
P
o
S
(
A
C
A
T
)
0
2
0

Status and evolution of CRAB

Fabio Farina∗

University and INFN Milano-Bicocca
E-mail: fabio.farina@cern.ch

S. Lacaprara

INFN Legnaro

W. Bacchi

University and INFN Bologna

M. Cinquilli

University and INFN Perugia

G. Codispoti

University and INFN Bologna

M. Corvo

CERN

A. Dorigo

INFN Padova

A. Fanfani

University and INFN Bologna

F. Fanzago

CERN

O. Gutsche

FNAL

C. Kavka

INFN Trieste

M. Merlo

University and INFN Milano-Bicocca

L. Servoli

University and INFN Perugia

D. Spiga

University and INFN Perugia

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

FERMILAB-CONF-07-763-CD-CMS

mailto:fabio.farina@cern.ch

P
o
S
(
A
C
A
T
)
0
2
0

Starting from 2007 the CMS experiment will produce several Pbytes of data each year, to be dis-
tributed over many computing centers located in many different countries. The CMS computing
model defines how the data are to be distributed such that CMS physicists can access them in
an efficient manner in order to perform their physics analysis. CRAB (CMS Remote Analysis
Builder) is a specific tool, designed and developed by the CMS collaboration, that facilitates ac-
cess to the distributed data in a very transparent way. The tool’s main feature is the possibility
of distributing and parallelizing the local CMS batch data analysis processes over different Grid
environments without any specific knowledge of the underlying computational infrastructures.
More specifically CRAB allows the transparent usage of WLCG, gLite and OSG middleware.
CRAB interacts with both the local user environment, with CMS Data Management services and
with the Grid middleware. CRAB has been in production and in routine use by end-users since
Spring 2004. It has been extensively used during studies to prepare the Physics Technical Design
Report (PTDR) and in the analysis of reconstructed event samples generated during the Comput-
ing Software and Analysis Challenge (CSA06). This involved generating thousands of jobs per
day at peak rates. In this contribution we discuss the current implementation of CRAB, experience
with using it in production and plans for improvements in the immediate future.

ACAT 2007 - XI International Workshop on Advanced Computing and Analysis Techniques in Physics
Research
April 23-27, 2007
Amsterdam, Netherlands

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

P
o
S
(
A
C
A
T
)
0
2
0

CRAB: status & evolutions Fabio Farina

1. Introduction

CMS [1] is one of the four experiments that will collect data at LHC [2]. The CMS detector
has 15 millions of channels; through them data will be taken at a rate of some TB/s, of which
just some will be selected to be written on disk. To catch those data there is an on-line selection
system (trigger) that will reduce the frequency of data taken from 40 MHz (LHC frequency) to 100
Hz (writing data frequency), that means 100 MB/s and 1 PB data per year. The use of the grid
instruments chosen by LCG [3, 4] and OSG [5] projects allows to solve a complicated problem:
the access to the data and the distributed resources by CMS users. The Computing Model of CMS
defines an hierarchic architecture of the grid sites with one Tier-0 site (CERN) that is linked with
the CMS Data Acquisition System, some Tier-1 sites and many Tier-2 centers. There are also Tier-
3 sites mainly department resources. The data will pass first through the Tier-0 site and will be
processed and transferred to the lower level sites. For every transfer there is a manipulation and
selection of the data in order to reduce the dimension and to get just the interesting part of those. A
representation of the CMS multi-tier computing model can be seen in Figure 1.

Figure 1: CMS Computational Grid organized in hierarchical-geographical Tiers.

