

Distributed Data Acquisition and Storage
Architecture for the SuperNova Acceleration

Probe
Ryan Rivera

 for the SNAP Collaboration

Abstract— The SuperNova Acceleration Probe (SNAP)
instrument is being designed to collect image and spectroscopic
data for the study of dark energy in the universe. This paper
describes a distributed architecture for the data acquisition
system which interfaces to visible light and infrared imaging
detectors. The architecture includes the use of NAND flash
memory for the storage of exposures in a file system. Also
described is an FPGA-based lossless data compression algorithm
with a configurable pre-scaler based on a novel square root data
compression method to improve compression performance. The
required interactions of the distributed elements with an
instrument control unit will be described as well.

Index Terms—Data acquisition, data compression, distributed
memories, space vehicle electronics.

I. INTRODUCTION
HE SuperNova Acceleration Probe (SNAP) is a proposal
for a satellite observatory being prepared for the Joint

Dark Energy Mission (JDEM) [1]. The observatory design
features a 2 meter telescope with a field of view of
approximately 0.7 square degrees. A half-billion pixel
imaging camera consisting of visible light CCD and near-
infrared (NIR) detectors provides imaging capabilities from
the visible to the near infrared portions of the spectrum. The
CCD imager provides coverage for wavelengths from 0.35 μm
to 1.0 μm. The NIR imager is a HgCdTe detector providing
coverage for wavelengths from 0.9 μm to 1.7 μm. Also
included are spectrometers to support the identification of
Type IA supernovae. The mission includes a supernova
survey and a weak-lensing survey.

The instrument is being designed as a distributed readout
and memory system with multiple partitions called slices.
Each slice consists of non-volatile memories to store multiple
exposures in a distributed file system. A total of 36 slices will

Manuscript received November 12, 2007. This work was supported by

Fermi National Accelerator Laboratory operated by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the United States
Department of Energy.

Ryan Rivera is with the Fermi National Accelerator Laboratory, PO Box
500 Batavia, IL 60510 (e-mail: rrivera@fnal.gov).

be dedicated to the CCD imaging array. Each CCD slice will
support (3510)2 pixels. An additional 36 slices will be
dedicated to the NIR imaging array. Each NIR slice will
support (2048)2 pixels. Data are to be collected for exposures
of 300 seconds each. During each exposure period, there will
be no transfer of data to or from the detector front end
electronics. After each exposure, a readout period of
approximately 30 seconds will occur during which the data
collected during the exposure are transferred to the slices for
compression and storage. The compressed data for each
exposure will be stored in a standard packet format in NAND
flash memories on the slices. The activities of data readout,
compression, and file storage are coordinated by a master
flight computer called the Instrument Control Unit (ICU).
Approximately once a day, the files representing the
exposures are extracted from the flash memories and
transmitted to a ground station.

II. DATA ACQUISITION SYSTEM ARCHITECTURE
Figure 1 illustrates the key elements in the data acquisition

system. The front end electronics modules include detector
readout ICs that control the delivery of image data from the
detector elements. The data delivered from these readout ICs
are sent over 25 Mbps links to a slice unit. Independent slices
are dedicated to independent detector elements. This
independence is required to eliminate the possibility of a
failure in one slice causing another slice to malfunction. CCD
channels will deliver data from four pixels as a group framed
by start, stop, and a single parity bit. The data word for each
pixel is 16 bits long with the 2 most significant bits
representing a scale factor. The pixels are interleaved meaning
that, following the start bit, 16 bits representing the first pixel
are transmitted, followed by 16 bits each for the second, third,
and fourth pixels. This group of pixels is followed by a single
parity bit computed using all of the 64 bits followed by a stop
bit. When the channel is inactive, the channel is held high.

NIR channels will deliver data on four separate connections
operating synchronously. The processing of NIR detector
pixels will be done in groups of four so that pixels are
compressed in blocks in which neighboring pixels are
compressed as a unit.

T

FERMILAB-CONF-07-607-CD

mailto:aprosser@fnal.gov

Slice

Downlink
Control
Interface

ICU
Control

Interface

Data
Interface

With
Telemetry

System

LVDS Pairs

Slices

Front
End

Electronics

25 Mbps

25 Mbps

300 Mbps

Front
End

Fig. 1. DAQ System Architecture

25 Mbps

Control
Interface

With
ICU

The slices and front end components are programmed and

controlled by the ICU. Each ASIC on the front end modules
and an FPGA on the slices is assigned a unique ASIC ID code
to address the device to be programmed. Broadcast write
transmissions will be supported so that multiple ASICs may
be commanded with the same command cycle. Commands
issued to a slice FPGA will be filtered from the command
stream so that they do not arrive at the ASICs of the
associated front end module.

