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We present a measurement of σ(pp̄ → W ) × B(W → eν) at
√

s = 1.96 TeV, using electrons
identified in the forward region (1.2 < |η| <2.8) of the CDF II detector. The data correspond to an
integrated luminosity of 223 pb−1. We measure σ × B = 2796 ± 13(stat)+95

−90(syst)±162 (lum) pb.
Combining this result with a previous CDF measurement obtained using electrons in the central
region (|η| <∼ 1), we present the first measurement of the ratio of central-electron to forward-
electron W partial cross sections Rexp = 0.925±0.006(stat)±0.032(syst), consistent with theoretical
predictions using CTEQ and MRST parton distribution functions.

PACS numbers: 13.38.Be, 13.85.Qk, 12.38.Qk, 14.70.Fm
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FIG. 1: Acceptance, obtained from simulation, as a func-
tion of the W boson rapidity. “Forward Region” refers to
this measurement (electron pseudorapidity 1.2 < |η| < 2.8)
while “Central Region” refers to the analysis reported in [6]
(|η| <1). The two analyses sample different regions of yW .
Areas are arbitrarily normalized.

The cross section for W boson production in pp̄
collisions has been computed at next-to-leading order
(NLO) [1] and next-to-next-to-leading order (NNLO) [2]
in the strong coupling constant αs. Experimental re-
sults can be used to test the calculation of higher order
QCD contributions and the parton distribution functions
(PDFs) of the proton.

The PDFs describe the momentum distributions of
the elementary constituents of the colliding hadrons, and
their uncertainties affect many precision measurements
at both the Tevatron and the LHC [3]. A better knowl-
edge of the PDF distributions can reduce the uncertain-
ties on the measurements of the masses and production
cross sections of the W boson and the top quark. More-
over, accurate PDF modeling of the pseudorapidity η [4]
of the lepton from W boson decay is required for the use
of W production as a luminosity monitor, an attractive
option in the high energy regime of the LHC [5].

The momentum fractions carried by the partons in col-
liding hadrons determine the momentum distribution of
the W boson. The W boson momentum parallel to the
proton beam direction cannot be measured in pp̄ colli-
sions, since the longitudinal momentum of the neutrino
from the W decay is not measured. However, indepen-
dent measurements of the W cross section with central
and forward leptons provide sensitivity to the W rapid-
ity yW (Fig. 1), and are a novel way to constrain the
PDFs. We present the first attempt to constrain PDFs
using the ratio of W boson cross sections measured with
central and forward electrons. The largest experimental
uncertainty, due to luminosity, cancels in this ratio. We
compare our measurement to the theoretical predictions
obtained with two of the most commonly used PDF sets.

The W cross section measurement presented in this
Letter is obtained using data (corresponding to 223 ± 13
pb−1 of integrated luminosity) collected by the CDF II
detector during Run II of the Fermilab Tevatron at

√
s

= 1.96 TeV. W bosons are identified by their decays to
electrons in the forward region (1.2 < |η| < 2.8), from

which we obtain the inclusive cross section times branch-
ing fraction σ(pp̄ → W ) × B(W → eν).

Previous Run II results on W production, based on
electrons with |η| <∼ 1 [7], were reported by both the
CDF and DØ Collaborations [6, 8]. In Run I, at

√
s =

1.8 TeV, DØ reported a measurement based on electrons
at |η| < 1.1 and 1.5 < |η| < 2.5 [9], without separating
the central from the forward regions.

The CDF II detector is described in detail else-
where [10]. An overview of the components relevant to
this measurement follows. Tracking detectors inside a
1.4 T solenoidal magnetic field are used to reconstruct
the charged particles’ trajectories (tracks) and measure
their momenta. The silicon tracking system (SVX) [11]
provides precise measurement points from up to 8 ra-
dial layers of strip sensors spanning 1.3 < r < 28 cm
and covering ± 90 cm along the beam line. Surrounding
the SVX is a 3.1 m long open-cell drift chamber (COT),
which provides track measurements (hits) in 96 radial
layers in the range 43.4 < r < 132.3 cm [12]. The COT
allows full track reconstruction in the range |η| < 1. The
SVX extends the track reconstruction capability up to
|η| ≃ 2.8.