2. Distributed analysis with CRAB

The data analysis on a distributed environment is a complex computing task because the used
data have a dimension of hundred MegaBytes, that makes the data transfer not convenient for just
some small analysis. Also the other heterogeneous instruments are not local, but distributed all
around the world. CRAB is the official CMS analysis software that easily interfaces the user with
the grid environment hiding the system complexities. Following the analysis model it allows an
easy access to the data distributed over the grid in a very transparent way and the user is not required
to have any deep knowledge about the grid. Actually, CRAB simplify the process of CMS analysis
allowing to process officially published data and hiding as much as possible the grid complexity to
the final user, so that remote data can be accessed with the same facility of local data: CMS user
sends through this tool his analysis code to the site where the selected data are. CRAB needs to
be installed on the User Interface (UI) -which is the user access point to the grid-, it supports any
CMSSW (the CMS software framework) based executable, with any modules/libraries, including

2

P
o
S
(
A
C
A
T
)
0
2
0

CRAB: status & evolutions Fabio Farina

the user provided ones, and finally it deals with the output produced by the executable. From a user
point of view, the main steps of the workflow of this software are:

• Job Creation: interaction with data discovery services (DBS and DLS) [6] and with the user
environment; the task is splitted into smaller jobs and the input sandbox is prepared.

• Job Submission: interaction with Resource Broker,
Workload Management System and proxy services. The main activity are the job submission
to sites that matches the user requirements.

• Job Status: check the status of the jobs using BOSS mechanism [7].

• Job Output: retrieval of the job output from the grid (output sandbox); also the output can be
transferred to a nearby Storage Element or to another one specified by the user.

Other functionalities provided by the tool are the possibility to get information about the causes
that made jobs to be aborted (considering both the CMS framework and the grid middlewares), to
kill them and to resubmit the failed jobs.

A schematic representation for the standard CRAB workflow is reported in figure 2.

UI

RB

CE

jdl, job

jdl, job
Output

Output

DataWN

Su
bm

is
si

on
 T

oo
l RefDB

PubDB

PubDB

PubDB
CNAF

LNL

PIC

Dataset Discovery

Dataset Discovery (2)

SE

Site and File Catalog URL

File
Catalog

Knows

Figure 2: CRAB Workflow w.r.t. middleware workload management services and CMS data management
tools.

The user interacts with CRAB via a simple configuration file called crab.cfg. Along with
user specific parameters, like the dataset/owner pair that the user wants to access, the specific
CMS software version he wants to use, the executable developed to perform a given analysis and
the total number of events to access, the configuration file contains values to instruct CRAB on
how to handle the specific CMSSW job type and how to interact with Grid middlewares and its
submission layer, that is BOSS. The user can also specifies a different wrapper for his executable,
in case he wants specific controls which are not foreseen on the standard one. Once CRAB has

3

P
o
S
(
A
C
A
T
)
0
2
0

CRAB: status & evolutions Fabio Farina

read the configuration file, it starts querying CMS specific services which are designed to return
the list of sites where data are physically located. These aforementioned services are DBS (Data
Bookkeeping Service) and DLS (Data Location Service). DBS is responsible to tell CRAB which
data are available, along with specific data parameters describing the particular set of events, while
DLS is responsible to localize logical data names w.r.t. the host and the local protocol suitable to
access them. The final logical-to-physical filename mapping will be performed on the processing
site using logical file catalog technologies.

The script generator engine collects all the information and starts creating jobs, splitting the
payload according to the number of events requested by the user and the total number of events
available for the given dataset. It also generates the JDL files specifying the list of sites hosting
data retrieved from DBS and DLS. Before passing the control for job submission to BOSS, CRAB
checks that at least one site fulfills the requirements put into the JDL files. This avoids submitting
jobs to sites which, for some reasons, don’t have the required CMS software version or have been
removed from the Information System due to scheduled downtime or Grid middleware problems.
The control is then passed to BOSS, which performs job submission to the Grid. Currently CRAB
is able to submit jobs, via BOSS, both to WLCG and OSG. After jobs submission the user has to
check only the status to tell CRAB to retrieve the output once they finish. The user can decide,
via the crab.cfg file, how to manage output files. He can copy its output directly on the Storage
Element close to the Worker Node which run the job, store them on a chosen Storage Element or
have it back on the User Interface from which he runs CRAB. CRAB provides also a postmortem
functionality to trace back the Grid history of all jobs in order to collect information useful for
debugging purposes.

