bars toward larger k. This
makes fsky and the lensing source redshifts the two most
relevant survey parameters for EG error estimation.

We restrict our discussion to sub-horizon scale pertur-
bations and express equations hereafter in the Fourier
form. Four independent linear equations are required
to solve for four perturbation variables δ, θ, ψ and φ.
The mass-energy conservation provides two: δ̇ +Hθ = 0
and Ḣθ + 2H2θ − k2ψ/a2 = 0. For at least ΛCDM,
quintessence-CDM, DGP and f(R) gravity, the other two

TABLE I: Summary of target surveys.

redshift area/deg2 Ngal band

AS2a z< 0.8 10,000 ∼ 1.5 × 106 optical
ADEPTb 1 < z < 2 28,700 ∼ 108 infrared
SKAc z <

∼ 5 22, 000 (assumed) several×109 radio

LSSTd z <
∼ 3.5 10,000 several×109 optical

aPrivate communication with Daniel Eisenstein
bhttp://www7.nationalacademies.org/ssb/BE Nov 2006 bennett.pdf
chttp://www.skatelescope.org/
dhttp://www.lsst.org

takes the general form

φ = −η(k, a)ψ ,

k2(φ− ψ) = 3H2
0Ω0a

−1δGeff(k, a) . (8)

Here Ω0 is the cosmological matter density in unit of the
critical density ρc ≡ 3H2

0/8πG. MOND has extra scalar
and vector perturbations and does not follow the general
form of Eq. 8 [6, 7].

(1) ΛCDM: η = 1 and Geff = 1. Dynamical dark
energy will have large-scale fluctuations [16], but, for
models with large sound speed and negligible anisotropic
stress, such as quintessence, these are negligible at sub-
horizon scales and Eq. 8 still holds.

(2) Flat DGP: η = [1− 1/3βDGP]/[1 + 1/3βDGP] and
Geff = 1 [9], where βDGP = 1 − 2rcH(1 + Ḣ/3H2) < 0
and rc = H0/(1−Ω0). Ω0 differs from that of ΛCDM, in
order to mimic H(z) of ΛCDM.

(3) f(R) gravity: in the sub-horizon limit, Geff =
(1+fR)−1 [11] and η = 1 [12], with fR ≡ df/dR|B where
B denotes the FRW background. This falls naturally out
of a conformal transformation of the expression for EG
in the Einstein frame into the Jordan frame, noting that
Einstein frame scalar field fluctuations are negligible on
subhorizon scales [12]. We numerically solve the full per-
turbation equations in the Einstein frame since it is com-
putationally simpler [12] and then conformally transform
to the Jordan frame, which we choose as the physical
frame, evaluating β such that EG = Ω0/(1+fR)β. In the
limit that fR → 0, e.g. for f(R) ∼ λ1H

2
0 exp(−R/λ2H

2
0 )

[11] with λ1 ≪ λ2, the evolution is observationally equiv-
alent to ΛCDM. For modes that entered the horizon prior
to matter-radiation equality, as we consider here, β, and
therefore EG, is scale invariant for IR modifications to
gravity, with fR > 0.2 The scale independence of D and
β also holds in ΛCDM, Quintessence-CDM, DGP. An
observed scale-independent deviation in EG from ΛCDM
could signify a special class of modified gravity, as shown
in Fig. 1.

2 Scales larger than the horizon at matter-radiation equality are
suppressed [12] and, if measurable, would have a scale dependent
increase in the value of EG in comparison to the small scale value.
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(4) TeVeS/MOND. Besides the gravitational met-
ric, TeVeS [2] contains a scalar and a vector field. These
new fields act as sources for the gravitational potential
φ in the modified Poisson equation and can change the
evolution of cosmological perturbations with respect to
standard gravity [6, 7]. We considered a TeVeS model
with Ωb = 0.05, Ων = 0.17, ΩΛ = 0.78 and we adopted a
choice of the TeVeS parameters that produces a signifi-
cant enhancement of the growth factor. The TeVeS EG
is significantly different from the standard EG (Fig. 1).3

It exhibits scale dependence with accompanying baryons
acoustic wiggles. Both features are due to the vector
field fluctuations, which play a significant role in struc-
ture formation [7]. These fluctuations decrease toward
small scales and cause the scale dependency of EG. We
also checked that they affect the final shape of the acous-
tic oscillations of the other components significantly. As
a result, oscillations in φ, ψ and δ do not cancel out per-
fectly in TeVeS when we take the ratio, thus producing
the wiggles in EG.

For the four gravity models investigated, differences
in EG are much larger than observational statistical un-
certainties. Planned surveys are promising to detect per-
cent level deviation from GR and should distinguish these
modified gravity models unambiguously.

At large scales, gravity is the only force determining
the acceleration of galaxies and dark matter particles. So
we assumed no galaxy velocity bias. As statistical errors
in EG measurements reach the 1% level (Fig. 1), several
other systematics may become non-negligible. One is the
accuracy of the redshift distortion formula (Eq. 1), which
may be problematic for those modes with large u, even at
very linear scales [13]. A remedy is to exclude them when
extracting Pgθ, at the expense of statistical accuracy. As
discussed before, accuracy of EG measurement is dom-
inated by accuracy of P∇2(φ−ψ)g measurements and is
thus less affected. A less severe one is the nonlinear evo-
lution, which becomes non-negligible at ∆2

m
>
∼ 0.1. In

general relativity, nonlinear corrections to density and ve-
locity differ (Fig. 12, [17]). A direct consequence is that
EG develops a dependence on the matter power spec-
trum. Similar effects in modified gravity models are ex-
pected. This can be corrected by high order perturbation
calculations, which should work well where ∆2

m
<
∼ 0.2.

We thank Daniel Eisenstein, Bhuvnesh Jain and

3 To simplify the numerical treatment of the TeVeS perturbations
equations while retaining a good qualitative description of all the
significant physical effects at the same time, we introduced sev-
eral approximations. Namely we assumed instantaneous recom-
bination and employed the tight coupling approximation between
baryons and photons at all scales before decoupling; moreover
we evolved perturbations in the massive neutrino component in
a simplified way by switching off neutrinos perturbations when
they were below the free steaming scale and treating them as a
fluid above the free streaming scale.
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