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Abstract— The SuperNova Acceleration Probe (SNAP) 
instrument is being designed to collect image and spectroscopic 
data for the study of dark energy in the universe. This paper 
describes a distributed architecture for the data acquisition 
system which interfaces to visible light and infrared imaging 
detectors. The architecture includes the use of NAND flash 
memory for the storage of exposures in a file system. Also 
described is an FPGA-based lossless data compression algorithm 
with a configurable pre-scaler based on a novel square root data 
compression method to improve compression performance. The 
required interactions of the distributed elements with an 
instrument control unit will be described as well. 
 

Index Terms—Data acquisition, data compression, distributed 
memories, space vehicle electronics. 

I. INTRODUCTION 
HE SuperNova Acceleration Probe (SNAP) is a proposal 
for a satellite observatory being prepared for the Joint 

Dark Energy Mission (JDEM) [1]. The observatory design 
features a 2 meter telescope with a field of view of 
approximately 0.7 square degrees. A half-billion pixel 
imaging camera consisting of visible light CCD and near-
infrared (NIR) detectors provides imaging capabilities from 
the visible to the near infrared portions of the spectrum. The 
CCD imager provides coverage for wavelengths from 0.35 μm 
to 1.0 μm. The NIR imager is a HgCdTe detector providing 
coverage for wavelengths from 0.9 μm to 1.7 μm. Also 
included are spectrometers to support the identification of 
Type IA supernovae. The mission includes a supernova 
survey and a weak-lensing survey.  

The instrument is being designed as a distributed readout 
and memory system with multiple partitions called slices. 
Each slice consists of non-volatile memories to store multiple 
exposures in a distributed file system. A total of 36 slices will 
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be dedicated to the CCD imaging array. Each CCD slice will 
support (3510)2 pixels.  An additional 36 slices will be 
dedicated to the NIR imaging array. Each NIR slice will 
support (2048)2 pixels. Data are to be collected for exposures 
of 300 seconds each. During each exposure period, there will 
be no transfer of data to or from the detector front end 
electronics. After each exposure, a readout period of 
approximately 30 seconds will occur during which the data 
collected during the exposure are transferred to the slices for 
compression and storage. The compressed data for each 
exposure will be stored in a standard packet format in NAND 
flash memories on the slices. The activities of data readout, 
compression, and file storage are coordinated by a master 
flight computer called the Instrument Control Unit (ICU). 
Approximately once a day, the files representing the 
exposures are extracted from the flash memories and 
transmitted to a ground station.  

II. DATA ACQUISITION SYSTEM ARCHITECTURE 
Figure 1 illustrates the key elements in the data acquisition 

system. The front end electronics modules include detector 
readout ICs that control the delivery of image data from the 
detector elements. The data delivered from these readout ICs 
are sent over 25 Mbps links to a slice unit. Independent slices 
are dedicated to independent detector elements. This 
independence is required to eliminate the possibility of a 
failure in one slice causing another slice to malfunction.  CCD 
channels will deliver data from four pixels as a group framed 
by start, stop, and a single parity bit. The data word for each 
pixel is 16 bits long with the 2 most significant bits 
representing a scale factor. The pixels are interleaved meaning 
that, following the start bit, 16 bits representing the first pixel 
are transmitted, followed by 16 bits each for the second, third, 
and fourth pixels. This group of pixels is followed by a single 
parity bit computed using all of the 64 bits followed by a stop 
bit. When the channel is inactive, the channel is held high.  

NIR channels will deliver data on four separate connections 
operating synchronously. The processing of NIR detector 
pixels will be done in groups of four so that pixels are 
compressed in blocks in which neighboring pixels are 
compressed as a unit.  
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The slices and front end components are programmed and 

controlled by the ICU. Each ASIC on the front end modules 
and an FPGA on the slices is assigned a unique ASIC ID code 
to address the device to be programmed. Broadcast write 
transmissions will be supported so that multiple ASICs may 
be commanded with the same command cycle. Commands 
issued to a slice FPGA will be filtered from the command 
stream so that they do not arrive at the ASICs of the 
associated front end module.  

The ICU interface controller is responsible for decoding the 
slice channel address and routing the command to the 
designated slice over a dedicated 25 Mbps link from the 
controller. Responses from the slice will have the slice 
channel address encoded in the bit stream returned to the ICU. 

