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Abstract 
 In the course of Tevatron Run II (2001-2007) 

improvements of antiproton production have been one of 
major contributors to collider luminosity growth. 
Commissioning of Recycler ring in 2004 and making 
electron cooling operational in 2005 freed Antiproton 
source from the necessity to keep large stacks in the 
Accumulator and allowed us to boost the antiproton 
production. That resulted in doubling average antiproton 
production during last two years. The paper discusses 
improvements and upgrades of the Antiproton source 
during last two years and future developments aimed at 
further stacking improvements. 

INTRODUCTION 
Improvements in the Tevatron resulted in that the 

fraction of antiprotons burned in collisions achieved 
~40% in 2004. Since that time this number was not 
changed, and its further increase is limited by intrabeam 
scattering (IBS) in the proton and antiproton beams. 
Further growth of the collider luminosity would not be 
possible without growth of antiproton production. For 
past two years increased antiproton production has been 
our highest priority in Tevatron Run II. Figure 1 
demonstrates the results of these efforts culminating in 
~1.7 times antiproton production growth in FY’07 alone. 
Further growth is expected in FY’08.  

The following items contributed to this growth of 
antiproton production. First, there has been an 
improvement of the proton source. A reduction of 
longitudinal emittance in the Booster allowed us to 
optimize slip-stacking in the Main injector [1], which 
resulted in an increase in the number of protons on the 
antiproton production target from 6.5·1012 to 8·1012 per 
pulse. Second, an optics correction in the transfer line 
from the Main Injector to the antiproton production target 
allowed us to reduce the rms beam size on the target to 
~200 μm. The resulting increased target depletion rate 
limits further reduction of the beam size.  Third, 
stabilization of the proton beam position on the antiproton 
production target resulted in more stable operation and 
~5% growth in the average antiproton production (it did 
not change the peak production). Fourth, an upgrade of 
the lithium lens allowed us to increase its gradient from 
60 to 75 kG/cm, which resulted in ~10% growth in the 
antiproton yield. Fifth, optics correction in the Debuncher 
[2] resulted in an increase in Debuncher acceptance from 
30/25 to 35/34 mm mrad, correspondingly for horizontal 
and vertical degrees of freedom. This resulted in ~10% 
improvement of the antiproton yield.  

After the above upgrades were finished by the end of 
FY’06 the remaining major limitation to the stacking rate 

was the Stacktail system. Therefore its improvement 
became the highest priority item for the last year. This 
project combines a few separate improvements that are 
described in detail below. The implementation of these 
improvements resulted in a growth of peak stacking rate 
from 20·1010 to 23.2·1010 hour-1 in FY’07 and positioned 
us well for further improvements of stacking rate. Figure 
2 shows how the dependence of stacking rate on stack 
size has changed during the course of Run II. As one can 
see, the stacking rate drops fast with the stack size. Too 
minimize this harmful effect the transfer time from 
Accumulator to MI injector was decreased from ~50 to 9 
min. That allowed us to reduce the maximum stack size to 
~50·1010 and greatly decrease the difference between the 
peak and average stacking rates. This resulted in the best 
average weekly stacking rate of 16.5·1010 hour-1, which is 
only ~28% below the peak stacking rate. This number 
looks quite impressive if one takes into account that it 
also includes all interruptions to the stacking.  

 
Figure 1: Weekly antiproton production rate during Run II 
(2001-2007). 

 
Figure 2: Dependence of antiproton production rate (units 
of 1010 hour-1) on stack size (units of 1010) during Run II. 
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The upgrade of the Stacktail system [3] has also 
included a few other systems which are logically 
connected to Stacktail operation. It has consisted of a few 
steps. First, we optimized tuning of the existing system. 
This included a large increase of the gain for 4-8 GHz 
longitudinal core cooling system (February 2006). There 
was also a polarity flip for the Stacktail amplifier 
(October 2006). That corrected the phase intercept and, 
consequently, increased the bandwidth. Second, we 
corrected phase and magnitude of the system gain by 
installation an equalizer [4, 5]. An equalizer prototype 
was installed in March of 2007 and the final equalizer was 
installed in June 2007. The equalizer increased the 
bandwidth of the Stacktail, which resulted in faster 
stacking but also caused stronger transverse and 
longitudinal heating of the core. Third, the transverse 
heating was mitigated by an Accumulator optics 
correction [6]. That increased the slip factor and resulted 
in less heating (see below). If unaddressed the slip factor 
increase would also result in a larger phase variation of 
the gain on the way from the deposition orbit to the core 
orbit. To reduce this phase variation we moved the 
pickups of legs 2 and 3 closer to the leg 1 pickups and 
began using leg 3 pickups1. Fourth, to mitigate the 
longitudinal heating we replaced one of three Stacktail 
BAW (bulk acoustic wave) notch filters by the 
superconducting notch filter, and we will install the 
equalizer for the longitudinal 4-8 GHz core cooling 
system by the end of the 2007 shutdown (October 2007).  