The ICU interface controller is responsible for decoding the
slice channel address and routing the command to the
designated slice over a dedicated 25 Mbps link from the
controller. Responses from the slice will have the slice
channel address encoded in the bit stream returned to the ICU.

Figure 2 illustrates the major components of a slice. At the
heart of each slice is an FPGA which communicates with the
ICU via the ICU control interface. All communications for the
channel are processed by the slice FPGA. The FPGA forwards
only those commands issued to front end module ASICs over
a dedicated control interface to the front end module. There is
also a dedicated science data interface over which the detector
data are delivered to the slice

SDRAM
(256 Mbit)

FPGA

File Downlink Data

ICU Control InterfaceFront End
Command

&
Response

Image
Data

25 Mbps

25 Mbps

25 Mbps

25 Mbps

Flash Memory Banks (4Gbit Total)

Fig. 2. Slice Hardware Architecture

during front end readout operations. During the downlink
operations, the slice FPGA is commanded to extract stored

image files and transmit them to a downlink controller which
delivers the data for all slices to the spacecraft telemetry
system.
 The exposure files are stored in flash memory on the slice.
The flash memories are organized in two independent banks
(16 Gbits/bank) to prevent a failure on an I/O bus from
eliminating an entire slice channel. The location of file data in
the flash memory is coordinated with the ICU. The ICU can
maintain a file system in which the flash memory blocks used
to store the data for a given exposure is recorded.
 Slice channels which are serving NIR detector readout also
include a 256 Mbit Synchronous DRAM (SDRAM) to be used
as an intermediate storage device. Unlike the CCD detectors,
the NIR detectors can be read more than once per exposure so
that signal averaging can be applied to reduce the effects of
readout noise in the electronics. The SDRAM will be used to
hold sums of pixel data (one sum for each pixel) as multiple
readout cycles are processed for a single exposure. Then, after
a sufficient number of readout cycles have been accumulated,
the pixel data can be shifted to complete the averaging
process. The resulting pixel averages reside in the SDRAM.
Once the data have been processed in this manner, they can be
delivered to the data compression block in the FPGA. CCD
channels can be compressed on the fly as the data streams in
from the detector front end modules. Exposure data for the
NIR channels will be compressed during the following
exposure period.

III. FPGA FIRMWARE ARCHITECTURE
The functional blocks of the FPGA firmware are illustrated

in Figure 3. Commands from the ICU are decoded and routed
within the FPGA to the various programmable blocks by the
command processor. Responses to read and status requests
issued by the ICU are formatted in the output formatter.
Blocks are enabled for operation by setting a bit
corresponding to the respective blocks in the block enable
register.

The science data front end processor is responsible for
serial to parallel conversion of incoming image data during an
exposure readout period. In CCD slice channels, the parallel
data words are passed directly to the data compression block.
In NIR slice channels, the parallel data words are first
processed by the accumulation and SDRAM controller blocks
before they are passed to the data compression block.

The science data compression block consists of a strictly
lossless data compression algorithm that is based on a subset
of the CCSDS Lossless Data Compression recommendation
[1]. This lossless block is preceded by an optional pre-scaling
block that is not strictly lossless but truncates low order bits
that contain little useful information because they are
dominated by detector noise [2]. The lossless compression
component is implemented as a parallel algorithm in the
FPGA firmware. The algorithm concurrently evaluates the
resulting sequence lengths for fourteen different compression
options.

ICU
Control

Interface

Front End
Control

Interface

Front End
Data

Interface

Flash
Memory
Interface

Downlink
Control
Interface

Command
Processor
Output
Formatter

Front
End
Data
Processing

Data
Compress

Flash
Control

SDRAM
Control

and
Accumulator

Data
Output
Control

FPGA Boundary

SDRAM Interface

Control
Interface

File
Output
Data
Interface

Flash Controller
Control Interface

Block Enable Register

Enable

Enable

Enable

Control
Interface

Fig. 3. Slice FPGA Firmware Architecture

The option selected is the one which results in the shortest

compressed sequence length. An option code is included in
the compressed file bit stream for each block of processed
data. This option code identifies the selected option used to
encode the block of data. If no option results in a sequence
shorter than the length of the original, uncompressed data, the
data words are not compressed and are labeled with an option
code indicating “no compression”.

