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1. Introduction

The CKM element/, is important for the phenomenology of flavor physics in deiaing
the apex of the unitarity triangle in the complex plane. B@meple, the Standard Model prediction
of &« depends sensitively ov, (where it appears to the fourth power), and the presentserror
on this quantity contribute errors t& of the same size as those dueBp, the kaon mixing
parameter which has been the focus of much recent work [1, £,i8 possible to determin@/p|
from both inclusive and exclusive semileptofiaecays, and they are both limited by theoretical
uncertainties. The inclusive method makes use of the heaagkexpansion [4, 5], but is limited
by the breakdown of local quark-hadron duality, the errdr&lich are difficult to estimate. The
exclusive method requires reducing the uncertainty of thenffactor.#g_.p+, which has been
calculated using lattice QCD in the quenched approximafidn Given the phenomenological
importance of this quantity we have revisited this caldalabf.#g_,p- using the 2+1 flavor MILC
lattices with improved light staggered quarks [7]. The quéng error is thus eliminated, and the
systematic error associated with the chiral extrapolasaeduced significantly.

This calculation was done using a blind analysis as follails: perturbation theory calcula-
tion needed to renormalize the lattice current was doneratgha from the rest of the numerical
analysis, and the renormalization constants needed toam@mpsults at different lattice spacings
to the continuum were given an overall offset which was ne¢aéed until the systematic errors in
the rest of the numerical analysis had been determined.

2. Obtaining [Vgp|

The differential rate for the semileptonic deddy- D*IV is

dr G2
G = 2B (M — Mo )2V W2 — 19 () Ve o+ (w) (2.1)

wherew = V - v is the velocity transfer from the initial state to the finadtst and?(w)|.#_.p+|?

contains a combination of four form factors which must bewlated nonperturbatively. At zero
recoil 4 (1) = 1, and.#g_p- (1) reduces to a single form factdma, (1). This is sufficient to deter-
mine|Vep| from experiment. Heavy quark symmetry plays an importaletiroconstraininda, (1),
leading to the heavy quark expansion [8, 9]

b 2An
2mg)2  2m2m,  (2my)2 |’

hAl(l) = Na 1_(
2.2)

up to order ¥ mé and wherea is a factor which matches QCD and heavy quark effective theor
(HQET). Thel's are long-distance matrix elements of the heavy quarlcefietheory. The earlier
work by the Fermilab lattice collaboration [6] used a sedaEthree double ratios in order to obtain
separately each of the threyémé coefficients in Eq. (2.2). These three double ratios alserdene
three out of the four coefficients appearing ;itr% in the heavy quark expansion. It was shown
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in [10] that for the Fermilab method matched to tree levebiinand to leading order in HQET,
the leading discretization errors for the double ratiosties quantity are of ordems(A/mg)? and
A,

In the calculation reported here, the form fadbay(1) is computed more directly using only
one double ratio,

D*[cy; ysb|B) (B|by; ysc|D*
Gop, = D IHWDBBDYCDT) _ ) (g2, (2.3)
(D*[Cyac|D*) (Blbysb|B)

which is exact to all orders in the heavy quark expansion (feodiscretization errors for the
corresponding lattice ratio). The errors in this ratio da rigorously scale agZ — 1 because
Eq. (2.3) is not one in the limit of equal bottom and charm guaasses (it becomes one only
in the static quark limit). Nevertheless, this double ratidl retains the desirable features of the
previous double ratios, i.e. large statistical error cHatiens, and the cancellation of most of
the lattice current renormalization. The quenching erras heen eliminated by including the
fermion determinant in the weighting of the gauge configares, and so the rigorous scaling of
all the errors asZ — 1, including the quenching error, is no longer as importdiite more direct
method introduced here has the significant advantage ttratérg coefficients from fits to HQET
expressions as a function of heavy quark masses is not aegeasd no error is introduced from
truncating the heavy quark expansion to a fixed order/'mgl

Most of the current renormalization cancels in the lattiogilde ratio, leaving only a small
correction factorp, defined such that/Rat = vV Zcont = h(1), as discussed in [11]. Thisfactor
has been calculated perturbatively [12], and was found mérikmute less than a. 8% correction.