STACKTAIL MODEL 
Improvements of the stacktail system would not be 

possible without its detailed model. The model is based 
on the beam measurements [4] and includes all the 
important features of the system.  

Evolution of the beam longitudinal distribution is 
described by the Fokker-Planck equation [6]:  
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describes the diffusion due to the beam noise, f0 is the 
revolution frequency, ( )nxfn ηπω −= 12 0 , η is the slip 
factor, T2 is the pickup-to-kicker travel time, η2 is the 
partial pickup-to-kicker slip factor, and ε(ω) is the beam 
dielectric permeability. The Stacktail system has a 
sufficiently large signal-to-noise ratio allowing us to 
neglect diffusion due to noise of electronics.  
                                                           
1 Only Legs 1 and 2 were used before this modification 
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Figure 3: Dependence of Stacktail parameters on the 
revolution frequency; top: red line – cooling force, blue 
line – phase of the cooling force; bottom: red line – 
effective bandwidth, blue line – xd, black line – maximum 
flux computed using Eq. (7).  

The total gain of the system is combined from the gains 
of three pickup systems (legs 1, 2 &3) belonging to the 
Stacktail system and two core systems (2-4 GHz and 4-8 
GHz). Each leg is centered on its own momentum, and the 
gains and delays for each leg are independently 
controlled.  The block diagram of the Stacktail system is 
presented in Figure 2 of Ref. [4]. The corresponding total 
gain can be presented in the following form  
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Here terms in the parenthesis describe the effect of notch 
filters, Kk(ω) and Kxx(ω) are the electronics gains, and 
Gk(…)and Gxx(…) are the space gains of Stacktail and 
core systems, correspondingly. The space gain of each leg 
is parameterized as following: 
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where hk and wk are the effective gaps and widths of 
pickups, and xk are the positions of pickup centers. Each 
of the core cooling systems consists of two pickups with 
design similar to the stacktail pickups. These pickups are 
located on the different sides of the core orbit and are 
wired in difference mode. Their space gains are presented 
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as difference of two terms. Each term is given by Eq. (5) 
but the terms have opposite sign offsets relative to the 
core orbit. Table 1 presents the parameters for all pickups. 
Parameter A presents relative gains of different pickups at 
their maximum sensitivities. In normal operating 
conditions the ratios for the Stacktail legs are fixed while 
the core cooling gains are changed with beam current.  

Table 1: Parameters of Stacktail pickups 
 X 

[cm] 
W 

[cm] 
H 

[cm] 
A 

Leg 1 0.97 3 3.2 1 
Leg 2 -0.29 3 3 0.34 
Leg 3 -2 3 3 0.023 
Core 2-4 GHz -3.45/-8.42 2 2.7 2·10-3 
Core 2-4 GHz -5.06/-6.58 0.76 3.2 1.6·10-3 
Eq. (5) describes well the beam based measurements in 

the entire stacktail region (see Figures 5 and 6 in Ref. [4]). 
The only exception is the Leg 1 response on the core 
orbit, where the Leg 1 pickup sensitivity at the high 
frequency end is ~2 times higher than predictions of Eq. 
(5). Taking into account that the Leg 1 sensitivity at the 
core orbit is ~50 dB smaller than at its center, and that it 
contributes to the gain at the core orbit less than other two 
legs, this complication was neglected in the model.  

As was proved in Ref. [7] the notch filter terms have to 
be outside the integral in the dielectric permeability 
calculation. This results in:  
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The system optimization has been based on a static 
solution of Eq. (1) in Van deer Myer approximation. That 
results in the maximum flux: 
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is the effective bandwidth, and xd(x)=F(dF/dx)-1 is the 
inverse rate of the relative gain change. Parameters of the 
system were adjusted to maximize the total flux with an 
approximately constant xd(x) in the central part of the 
Stacktail, which for a given flux maximizes the gain 
difference between the deposition and core orbits. Figure 
3 presents the results of calculations with this static model 
after all upgrades. One can see that the cooling force 
achieves its maximum at the deposition orbit and then 
exponentially decays in direction of the core orbit with 
p xd ≈ 9 MeV. It approaches zero at the core due to notch 
filters which minimize heating of the core by Stacktail. 