Figure 2 illustrates the major components of a slice. At the 
heart of each slice is an FPGA which communicates with the 
ICU via the ICU control interface. All communications for the 
channel are processed by the slice FPGA. The FPGA forwards 
only those commands issued to front end module ASICs over 
a dedicated control interface to the front end module. There is 
also a dedicated science data interface over which the detector 
data are delivered to the slice 
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during front end readout operations. During the downlink 
operations, the slice FPGA is commanded to extract stored 

image files and transmit them to a downlink controller which 
delivers the data for all slices to the spacecraft telemetry 
system.  
 The exposure files are stored in flash memory on the slice. 
The flash memories are organized in two independent banks 
(16 Gbits/bank) to prevent a failure on an I/O bus from 
eliminating an entire slice channel. The location of file data in 
the flash memory is coordinated with the ICU. The ICU can 
maintain a file system in which the flash memory blocks used 
to store the data for a given exposure is recorded.  
 Slice channels which are serving NIR detector readout also 
include a 256 Mbit Synchronous DRAM (SDRAM) to be used 
as an intermediate storage device. Unlike the CCD detectors, 
the NIR detectors can be read more than once per exposure so 
that signal averaging can be applied to reduce the effects of 
readout noise in the electronics. The SDRAM will be used to 
hold sums of pixel data (one sum for each pixel) as multiple 
readout cycles are processed for a single exposure. Then, after 
a sufficient number of readout cycles have been accumulated, 
the pixel data can be shifted to complete the averaging 
process. The resulting pixel averages reside in the SDRAM. 
Once the data have been processed in this manner, they can be 
delivered to the data compression block in the FPGA. CCD 
channels can be compressed on the fly as the data streams in 
from the detector front end modules. Exposure data for the 
NIR channels will be compressed during the following 
exposure period. 

III. FPGA FIRMWARE ARCHITECTURE 
The functional blocks of the FPGA firmware are illustrated 

in Figure 3. Commands from the ICU are decoded and routed 
within the FPGA to the various programmable blocks by the 
command processor. Responses to read and status requests 
issued by the ICU are formatted in the output formatter. 
Blocks are enabled for operation by setting a bit 
corresponding to the respective blocks in the block enable 
register.  

The science data front end processor is responsible for 
serial to parallel conversion of incoming image data during an 
exposure readout period. In CCD slice channels, the parallel 
data words are passed directly to the data compression block.  
In NIR slice channels, the parallel data words are first 
processed by the accumulation and SDRAM controller blocks 
before they are passed to the data compression block.  

The science data compression block consists of a strictly 
lossless data compression algorithm that is based on a subset 
of the CCSDS Lossless Data Compression recommendation 
[1]. This lossless block is preceded by an optional pre-scaling 
block that is not strictly lossless but truncates low order bits 
that contain little useful information because they are 
dominated by detector noise [2]. The lossless compression 
component is implemented as a parallel algorithm in the 
FPGA firmware. The algorithm concurrently evaluates the 
resulting sequence lengths for fourteen different compression 
options. 
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The option selected is the one which results in the shortest 

compressed sequence length. An option code is included in 
the compressed file bit stream for each block of processed 
data. This option code identifies the selected option used to 
encode the block of data. If no option results in a sequence 
shorter than the length of the original, uncompressed data, the 
data words are not compressed and are labeled with an option 
code indicating “no compression”.   

The optional pre-scaler, which is used to map data words 
into shorter code words, is implemented in firmware as a 
lookup table and binary search which iteratively refines the 
estimation of the code word to represent the data. Pixel data 
are compared against the contents of a lookup table which 
represent ranges over which the data may be represented by a 
compressed word of shorter length. The final compressed 
value is determined through a binary search of the contents in 
the lookup table. The number of steps is bounded by log2(N) 
where N is the number of code words in the approach. Like 
the CCSDS algorithm, this pre-scaler can be applied in real 
time to the data arriving from CCD channels. An illustration 
of the method of square root prescaling is show in Figure 4. 

The compressed data will be passed out from the 
compression block as CCSDS source packets [3]. Each packet 
will include data from a fixed number of pixels to make 
packet decoding straightforward. These source packets are 
delivered 
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to page buffers and written to the flash memory. A count of 
the number of bytes is recorded for each exposure file on each 
slice. After a readout cycle is completed, the number of 
compressed bytes is read from each slice by the ICU and 
recorded. The byte counts will be used during downlink 
operations so that only the required number of bytes will be 
transmitted to the ground.  