3. Lattice calculation

The lattice calculation was done on the MILC lattices forethiattice spacingsa(= 0.15,
0.125, and @9 fm) where the light quarks were computed with the “AsqTatdggered action.
The heavy quarks were computed using the clover action Wwithrermilab interpretation in terms
of HQET [13]. We have several light masses at both full QCD padially quenched points
(Myalence# Mseg), and our light quark masses range betweg/iL0 andms/2.

Extracting correlation functions that contain staggeredrlgs presents an extra complication
because of the contributions of wrong parity excited stateih introduce oscillations into the
usual plateau fits. The average,

1 1
c;fvgY(o,t,T) = _C*Y(0,t,T) + 21c:XﬁY(o,t,T +1)+ 21c:XﬁY(o,t +1,T+1), (3.1

NI =

is equivalent to a smearing which suppresses the oscglatistes, and has been applied to all of
the data for the double ratios. Figure (3) shows a plateaw tihé¢ double ratio used to obtain
ha,(1). The source is at time slice 0, the sink isTgtand the operator position is varied along
t. Two different extended propagators were constructed ett end odd source sink separations
(T =16,17). The average of these two extension points was takemdiogdo Eq. (3.1), and this
average was fit to a constant as shown in Figure 1. There isteatdble oscillation even before
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Figure 1: Double ratio on than, = 0.0124 fine ensemble. The source was fixed to time slice 0, and the
operator position was varied as a function of time. Two défe sink (extension) points were used with
even and odd time separations between source andG{okt[T) andC(0,t,T + 1)] in order to study the
effect of non-oscillating wrong parity states. The fit ishe average of the source sink separations given in
Eq. (3.1).

the average is taken; the oscillating contributions areiced even further in the average so that
their systematic errors can be safely neglected.

The chiral extrapolation errors can be controlled by ushng dppropriate rooted staggered
chiral perturbation theory (P&T) for heavy light quantities [14]. Eq. (34) of [15] givesetlx-
pression needed for fits tgy, (1) for partially quenched data with degenerate up and dowrkquar
masses (the 2+1 case). This partially quenched expresaiampterizes the dependence on both
valence and sea quark masses, and includes taste breasiatpvis coming from the light quark
sector. The expression contains explicit dependence dattie spacing, and requires as inputs
the parameters of the staggered chiral lagrand{and,, in addition to the staggered taste split-
tingsApa v, . These parameters can be obtained from chiral fits to thedpsealar sector and are
held fixed in the chiral extrapolation bk, (1). The continuum low energy constagy-p,; appears,
and this can be taken from phenomenology; we take a geneange 1of values for this term to
estimate the error it contributes kg, (1). The only other parameter which appears at NLO is an
overall constant that is determined by a fit to our datehfg(1).

For the chiral fits we find it useful to form two ratios that nailime results forha, (1) at a
“fiducial point,”

hAl (mgd, mL7 m57 a)

h m_, Mg, a
i fd o Rval(ML,Ms, a) = (MM, M52
hAl(rnx M, Mg ’a)

Rsed M, Mg, @) = - i '
sea( L, IS, ) hAl(rnI(IdymL»mSa)

(3.2)

where fid stands for fiduciat is the light valence quarkx_is the light sea quarknsis the strange
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Figure 2: All of the data at the full QCD pointstf,qence= Mseg 0N the three lattice spacings. The cyan
(light grey) band is the continuum extrapolated full QCDw&irThe cross is the value at the physical light
pion mass, where the solid line is the statistical error,thedlashed line is the total systematic error added
to the statistical error in quadrature.