Because the addends in Eq. (2) for positive and negative n 
are complex conjugates of one other, F(x) is a real 
function. To compute the phase of the cooling force, φ, we 
compute the sum in Eq. (2) for positive n only and denote 
the result as Fp; then F = 2Re(Fp) and exp(iφ) = Fp / |Fp|. 
The effective bandwidth is changing through the Stacktail 
due to the notch filters. It starts at ~2.4 GHz at the 
deposition orbit, slightly decreases and then goes up to ~4 
GHz in at the core where the 4-8 GHz core cooling 
system dominates. The static model predicts maximum 
stacking rate of ~30·1010 hour-1.  
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Figure 4: Results of stacking simulations for the system 
after all upgrades; 2·108 antiprotons are injected every 2.4 
s; red line – distribution function after injection of the first 
antiproton pulse, other lines present distributions just 
before injection of pulses with numbers:  2, 4, 11, 31, 101, 
301, 1001, 2001, 3001.  

After system parameters were optimized Eq. (1) was 
solved numerically. The results of the calculations are 
presented in Figure 4. One can see that at the beginning 
the Stacktail pushes particles to the core. Then the core 
starts to be formed after ~20 min (core size ~10·1010); and 
finally the core becomes too large and back-streaming 
starts at the core size of ~25·1010 antiprotons (1 hour after 
stacking start). The simulations predict the same stacking 
rate of ~30·1010 hour-1 as the static model described 
above. Nevertheless, in addition to the limitation of Eq. 
(7), there appears to be another effect which can limit the 
stacking rate. It is the deposition orbit clearing requiring 
the Stacktail to remove antiprotons from the deposition 
area before the next injection happens. As one can see 
from the stack evolution the deposition orbit clearing and 
the stacktail throughput of Eq. (7) are well balanced for 
the parameters of the Accumulator Stacktail system. 

To make an estimate of the deposition orbit clearing we 
ignore the dependence of the cooling force on momentum 
and assume that the gain is equal to zero outside of the 
band [f1, f2] while it is set to its maximum value (limited 
by the beam stability) inside the band. For beam with a 
Gaussian distribution the maximum gain is: 
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,011.9,/)( 2 ≈= ssn CNnCG ησω   (9) 
where σ is the rms relative momentum spread. 
Substitution of Eq. (9) into Eq. (2) results in: 
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Requiring the distribution to be moved by distance Cσσ 
(Cs ≈ 2.5) during one stacking cycle (F ΔT = Cσσ ) one 
finally obtains a stacking rate estimate from the point of 
view of deposition orbit clearing: 
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This estimate yields ~5 times larger result than the 
numerical solution described above because the 
distribution widening due to diffusion and the cooling 
force drop at the distribution edges (3 times at 2.5σ) were 
neglected. Eq. (11) yields that if the stacking rate is 
limited by the deposition orbit clearing it can be mitigated 
by an increase of σ. Nevertheless this requires larger 
power which is not always available. Taking into account 
that in the case of Accumulator the fluxes of Eqs. (7) and 
(11) are well balanced; that both of them are proportional 
to the slip factor; that the operation of stacktail system is 
power limited; and that the stacking rate increase by the 
slip factor increase does not change the stacktail power 
we increased η by 15% from 0.0131 to 0.015 [6]. Further 
increase is limited by the band overlap and by variation of 
the cooling force phase through the stacktail region. 

Before the equalizer installation the model predicted a 
peak stacking rate of ~22·1010 hour-1, which is close to the 
experimental value.  Nevertheless after the equalizer 
installation the stacking rate grew to only ~24·1010 hour-1 
instead of the expected ~30·1010 hour-1. The stacking rate 
has been limited by strong transverse and longitudinal 
core heating excited by stacktail operation. This heating 
limits the stacktail power to about half of the pre-
equalizer operation (0.9 kW instead of 1.8 kW). A few 
steps were made to mitigate this. First results are already 
seen and more improvements are expected in the future. 