Outside the tracking system, electromagnetic (EM)
and hadronic (HAD) calorimeters measure the combined
energy of showering particles [13]. Both central and for-
ward EM calorimeters are instrumented with finely seg-
mented detectors which measure the shower position at
a longitudinal depth close to the typical location of the
EM shower maximum. In the forward region the shower
position is measured by two layers of 5 mm wide scintil-
lating strips (PES) [14] with a stereo angle of 45 degrees.
The first layer of the forward EM calorimeter is used as
a preshower detector [13].

Gas Cherenkov counters measure the average number
of pp̄ inelastic collisions per bunch crossing and are used
to determine the luminosity [15], with a total uncertainty
of 5.8% [16].

The trigger system has three levels. The first two are
based on hardware selection, while the third runs a sim-
plified version of the offline reconstruction code on a farm
of parallel processors [17, 18]. Data used in this analy-
sis are selected by a trigger requiring missing transverse
energy 6ET > 15 GeV and an EM cluster in the forward
calorimeter with ET > 20 GeV.

The offline selection of candidate W decays begins by
identifying a high-pT electron on the basis of its EM
shower. We require an energy cluster with ET > 20 GeV
in the fiducial region of the forward calorimeter at 1.2
< |η| < 2.8. The ratio of hadronic to electromagnetic
energy deposition must be small: EHAD/EEM < 0.05.
The EM cluster is required to be isolated: the energy de-
posited in a cone of radius 0.4 in the η − φ plane around
the EM cluster, excluding the EM cluster energy, must
be less than 10% of the energy of the EM cluster itself.
The neutrino from the W decay is identified by requiring
6ET > 25 GeV.

To reduce the large (mostly multi-jet) remaining back-
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ground, we compare the location and the energy deposi-
tion of the EM clusters in the calorimeter to projections
of three-dimensional tracks independently reconstructed
by the tracking detectors. As the full COT coverage is
limited to the region |η| < 1 and its efficiency quickly falls
off beyond |η| = 1, our sample is dominated by tracks
seeded by the SVX [19]. Typically, tracks in the region
1.2 < |η| < 1.6 have COT hit information, while those at
larger |η| do not.

The candidate events are required to have at least one
track that extrapolates to the EM cluster shower centroid
in the PES detector within 3 cm in the x and y coordi-
nates. The selection is optimized by using a Z → ee
data sample where one electron is detected in the cen-
tral calorimeter [24] and the other one in the forward
calorimeter (Z → ee control sample). The probability for
matching a track to an EM cluster detected in the for-
ward region in Z → ee events is 49.2 ± 0.5 %. To ensure
full containment for the energy and momentum measure-
ments, the z coordinate of the track extrapolated to the
point of closest approach to the beam, must be within 60
cm from the nominal detector center. Finally, electron
candidates must satisfy E/p < 2. After all requirements
the sample contains 48,165 events.

The kinematic and geometric acceptance (A) for W →
eν events is determined using the pythia event gener-
ator [20] and a full simulation of the CDF II detector
based on the geant simulation package [21]. We ex-
tract A(yW ), the acceptance as a function of the W
rapidity, from the simulation, and convolve it with a
NNLO calculation of dσ/dyW [22], which depends on
the PDFs. We compute the central value of the accep-
tance using the MRST 2001 next-to-next-to-leading-log
(NNLL) PDF set [23] (in analogy with the W cross sec-
tion measurement in the central region [24]) and find A
= 0.2567 ± 0.0002. Two different sets of next-to-leading-
log (NLL) PDF sets with uncertainties (MRST01E and
CTEQ6.1 [25]) are available. To estimate the uncertainty
due to the choice of the PDFs we convolve A(yW ) with
the NLO dσ/dyW [24] for each PDF central value and
±1σ eigenvalue. Using the CTEQ6.1 eigenvector ba-
sis set, we obtain a contribution to the acceptance un-
certainty of (+1.7,-1.3)%. This value is roughly twice
that obtained using the MRST01E PDF set. We use
the difference between the NNLO and NLO dσ/dyW cal-
culations to estimate the acceptance uncertainty due to
higher-order QCD corrections (± 0.47%).

The other uncertainties on the fraction of events pass-
ing our selection are due to the following: the modeling
of detector response to hadrons and electrons, the pri-
mary vertex reconstruction, and the modeling of the pT

of the W boson. These are described below.