sea quark. Here we takel? ~ 0.5mlioca, mid ~ 0.5mece, andmid ~ mEreca. The ratios in
Eq. (3.2) are now quadruple ratios; thus the statisticalrerand excited state contamination are
further suppressed over that of the double ratio. The mamarddge of these ratios, however, is
that heavy quark discretization effects largely cancekhsd we can disentangle the heavy quark
discretization effects and those of the staggered chigal. |0 his isolates the discretization effects
coming from non-analytic taste violations, and these camb®ved using r8PT. We have chosen
the fiducial point to bex 0.5mEeca because it would be feasible to simulate this mass point on
very fine lattices and smaller volumes without running intitd size effects, thus normalizing our
data at a point where the heavy quark discretization effasmuch smaller. For now we use
the point withm ~ o.m@{:;ﬁ‘gg'on the finest lattice spacing availabke~ 0.09 fm) as our fiducial
point. By taking the chiral extrapolation and the contindumit of the two ratios, multiplying them
together and then multiplying that by the valuenaf(1) at the fiducial mass on the finest available
lattice spacing, we can construct the value of the form faatahe physical light quark mass,
h,ﬁi‘ys = h,iild % [ReedMP™S mEM™S 0) x Ryt (mP™S mE™S 0)]. This quantity is shown in Figure 2.

4. Results and conclusions

The final error budget is presented in Table 1. The error ledbéfp-p,; uncertainty” comes
from the error in the chiral low energy constat p;, which we take to vary between 0.3 and 0.6.
The next error is the difference between doing NLO chiralffitsthe chiral extrapolation, versus
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Figure 3: The values fohy, using the continuum extrapolated ratios determined in thecfal point proce-
dure to extrapolate the fiducial points on each of the thritiedespacings to the physical light quark masses.
The fiducial point procedure allows us to remove the tastkatians coming from staggered chiral logs, but
it does not remove the analytic terms associated with the tigark sector, nor does it remove the heavy
quark discretization errors. Although it is appropriatexerapolate this curve to the continuum, a first prin-
ciples extrapolation formula is not known. We therefore pane the value dfia, using the fiducial point on
the fine lattice with the results obtained by using fiduciahpoon coarser lattice spacings. A comparison
of the scatter of these results allows us to estimate theafitee remaining light quark and heavy quark
discretization errors.

fits which include the NNLO analytic terms but not the 2-loogdrithmic terms, which have not
been calculated. Both fits give acceptable confidence levels

Our largest systematic uncertainty comes from discredzagrrors. The fiducial point proce-
dure described above allows us to remove the effect of theisgsé in the staggered chiral logs,
but it does not determine and remove the analgtidependence in the light quark sector, nor the
heavy quark discretization errors. Comparing the valuegaiokd with different fiducial points on
various lattice spacings gives an estimate of the size afeimaining light quark and heavy quark
discretization errors. The scatter of the points in Figugivas an estimate of the size of these
effects, which cannot be resolved within statistics. ThietBnce between the fina & 0.09 fm)
and coarseq = 0.12 fm) lattice spacings is a3% difference, which is about the size one would
expect for heavy quark discretization errors in this qugritom power counting arguments and a
reasonable choice for the HQET paraméter

The error labelled “kappa tuning” comes from the parametnicertainty associated with tun-
ing the charm and bottom quark masses. The next error is fnenpeérturbative matching of the
lattice currents in the double ratio. As mentioned abovis, itnormalization factor is small be-
cause most of the renormalization cancels nonperturlhativehe ratio. We take the entire 1-loop
correction of 04% as a conservative estimate of the error due to the omissioigher orders.
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Table 1: Error budget

uncertainty ha, (1)

statistics 12%

Op+p7r Uncertainty 6%

NLO vs partial NNLO ChPT fits ®%
discretization errors 3%
kappa tuning D%
perturbation theory 8%

Total 23%

We quote a preliminary result for the form factox, (1) = 0.924(12)(19), where the first
error is statistical, and the second is the sum of all sydienesrors in quadrature. Taking the
latest world average o7 (1)|Vep| = (36.04 0.6) x 103 from experiment [16], we findVep| =
(38.7 £ 0.7exp = 0.9heo) 10-3. We estimate that the theoretical error on this deternonatif
[Vep| from exclusiveB — D*¢v can be reduced significantly by making use of the existingaext
fine MILC lattices &= 0.06 fm) and higher statistics on the coarser ensembles.
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