IV. DATA COMPRESSION AND STORAGE 
Figure 5 illustrates the data compression architecture 

implemented in the FPGA. Data will be delivered to this block 
either directly from the CCD readout chip or from the 
SDRAM of a NIR channel. The data may be passed through 
the optional pre-scaler, followed by the lossless data 
compression block. An option to force no compression is 
included in the lossless compression block. The data are 
assembled into blocks corresponding to a fixed number of 
pixels and the best choice among the options is evaluated by 
comparing resulting sequence lengths in parallel as the block 
data accumulates. A binary voting tree is used to declare the 
best option. This option code is then fed forward so that the 
pixel data corresponding to the block just evaluated can be 
compressed into the output bit stream according to the rules of 
the lossless data compression algorithm. Because data for four 
channels from the CCD detector are interleaved, input FIFO 
#1 is present to accumulate four full compression blocks prior 
to the evaluation of data. This accumulation represents a fixed 
FIFO start up latency. Once the best option is declared by the 
voting block, the pixels in the input FIFO #2 are extracted 
and, using the chosen option, assembled one bit at a time into 
the compressed data sequences. These bits are passed out of 
the sequence construction block as bytes where they are input 
to the CCSDS Source Packet formation block. This block 
assembles the compressed data corresponding to a fixed 
number of detector pixels into source packets with a primary 
header and an optional secondary header. The secondary 
header will contain a packet ID, an exposure ID, and a state 
description of the conditions under which the data were taken. 
Included in the state description would be application specific  
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parameters such as the selected compression technique (no 
compression, lossless compression with pre-scaler, lossless 
compression without pre-scaler). Packets will be assembled in 
two packet buffers which will be alternated by the firmware. 
When one buffer is being written with data, the other buffer 
can be passing the data for a previously constructed packet 
forward to one of two receiving page buffers. A page buffer is 
designed to contain the same number of bytes as a page in the 
flash memory architecture. The transfer of data in page-sized 
units is the most efficient way of utilizing the flash memories. 

Although the packets are constructed from data with a fixed 
number of pixels, the size of the packets will vary due to the 
application of compression. However, the packet specification 
was defined such that even the longest possible packet must 
have a length less than or equal to the size of a page buffer. 
Restricting packets to this size prevents a bottleneck in the 
transfer from packet buffers to page buffers. 

The image file data will be transmitted about every day to 
the ground. Figure 6 illustrates the architecture of the down 
link process. In this architecture, the data is pulled from the 
slice memories on command from the Down Link Controller. 
This processor will format the data with Error Detection and 
Correction bits as and place the payload in Transfer Frames. 
These are then forwared to the transmitters for ground 
transmission. The transmission should be as close as possible 
to a continuous bit stream to maximize the efficient use of the 
telemetry link. Data is pulled from the slices at 25 MHz in 
byte wide channels. If the Down Link Controller gets 
congested, it may suspend the transmission of data from the 
slice using a throttle control.  

V. CCD CHANNEL OPERATION SEQUENCE 
The sequence of events for processing exposure data 

includes the following activities: 
 
1. Exposure readout set up – this is the configuration of 

each slice to prepare it to accept image data and to 
compress and store the image data in allocated flash 
memory blocks. The process of setting up an exposure 
read out will take place during the time in which an 

exposure is actually taking place, while the shutter on 
the focal plane of the imager is open.  

2. Exposure readout – this is the actual process of 
transferring the data from the detector to the slice 
FPGA. During this time, data words are delivered to the 
slice FPGA and either compressed in real time (for 
CCD slice channels) or averaged and stored in the 
SDRAM for compression after the readout period (for 
NIR slice channels).  

3. File downlink set up – this is the process of configuring 
each slice to prepare for extracting file data from the 
flash memories. 

4. File downlink – this is the process in which previously 
stored file data are extracted from the flash memory 
and forwarded to a downlink controller for 
transmission to a  
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ground station 

To set up an exposure, the ICU will provide a list of 
available flash memory blocks (including a chip ID targeting 
the specific flash devices on the slice) and write these to a 
flash block ID RAM on the slice FPGA. The ICU also 
provides the count of the number of such blocks provisioned. 
After the flash memory blocks have been provisioned, the 
ICU will configure the programmable blocks in the FPGA 
including the data compression blocks (pre-scaler and 
lossless), and the flash controller. The flash controller will be 
programmed with a “data readout” command code. Once the 
controller and compression blocks have been configured, the 
ICU will issue a command to the front end to begin the 
delivery of data. The slice is required to accept the incoming 
data fast enough to prevent any bottlenecks. The compressed 
packet data will fill the flash memory page buffers. Each byte 
written to the page buffers is counted. Once a page buffer is 
filled, the flash controller will retrieve the ID of the first 
allocated flash memory block from the flash block ID RAM 
and use this to construct a command sequence to be issued to 
the flash memory for executing a page program operation 
(which commits a page consisting of 2048 bytes of data to the 
designated flash block). At the end of a page program 



 

operation, a program status operation is executed. If the 
operation is errored, the location of the bad block is recorded 
by the slice FPGA. This information will be read by the ICU 
after the readout is completed so that the ICU can update a list 
of bad blocks, removing them from the list of blocks available 
for file storage.  