The vector sum of the energy of hadrons recoiling
against the W boson enters the calculation of 6ET . We
tune the detector response to these hadrons by apply-
ing scale factors and offsets to the components of their
summed energy parallel and perpendicular to the lepton
momentum vector. We obtain a systematic uncertainty

of ± 0.35% on the acceptance by taking a variation cor-
responding to three standard deviations in the tuning
parameters.

The energy scale and resolution modeling of electrons
are calibrated with Z → ee events and result in an un-
certainty of ± 0.24%. The uncertainty on the scale as a
function of ET is determined using the E/p distribution.
The simulation models the ET -dependence well, and we
include a ± 0.26% uncertainty on the acceptance due to
the statistical limitations of the constraint.

We vary the amount of material that an electron passes
through by ±1/3 of a radiation length, based on mea-
surements of electron energy deposition in the preshower
detector in the forward calorimeter. The resulting con-
tribution to the acceptance uncertainty is ± 0.71%.

Differences in primary vertex reconstruction efficiency
between data and simulation contribute less than 0.1% to
the acceptance uncertainty. Finally, we vary the param-
eters of the pythia model which influence the W boson
pT distribution [24] within the constraints of a CDF Run
I Z boson measurement, and find the corresponding ac-
ceptance uncertainty to be less than 0.1%.

Electron identification, track matching, and E/p ef-
ficiencies are measured directly from data, using the
Z → ee control sample. The track matching efficiency
is corrected, using the full simulation, to account for the
small kinematic differences of the Z electrons with re-
spect to those from W decay. We also take into account
the η distribution of electrons coming from W bosons.
These efficiency measurements contribute the largest ex-
perimental uncertainty to the cross section measurement,
and are limited by the Z statistics and the understanding
of the background in the Z → ee sample. The relative
uncertainties on the cross section measurement from elec-
tron identification, track matching, and E/p are 2.0%,
1.1%, and 1.0%, respectively.

The trigger efficiency is also measured from data, using
independent triggers, and results in a relative uncertainty
of 0.4%. The overall efficiency is reported in Table I.

Backgrounds fall into two categories: multi-jet events,
where one jet mimics an isolated high-pT electron and
another jet is mismeasured in the calorimeters causing
6ET ; and electroweak backgrounds, Z → ee and W → τν.

The multi-jet background is estimated directly from
data. Multi-jet events are characterized by significant
energy in the cone around the electron and small 6ET [24].
We assume that these two variables are not correlated
and estimate the number of background events in the
signal region using control regions defined by either low
6ET or high energy in the isolation cone. We vary the
cuts on 6ET and isolation that define the control region
and obtain a relative systematic uncertainty of 50% on
the multi-jet background estimate of 1.8%. We check this
calculation by determining the fraction of jets that pass
our electron criteria and applying this fraction to multi-
jet events with large 6ET . We obtain good agreement.

The electroweak backgrounds are estimated using sim-
ulation. We separately calculate the fraction of Z → ee
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and W → τν events passing our selection. These frac-
tions are then normalized to data using the theoretical
value for the ratio of σ(Z)/σ(W ) [2] and assuming lepton
universality for the W → τν decays. Background frac-
tions from these processes are estimated to be 2.2% and
0.9% for W → τν and Z → ee respectively.

We show the MT [4] distribution for both the signal
events and background contributions in Fig. 2. The sum
of signal simulation and background matches the data
well.

The cross section measurement depends on the num-
ber of events passing the selection, the luminosity of the
sample, the acceptance, efficiencies and backgrounds [24]
(see Table I). We measure the inclusive cross section to

TABLE I: Number of selected events, geometric and kine-
matic acceptance, overall efficiency and expected number of
background events.

W → eν candidates 48165

Background multi-jet 846 ± 57 (stat) ± 423 (syst)

Background Z → ee 417 ± 5 (stat)

Background W → τν 1070 ± 12 (stat)

Acceptance A 0.2567 ± 0.0002 (stat) +0.0051
−0.0042 (syst)

Efficiency ǫTOT 0.2863 ± 0.0042 (stat) +0.0060
−0.0061 (syst)

be σ × B = 2796 ± 13(stat)+95
−90(syst)±162(lum) pb, con-

sistent with previous CDF results obtained with leptons
detected in the central region and with theoretical pre-
dictions [24].
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FIG. 2: MT distribution for W → eν candidates (circles).
The histogram is the sum of the expected background and
the predicted (from simulation) signal spectrum.