3. CRAB usage statistics

CRAB has been used with success for more than two years by CMS physicists, to perform data
analysis. The first intensive usage of the tool by a large number of users from different places, was
during the Spring 2006, for the Physics TDR [8] preparation. Moreover, CRAB has been used to
access data during the CMS data challenges. The last one was CSA06, when millions of simulated
events were analyzed, reaching peaks of 100k submitted jobs per month. The submission daily rate
for the CSA06 challenge is reported in figure 3. In this plots each color represents a different site
where the jobs run. It is important to notice that CRAB reached submission peaks of more than
40k jobs/day. During the Magnet Test Cosmic Challenge (MTCC), CRAB was also successfully
used to access the real data distributed among several sites, the first real data for CMS. There are
about 300 CRAB users distributed around the world, which means a daily rate of submitted jobs
which reaches peaks of 10k jobs. The first part of 2007 highlights an even wider use of CRAB,
with the top five users that have submitted more than 200k jobs. For the same period the daily rate
is reported in figure 3.

4. CRAB evolution: toward a Grid-enabled server

The present workflow of CRAB is based on a direct submission from the UI, where the user
is working, to LCG and OSG via RB. This standalone model has the advantage of simplicity, but

4

P
o
S
(
A
C
A
T
)
0
2
0

CRAB: status & evolutions Fabio Farina

Figure 3: CRAB usage statistics during the CSA06 challenge.

Figure 4: CRAB submission rate during the first half of 2007.

it lacks some features, which can be provided by a more advanced architecture like a Grid-server.
In this kind of architectural choice a server is placed between the user and the Grid. In this way
the server provides higher level of automation and latency hiding during the analysis process. The
main goals of the client-server architecture is to face as much as possible the whole analysis work
flow problems and to improve the scalability and the throughput of the analysis process itself. The
aim of the project is also to create a tool which is easy to use for physicists and easy to maintain for
administrators. Following the CRAB philosophy the client-server implementation is transparent to
the end users: the interface, the installation, the configuration procedure and the usage steps are
exactly the same as for the standalone version. From the global architectural point of view the
adoption of the Grid-enabled server makes the previously described analysis workflow change as
reported in figure 4. In the new scenario the role of the client is to interact with DBL/DLS for the
data discovery, to prepare the jobs reading the local environment and finally to send the user proxy
and the prepared task to the server. It is the server that actually manages the project: it interacts with

5

P
o
S
(
A
C
A
T
)
0
2
0

CRAB: status & evolutions Fabio Farina

RB

CE

Output

DataWN

SE

File Location

DBS

Dataset Discovery

gsiftp server

Dataset Location
SEs

jdl,

BOSS DB

Output

Job

jdl

DLS (DLI enabled, LFC based)

Jdl, Job

direct submission available

fileblocks

fileblocks
SEs

LFN, #events, fileblocks

datasetpath

trivial file catalog

Proxy

UserBox CRAB Client

CRAB server

Figure 5: CRAB workflow after the adoption of the CRAB server.

the Grid from the job submission up to the output retrieval. Each interaction must be performed
using the user credentials to preserve the CMS Virtual Organization security constraints.

From an architectural point of view, the server is based on components implemented as inde-
pendent agents. This multi agent system communicates through an environment than provides only
an asynchronous and persistent blackboard message service. This messaging service is used to re-
alize the publish and subscribe model that the server agents adopt for interprocess communications.
The core of the messaging service is built on the top of MySQL database [9]. The chosen multi
agent approach has been chosen as similar as possible to the CMS production system, see [10]. The
common architectural model allows an easier maintenance of the Work Load Management tools.
The other external softwares adopted by the server are the following: a gridftp server and a WS-
Delegation compliant service. The gridftp server is used as the channel for all the communications
from client to server. The WS-Delegation service performs the user proxy delegation and it is de-
ployed as a CGI-gSoap [11] standalone server.