Each time a filled page buffer is written to the designated 
block, a page counter in the flash controller is incremented. 
When the number of pages in a block is reached, the block is 
full. This causes the flash controller to retrieve the next 
allocated block from the flash block ID RAM. The number of 
blocks in use is counted. This process continues as long as the 
flash controller is enabled (by the enabling bit assigned to the 
controller in the block enable register). If the number of 
blocks consumed is greater than the number allocated by the 
ICU, the flash controller writes a “block overflow” code to its 
internal error register. It also suspends the acceptance of any 
further data from the front end. Once the block is disabled, the 
ICU can read the error code register to determine if the 
readout was successful. The ICU can also read the count of 
bytes that were written to the flash and the identities of any 
errored blocks observed during the process.   

The file downlink process is set up by having the ICU write 
the identities of flash blocks that have been used to store a 
specific file. The file to be downlinked may be requested from 
the ground individually or as part of a group of files. The ICU 
retains the list of flash blocks in which the data resides. The 
ICU writes the block locations to the flash block ID RAM and 
the number of blocks for the file. The ICU also programs a 
file byte count for the file into registers in the flash controller 
and the FPGA’s downlink control block. Once the set up has 
been completed, the ICU enables the flash controller and the 
downlink controller. File data values are extracted by the flash 
controller and held in the flash page buffers. As soon as a 
buffer is filled, the downlink controller is notified and begins 
extracting data from the filled buffer. The downlink control 
block of the FPGA controls the flow of data because it must 
convert the bytes into a serial bit stream bracketed by start, 
parity, and stop bits. Each transmitted byte is counted and 
when the transmitted byte count equals the file byte count 
programmed by the ICU, the downlink control block of the 
FPGA suspends operation. If the process is terminated before 
this byte count is reached, an error code (early downlink 
termination) is set in the error register of the downlink control 
block. 

Files are retained in the flash memories even after the data 
has undergone a downlink operation. This makes the data 
available if it is necessary to repeat the transmission process. 
For example, if poor weather conditions prevent the data from 
being received free of errors, the ground operations may 
request the transmission of the file again. Since the files are 
stored in a random access fashion, individual files are 
available for extraction. Once a file has been received on the 
ground, the ICU can be commanded to erase the flash blocks 
in which the data for the file were stored. The ICU will 
achieve this by providing the flash block ID RAM with the 

blocks to be erased and by writing the “erase flash blocks” 
command code (along with a count of the number of blocks to 
be erased) to the flash controller. If flash operation status 
queries result in the identification of errored blocks, the ICU 
can obtain this information and remove such blocks from the 
list of available blocks for use in future image storage 
operations.  

VI. NIR CHANNEL OPERATION SEQUENCE 
NIR slice channels are operated differently due to the fact 

that the data will not be compressed concurrently with the 
readout process. As mentioned earlier, multiple readout 
operations are executed for a given exposure of the NIR 
detector. The final value stored for a given pixel is obtained 
by summing several “negative” readouts (resulting from 
readout of the detector before exposure), with a number of 
“positive” readouts (resulting from readout of the detector 
after exposure). The resultant sum is equivalent to the 
difference of the “after exposure” readout images with the 
“before exposure” readout images. The result is scaled by 
simple shifting by a programmable number of bits prior to 
storage in the SDRAM.  

During the readout of NIR channels, the flash controller is 
not active. Instead, the accumulator controller and the 
SDRAM controller are enabled. Data accumulation is 
performed in one of two accumulation buffers by either 
adding to or subtracting from earlier accumulated values 
which are held in locations in SDRAM (one location for each 
pixel). The accumulator controller acts concurrently with the 
SDRAM controller using the shared pair of accumulation 
buffers. When a buffer is filled with accumulated data from an 
ongoing readout cycle, that buffer is turned over to the 
SDRAM controller which commits the partial sum to 
designated locations in the SDRAM. The SDRAM controller 
must write this data out to storage, pre-load the next buffer of 
data from another block of SDRAM locations, and meet its 
refresh cycle timing commitments before the second buffer 
has filled with accumulated data. A separate refresh counter 
will autonomously increment and the SDRAM controller will, 
between data transfer operations, read the counter. The count 
that is recorded will be used to execute an equal number of 
refresh cycles before the SDRAM controller returns to the 
activities of reading and writing from the accumulation 
buffers.   