The correct PDF must give the same total W cross
section for central and forward electrons, within statis-
tical and systematic uncertainties. It follows that the

ratio of partial cross sections σp = σ×B×A, where A is
the kinematic and geometric acceptance, is equal to the
true ratio of acceptances for the two regions. This ex-
perimental ratio can then be compared with acceptance
ratios predicted by any set of PDFs. The cross section
based on central electrons, using the same PDF as used
above for the forward electron measurement [24], is σ×B
= 2771 ±14(stat)±47(syst) pb, after removing uncertain-
ties due to PDFs, luminosity, renormalization scale and
NLO/NNLO effects. The resulting σp, measured for re-
constructed electrons with ET > 25 GeV, |η| <∼ 1 [7] and
6ET > 25 GeV is σcen

p = 664 ±3(stat)±11(syst) pb. In
the forward region σp for ET > 20 GeV, 1.2 < |η| < 2.8,
and 6ET > 25 GeV is σfor

p = 718 ±3(stat)±21(syst). All
systematic uncertainties except those due to PDF and to
NLO/NNLO effects, are assigned to σp. Most of the lumi-
nosity uncertainty for the overlapping data-taking period
cancels in the ratio, and we assign a 1% systematic due to
time-dependent luminosity uncertainty. All other uncer-
tainties are uncorrelated. The experimental ratio is Rexp

= σcen
p / σfor

p = 0.925 ±0.006(stat)±0.032 (syst). We
compute also the central-to-forward ratio of acceptances
Rth, obtained with two different PDF sets (CTEQ6.1
and MRST01E) at NLO level. For CTEQ6.1 the ra-
tio is Rth = 0.924+0.023

−0.030(PDF) ± 0.004 (NLO/NNLO)

and for MRST01E Rth = 0.941+0.010
−0.012(PDF) ± 0.004

(NLO/NNLO), where “PDF” indicates the uncertainty
obtained by varying the eigenvalues relative to a given
PDF set. We use the prescription in [24] to compute
these uncertainties.
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FIG. 3: The ratio of central to forward electron acceptances,
as a function of the ±1σ eigenvalue of CTEQ6.1 (top) and
MRST01E (bottom) PDF sets. Dashed lines separate eigen-
vectors.
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Figure 3 shows the experimental ratio of partial cross
sections (solid triangles) compared to the CTEQ6.1 (up-
per plot) and MRST01E (lower plot) acceptance ratios
(solid circle and square). The data measurement is in-
dependent of PDFs. The ratios of acceptances are also
computed varying each PDF eigenvalue by ±1σ (giving
40 values for CTEQ6.1 and 30 for MRST01E) and are
shown as open circles and squares. Data and both PDF
sets agree within uncertainties, though the central val-
ues for MRST01E and CTEQ6.1 are slightly shifted with
respect to each other. The CTEQ6.1 has a larger uncer-
tainty and some of the individual ±1σ eigenvalues show
a sizeable deviation from the central value. This is no-
tably the case for eigenvector 1 (PDF eigenvalues 1 and
2 in Fig. 3), in which the dominant contribution is due to
the u-valence quark distribution, and eigenvector 3 (PDF
eigenvalues 5 and 6), in which the most important contri-
bution is due to the d-valence quark distribution. These
eigenvectors generally impact W boson measurements at
the Tevatron, in particular the W mass measurement.
Other large variations are visible for PDF eigenvalues 9
and 10 (eigenvector 5) and 19 and 20 (eigenvector 10),
in which the dominant contribution is due to sea quarks
and gluons. These eigenvectors are important for the W
rapidity distribution at the LHC.

Recently, a calculation of Rth at NNLO became avail-
able. The calculation takes into account the spin correla-
tion between electron and neutrino, and the experimental
selection of the analysis described in this paper. Using
the MRST PDF at the appropriate order in αs, the au-

thors find Rth = 0.9266±0.0019, in good agreement with
our measurement [26].

In summary, we have measured the W inclusive pro-
duction cross section with electrons identified at large
pseudorapidities (1.2 < |η| < 2.8) to be σ × B =
2796 ± 13(stat)+95

−90(syst)±162(lum) pb. We have mea-
sured a partial cross section using forward electrons
σ × B × A = 718 ±3(stat)±21(syst) pb and the ratio of
central-electron to forward-electron partial cross sections
Rexp = 0.925± 0.006(stat)±0.032(syst).
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