TRANSVERSE CORE HEATING 
There are two major sources of core heating due to 

stacktail operation. The first one is a consequence of non-
zero dispersion at the stacktail kickers; and the second one 
is related to the quadrupole kicks excited together with 
longitudinal kick due to the finite size of the pickup loops. 
Stacktail kickers have similar design and geometry to the 
stacktail pickups and therefore in accordance with the 
reciprocity theorem [8] the longitudinal kick and the 
pickup sensitivity depend similarly on the transverse 
coordinate. Expending Eq. (5) in Tailor series one obtains 
the dependence of longitudinal kick on the particle 
transverse coordinates: 
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Here κ = ±1 with signs “+” and “-“ assigned to the  

kickers rolled so that in the difference mode they would 
be the horizontal or vertical kickers correspondingly, and 
the effective gap is 
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aeff = 1.7 cm for the Accumulator stack-tail kickers. In the 
case where the particle velocity, v0, coincides with the 
phase velocity of the kicker wave, the transverse and 
longitudinal kicks are related so that [8]: 
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Each kicker tank has four kickers located in the same 
plane so that the higher order modes could be damped. To 
mitigate the kick non-uniformity each next kicker tank is 
rolled to the orthogonal plane.  

The transverse kicks described above introduce two 
mechanisms for the emittance growth. The first one is 
related to offsets of kickers from the beam center resulting 
in the transverse kicks proportional to the kicker offset 
and, consequently, the emittance growth excited by noise 
on the betatron sidebands. The second mechanism is 
related to the quadrupole kicks. That result in the 
parametric excitation of betatron motion and, 
consequently, the emittance growth excited by sidebands 
of doubled betatron frequency. Comparatively straight 
forward calculations yield the following expression for 
the emittance growth rate excited by the stacktail: 
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accounts for the effective offset of kickers, ( )ωX̂ , and the 
finite value of the dispersion in the kicker section. Here 

,,, kickkickkick Dαβ  and kickD′   are the beta- and alpha-
functions, the dispersion and the dispersion prime in the 
kicker section center. The positions of kicker electrical 
centers, Xi(ω), depend on frequency resulting in the 
frequency dependence of the effective offset: 
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where si is the longitudinal coordinate of the i-th kicker 
relative to the kicker section center. The effective beta-
function of the parametric excitation is equal to: 
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where si′ is the longitudinal coordinate of i-th kicker 
relative to the location of beta-function minimum, β0. 
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Figure 5: Dependence of transverse heating rate on the 
revolution frequency before Accumulator optics upgrade. 
Horizontal line marks the heating rate averaged over 
particle distribution. 

Table 2: Heating and cooling rates at normal operation 
Heating mechanisms mm mrad/hour 
IBS heating at 50 mA ~3 
Stacktail heating 5-6 
Noise of core systems ~2 
    Total heating =  Total cooling ~10 

Table 3: Estimate of Stacktail heating  
Heating mechanisms mm mrad/hour 
Parametric heating ~0.25 
Dispersion mismatch ~2.4 
Kicker offset (res. at 3.25 GHz) ~1.2 - 2.2 
Unaccounted (most probably due to 
geometric kicker offset) 

~1.1 mm 

The Stacktail system uses 8 kicker tanks located close 
to each other in one straight section. Each tank has four 
kickers. One of these 32 kickers is used for the 
longitudinal core cooling other 31 for the stacktail. It has 
became apparent that parametric heating has been a 
problem for a long time. The problem was resolved after 
two kickers on each side of kicker straight section were 
switched off. That reduced the effective beta-function of 
the parametric heating, βeff, from 2.3 to 0.6 m resulting in 
negligible parametric heating. After the equalizer 
installation we observed the strong transverse heating 
again. This time it was excited by a resonance in the 
kickers which became much more apparent with the 
increased bandwidth.  The resonance occurs at 3.25 GHz 
and results in a resonant displacement of kicker electrical 
center with frequency. The amplitude of the displacement 
is ~2 mm and the quality factor is ~27. Figure 5 presents 
dependence of computed horizontal heating rate on the 
revolution frequency. Tables 2 and 3 present measured 
heating and cooling rates for the horizontal degree of 
freedom before the optics upgrade.  

The optics upgrade increased the slip factor and 
resulted in the displacement of heating peaks (related to 

lower and upper betatron sidebands) so that the core 
became better centered between the peaks. That reduced 
the heating. In addition it reduced IBS and improved the 
core cooling resulting in acceptable values for transverse 
emittances.  

PLANS 
The following upgrades will be introduced after the 

2007 shutdown end in the first half of October. First, the 
upgrade of Debuncher transverse and longitudinal cooling 
systems should improve their cooling times by about 
10%. Second, a Debuncher optics correction should 
improve vertical cooling by additional 5%. Third, an 
improved equalizer will be installed into 4-8 GHz core 
cooling systems resulting in more than a 50% 
improvement in its damping rate. Fourth, faster 
Accumulator-to-Recycler transfers will allow us to reduce 
the stack size, which should additionally mitigate 
transverse and longitudinal heatings. Together with a few 
other operational improvements we expect the average 
stacking rate be above 20·1010 /hour by the next summer. 
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