
CRAB: the CMS distributed analysis tool development and design

D. Spigaa, S. Lacaprara b, W. Bacchic, M. Cinquillia, G. Codispotic, M. Corvod, A. Dorigoe, A.
Fanfanic, F. Fanzagod, F. Farinaf , O. Gutscheg, C. Kavkah, M. Merlof , L. Servolia.

aUniversity and INFN Perugia, bINFN Legnaro, c University and INFN Bologna, dCERN, eINFN
Padova, f INFN Milano-Bicocca, gFNAL, hINFN Trieste.

Starting from 2007 the CMS experiment will produce several Pbytes of data each year, to be distributed over
many computing centers located in many different countries. The CMS computing model defines how the data
are to be distributed such that CMS physicists can access them in an efficient manner in order to perform their
physics analysis. CRAB (CMS Remote Analysis Builder) is a specific tool, designed and developed by the CMS
collaboration, that facilitates access to the distributed data in a very transparent way. The tool’s main feature
is the possibility of distributing and parallelizing the local CMS batch data analysis processes over different Grid
environments without any specific knowledge of the underlying computational infrastructures. More specifically
CRAB allows the transparent usage of WLCG, gLite and OSG middleware. CRAB interacts with both the local
user environment, with CMS Data Management services and with the Grid middleware.

1. Introduction

CMS is one of the four experiments that will
collect data at LHC. The CMS detector has 15
millions of channels; through them data will be
taken at a rate of some TB/s, of which just some
will be selected to be written on disk. To catch
those data there is an on-line selection system
(trigger) that will reduce the frequency of data
taken from 40 MHz (LHC frequency) to 100 Hz
(writing data frequency), that means 100 MB/s
and 1 PB data per year. The use of the grid
instruments chosen by LCG and OSG projects
allows to solve a complicated problem: the access
to the data and the distributed resources by CMS
users. The Computing Model of CMS defines an
hierarchic architecture of the grid sites with one
Tier-0 site (CERN) that is linked with the CMS
Data Acquisition System, some Tier-1 sites and
many Tier-2 centes. There are also Tier-3 sites
mainly department resources. The data will pass
first through the Tier-0 site and will be processed
and transferred to the lower level sites. For every
transfer there is a manipulation and selection of
the data in order to reduce the dimension and to
get just the interesting part of those.

2. Distribuited analysis with CRAB

The data analysis on a distribuited envi-
ronment is a complex computing task because
the used data have a dimension of hundred
MegaBytes, that makes the data transfer not con-
venient for just some small analysis. Also the
other heterogeneous instruments are not local,
but distributed all around the world. CRAB is
the official CMS analysis software that easily in-
terfaces the user with the grid environment hiding
the system complexities. Following the analysis
model it allows an easy access to the data dis-
tributed over the grid in a very transparent way
and the user is not required to have any deep
knowledge about the grid. Infact CRAB simplify
the process of CMS analysis allowing to process
officially published data and hiding as much as
possible the grid complexity to the final user, so
that remote data can be accessed with the same
facility of local data: CMS user sends through
this tool his analysis code to the site where the
selected data are.
CRAB needs to be installed on the User Inter-
face (UI) -which is the user acces point to the
grid-, it supports any CMSSW (the CMS software
framework) based executable, with any mod-
ules/libraries, including the user provided ones,
and finally it deals with the output produced by

1

FERMILAB-CONF-07-746-CD-CMS



2

the executable. From a user point of view, the
basic steps of the workflow of this software are:
• Job Creation: interaction with data discovery

services (DBS and DLS) and with the user envi-
ronment; the task is splitted into smaller jobs and
the input sandbox is prepared.
• Job Submission: interaction with Resource

Broker, Workload Management System and
proxy services to submit jobs to sites matching
the user requirements.
• Job Status: check the status of the jobs using

BOSS mechanism.
• Job Output : retrieval of the job output from

the grid (output sandbox); also the output can
be transferred to a nearby Storage Element or to
another one specified by the user.

Other functionalities are: the possibility to get
information about aborted jobs; to kill jobs and
to resubmit failed jobs.

3. CRAB improvement

The CRAB evolution aims at:
• Automatizing as much as possible the inter-

action with the grid (submission, resubmission,
output retrieval, etc.)
• Reducing the unnecessary human load, mov-

ing all possible actions to server side, reducing to
a minimum those on client side.
• Improving scalability of the whole system.
To reach the above objectives it has been de-

veloped and it is still under development a server
with which CRAB can comunicate. Then CRAB
will be used, also that to submit jobs directly
to the grid, to submit jobs through the server1.
This client-server implementation is trasparent
from the user point of view. What is most im-
portant is that the server automatizes operations
like job/task tracking, resubmission, output re-
trieval and error handling. Its architecture adopts
a modular software approach with independent
components that are implemented as agents com-
municating through an asynchronous and persis-
tent message service. Parts of the server are also
a GridFTP server and a Proxy Delegation service
that allows to store a valid proxy for the user in-
side the server.
The current server components that can already

Figure 1. Diagram of server used by CRAB

makes a complete distributed analysis are:
• DropBoxGuardian: checks drop-box for

new user tasks and new proxy arrivals.
• ProxyTarAssociator: associates task to

right user and localizes the task configuration.
• CrabWorker: submits jobs to the grid us-

ing the submitter module of CRAB (EDG, gLite,
gLite-bulk, condor-g support).
• TaskTracking: keeps all the general infor-

mation about tasks under execution.
• Notification: notifies the user by an e-mail

when his task is ended and the output has been
already retrieved.
• JobTracking: tracks the status of every job.
• ErrorHandler: performs a basic error han-

dling.
• JobSubmitter: resubmits single jobs when

needed.
• RSSFeeder: provides channels to forward

information about the server.
Some other components that will be soon ready

are: disk management, kill component, job/task
status via web.

REFERENCES

1. CRAB project http://cmsdoc.cern.ch/cms/
ccs/wm/www/Crab

2. CRAB twiki https://twiki.cern.ch/twiki/bin/
view/CMS/CrabServer

3. LCG Project http://lcg.web.cern.ch/LCG
4. The CMS experiment http://cmsdoc.cern.ch
5. BOSS project http://boss.bo.infn.it