The SDRAM controller will extract the final averaged data 
for the nth exposure during the mth exposure period where m = 
n + 1. During the data compression phase, the SDRAM 
controller, the data compression blocks, and the flash 
controller will all be enabled. The flash block ID RAM will 
have been set up with the allocated flash blocks as well. The 
SDRAM controller is responsible for providing the necessary 
word strobes to the data compression block as it makes data 
from the SDRAM available to the compression block. 
Processing flow is illustrated in Figure 7. 
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VII. DESIGN PROTOTYPING  
Many of the features described here have been tested in a 

prototyping design called the TSDC Firmware Development 
Card (illustrated in Figure 8). This card includes an Actel 
A3P1000 flash-based FPGA, 8 Gbits of flash memory, and 
256 Mbits of SDRAM. This card emulates the slice hardware 
(see Figure zz). The emulation of the front end (for delivery of 
image data) and the ICU control unit (for commanding the 
slice FPGA) is provided by a Programmable Test Adapter 
(PTA), a general purpose data acquisition board developed by 
the Electronic Systems Engineering Department at the Fermi 
National Accelerator Laboratory. 
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The application software for commanding the slice 
operations is written using Microsoft Visual C++. The major 
functions corresponding to slice operations (set up, readout, 
data compression, downlink, and flash block erase) are 
provided as button and text box controls to aid in the 
operation and debugging of the system. Figure 9 illustrates the 
user interface. 

Fig. 9. SNAP System Emulator GUI

 While prototyping has made use of a reprogrammable 
FPGA, components of the system have been evaluated to 
obtain estimates of the resource utilization required in a 
typical space-qualified FPGA (an Actel RTAX2000S antifuse-
based FPGA). A brief summary of these estimates is provided 
in Table 1. 

In addition to logic resources, SRAM resources in the 
FPGA are also required to implement features such as the 
flash block ID RAM, flash memory page buffers, CCSDS 
packet format buffers, accumulation buffers (for NIR channel 
processing), and pre-scaler lookup table storage. Estimates of 
the SRAM resource utilization to support these features are 
provided in Table 2 for the same space-qualified FPGA: 
 

 
TABLE 1 

FPGA LOGIC RESOURCE ESTIMATES (RTAX2000S) 
Functional Block R Cells C Cells 
Lossless Compression: 
Option Sequence Length Evaluation 

8 % 8 % 

Lossless Compression: 
Compressed Data Formatting  

6 % 5 % 

Lossless Compression: 
Prediction Error Mapper 

1 % 1 % 

Lossless Compression: 
All Blocks 

17 % 17 % 

Flash Memory Controller 2% 6 % 
SPI-like Communications Interfaces 2% 2 % 
Total 23 % 26 % 

 
The figures listed represent the percentage of the total number of respective 
cell type available in the indicated device. Not all functional blocks for the 
design have been estimated at this time. 

 
 
 
 

TABLE 2  
FPGA SRAM RESOURCE ESTIMATES (RTAX2000S) 



 

FPGA SRAM Functional 
Block 

Bytes Device 
Utilization 

Flash Block ID RAM 512 1.4 % 
Flash Memory Page 
Buffers 

4096 11 % 

CCSDS Source Packet 
Buffers 

4096 11 % 

NIR Channel Accumulator 
Buffers 

2048 5.5 % 

Square Root Pre-scaler 
Lookup Table 

8192 22 % 

Total 18944 51  % 
 

The figures listed represent the percentage of the total number of SRAM bits 
available in the indicated device. 
 

 
 
In order to protect against single event upsets (SEUs) in the 

design, error detection and correction blocks will be 
implemented to envelope the sensitive memory portions of the 
design. For example, the lookup table for the optional pre-
scaler needs to be protected so such measures will be applied 
to this table. Other portions of the design that may benefit 
from this approach include the accumulator buffers in the NIR 
channel processing and the flash memory page buffers. The 
data being written in packet format will have error detection 
bits added before the data are written to the flash.  
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