The current CRAB server implementation includes the following components:

• DropBoxGuardian: this component is the entry point for all the tasks and the directives
coming from the clients. Its main role is to dispatch incoming work to the proper agents. It
monitors the gridftp and the WS-Delegation repositories in a spool server fashion. This check
is performed periodically and the items arriving are signaled to the ProxyTarAssociatior or
to the CommandManager components. Actually DropBoxGuardian is the only synchronous
component in the submission workflow for the CRAB server.

• ProxyTarAssociator: this agent is triggered when a new user task arrives. It creates the data
structures and updates the proper configuration files to let the tasks be managed properly by
the server environment. Finally, it associates a proxy to a proper task crosschecking the file
ownerships.

6

P
o
S
(
A
C
A
T
)
0
2
0

CRAB: status & evolutions Fabio Farina

• CrabWorker: performs the submission process to the grid using the same submitter mod-
ules of CRAB (i.e., EDG, gLite, gLite-bulk and condor-g). From the architectural point of
view the CrabWorker is a multi-component system. Its role as agent is used to perform in-
terprocess communications with the other components however, internally it is organized as
a multi-threaded system with producer-consumer synchronization mechanisms. The mes-
sages coming from ProxyTarAssociator are intercepted by a front-end thread that enqueue
the submission requests. The requests are elaborated from a pool of submission threads that
interact with the CRAB code. The submission results are enqueued again. The result queue
is managed by a notification thread which publish messages either to retry the submission
process (introducing a feedback in the component) or to inform the monitoring components
to take care of the submitted analysis.

• TaskTracking: plays a vital role for the collection of the information about the advance-
ments of the user tasks. It acts as a coordinator, using the messages emitted by the other
components, to keep updated the status of every task. Moreover, it prepares the data struc-
tures needed to inform the user both when a task fails and it reaches a final state.

• JobTracking: this component is inherited by the CMS production systems. It polls period-
ically the grid to update the status of every single submitted job. With the collected data it
keeps aligned the TaskTracking component and the failure recovery components. The Job-
Tracking is somehow similar to the TaskTracking but the two agents operate at different level
of granularity w.r.t. the user analysis. An additional feature provided by the component is
the automatic job output file movement from the WN to the server storage.

• ErrorHandler: the ErrorHandler component interact tightly with the JobTracking to parse
the job status and the job exit codes. The extracted information are then used to drive the
single job resubmission (in case of failure) or to trigger the automatic output file retrieval
from the worker nodes.

• JobSubmitter: the JobSubmitter is the component summoned by the ErrorHandler when a
failed job is resubmitted. It performs a very basic, low performance resubmission w.r.t. the
CrabWorker. Both the ErrorHandler and the JobSubmitter are inherited from the production
tool.

• CommandManager: it is used as a front-end for all the infrequent features that the server
exposes. The component philosophy is to act as a message router for the other agents. On the
current implementation it treats the job interruption only. However, the architectural design
grants an easy extension for new features.

• JobKiller: this component is driven by the CommandManager to kill whole tasks previously
submitted to the grid. It is also able to stop single jobs. It is implemented as a plug-in system:
in this way many different meta-scheduler and middleware can be supported (similarly to
CRAB grid transparency).

• Notification: it receives directives from the TaskTracking and notifies the user by an e-mail
when his tasks is ended and the output can be retrieved by the user. Moreover, it sends e-

7

P
o
S
(
A
C
A
T
)
0
2
0

CRAB: status & evolutions Fabio Farina

mails in case of task submission failure (or partial successful submission) and in all the other
situations when a direct user intervention is foreseen by the workflow.

• RSSFeeder: is the main tool for the CRAB server administrators to monitor the logging
of the whole system. The feed are posted on a web page. In this way agents behavior and
possible related problems can be easily tracked.

• CrabWorkerWatchdog: this optional component provides a very primitive transactional
behavior to the whole submission chain. It registers to the messages published by the ma-
jor players acting on the CRAB server: the CrabWorker and the TaskTracking. In case of
catastrophic crash the component will try to recover all those submissions in a non-consistent
status. This process is synchronized with the CrabWorker boot.

In addition to the described agents some new features will be introduced in the next server
releases. In particular, a web interface to track job and task status and a new agent to monitor the
disk server occupancy (with simple garbage collection) will be integrated.

WSDelegation

DropBox
Guardian

ProxyTar
Associator

GridFTP
server

Server Storage
Facilities

Tasks, proxies, commands

CRAB
Client

NewProject | NewProxy

Command
Manager

NewCommand

CrabWorker

PerformSubmission

Grid Middleware
LCG2, gLite, OSG

JobKiller

KillTask

CRAB Submission Threads

RetrySubmission

TaskTracking JobTracking

ErrorHandler

Notify

WatchDog

Task submission result

ErrorCode

NotifyClient

SMTP protocol

JobSubmitter

ResubmitJob

RSSFeeder

RSS recipients
And

Web page

Figure 6: Dataflow diagram of the server agents

8

P
o
S
(
A
C
A
T
)
0
2
0

CRAB: status & evolutions Fabio Farina

In figure 4 the whole server dataflow diagram is reported.
The solid lines describe direct/synchronous interactions and inclusion relations, the dashed lines
describe the interactions mediated by the messaging system. The exchanged message topics are
indicated also.

5. First server results, future work and conclusions

At the present time three instances of the CRAB server have been deployed. One for devel-
opment activities and two dedicated to beta-testing community (including now about 5 people, but
the number is increasing rapidly). The performances of the whole system are very promising both
for the feedback given by the early users and for the evaluated stress test metrics. In particular, the
server is able to receive up to 6k tasks in 2h and it is able to submit to the grid up to 7k jobs per
day using EDG/condor_g brokers. With gLite a speedup of 3 has been observed, more tests have
to be performed on the gLite bulk-submission speedup. The mean time to prepare a task for the
CrabWorker component is 200ms approximately.
The measured success ratio for the submission workflow was 99.61% for the very first code release.
This meant that about 4 tasks over 1000 failed for reasons connected to the server code. The current
implementation fixed many related bugs and the success ratio has been further improved: the quan-
titative measures are scheduled in the immediate future. The current implementation is particularly
light in terms of CPU and network consumption. The disks occupancy will be largely improved
with the adoption of the under-development new components. Also the memory consumption is
going to be improved in the next server releases.

The major efforts for CRAB and for CRAB server will be devoted to the preparation of the next
CMS CSA07 challenge. In fact, this challenge will be the last one before the real data acquisition
and to grant the nominal required throughput for the server will be the CRAB team major duty for
the next months.

References

[1] The CMS experiment http://cmsdoc.cern.ch

[2] The Large Hadron Collider Conceptual Design Report CERN/AC/95-05

[3] LCG Project: http://lcg.web.cern.ch/LCG

[4] LCG Technical Design Report,CERN-TDR-01 CERN-LHCC-2005-024, June 2005

[5] OSG Project, http://www.opensciencegrid.org

[6] The Computing Project CERN/LHCC 2005-023 CMS TDR 7

[7] Batch Object Submission System, http://boss.bo.infn.it/

[8] Physics Technical Design Reports, CERN/LHCC/2006-021

[9] MySQL Community Database http://www.mysql.com

[10] Production Agent, https://twiki.cern.ch/twiki/bin/view/CMS/ProdAgent

[11] gSoap web service tool, http://gsoap2.sourceforge.net

9