The optional pre-scaler, which is used to map data words
into shorter code words, is implemented in firmware as a
lookup table and binary search which iteratively refines the
estimation of the code word to represent the data. Pixel data
are compared against the contents of a lookup table which
represent ranges over which the data may be represented by a
compressed word of shorter length. The final compressed
value is determined through a binary search of the contents in
the lookup table. The number of steps is bounded by log2(N)
where N is the number of code words in the approach. Like
the CCSDS algorithm, this pre-scaler can be applied in real
time to the data arriving from CCD channels. An illustration
of the method of square root prescaling is show in Figure 4.

The compressed data will be passed out from the
compression block as CCSDS source packets [3]. Each packet
will include data from a fixed number of pixels to make
packet decoding straightforward. These source packets are
delivered

Store these pixel values in a lookup table

The addresses of these values in the lookup table
then become the coded values

Equivalent
Pixel Values
(coded values)

Actual Value
From Detector

Fig. 4. Square Root Prescaling Evaluation

to page buffers and written to the flash memory. A count of
the number of bytes is recorded for each exposure file on each
slice. After a readout cycle is completed, the number of
compressed bytes is read from each slice by the ICU and
recorded. The byte counts will be used during downlink
operations so that only the required number of bytes will be
transmitted to the ground.

IV. DATA COMPRESSION AND STORAGE
Figure 5 illustrates the data compression architecture

implemented in the FPGA. Data will be delivered to this block
either directly from the CCD readout chip or from the
SDRAM of a NIR channel. The data may be passed through
the optional pre-scaler, followed by the lossless data
compression block. An option to force no compression is
included in the lossless compression block. The data are
assembled into blocks corresponding to a fixed number of
pixels and the best choice among the options is evaluated by
comparing resulting sequence lengths in parallel as the block
data accumulates. A binary voting tree is used to declare the
best option. This option code is then fed forward so that the
pixel data corresponding to the block just evaluated can be
compressed into the output bit stream according to the rules of
the lossless data compression algorithm. Because data for four
channels from the CCD detector are interleaved, input FIFO
#1 is present to accumulate four full compression blocks prior
to the evaluation of data. This accumulation represents a fixed
FIFO start up latency. Once the best option is declared by the
voting block, the pixels in the input FIFO #2 are extracted
and, using the chosen option, assembled one bit at a time into
the compressed data sequences. These bits are passed out of
the sequence construction block as bytes where they are input
to the CCSDS Source Packet formation block. This block
assembles the compressed data corresponding to a fixed
number of detector pixels into source packets with a primary
header and an optional secondary header. The secondary
header will contain a packet ID, an exposure ID, and a state
description of the conditions under which the data were taken.
Included in the state description would be application specific

Pixel
Output

.

.

.

Input
FIFO
#2

FIFO
Control

Flash
Page
Buffers

Page
Buffer
Output
Control

Sequence
Length
Evaluation
(Parallel)

Option
Voting
Tree

Compressed
Data
Sequence
Construction

Output
Data
(to

Flash)

Pre-
scaler

PEM*

*Prediction Error Mapper

Packet
Formation

Input
FIFO
#1

FIFO
Control

Fig. 5. Data Compression Architecture

parameters such as the selected compression technique (no
compression, lossless compression with pre-scaler, lossless
compression without pre-scaler). Packets will be assembled in
two packet buffers which will be alternated by the firmware.
When one buffer is being written with data, the other buffer
can be passing the data for a previously constructed packet
forward to one of two receiving page buffers. A page buffer is
designed to contain the same number of bytes as a page in the
flash memory architecture. The transfer of data in page-sized
units is the most efficient way of utilizing the flash memories.

Although the packets are constructed from data with a fixed
number of pixels, the size of the packets will vary due to the
application of compression. However, the packet specification
was defined such that even the longest possible packet must
have a length less than or equal to the size of a page buffer.
Restricting packets to this size prevents a bottleneck in the
transfer from packet buffers to page buffers.

The image file data will be transmitted about every day to
the ground. Figure 6 illustrates the architecture of the down
link process. In this architecture, the data is pulled from the
slice memories on command from the Down Link Controller.
This processor will format the data with Error Detection and
Correction bits as and place the payload in Transfer Frames.
These are then forwared to the transmitters for ground
transmission. The transmission should be as close as possible
to a continuous bit stream to maximize the efficient use of the
telemetry link. Data is pulled from the slices at 25 MHz in
byte wide channels. If the Down Link Controller gets
congested, it may suspend the transmission of data from the
slice using a throttle control.

V. CCD CHANNEL OPERATION SEQUENCE
The sequence of events for processing exposure data

includes the following activities:

1. Exposure readout set up – this is the configuration of

each slice to prepare it to accept image data and to
compress and store the image data in allocated flash
memory blocks. The process of setting up an exposure
read out will take place during the time in which an

exposure is actually taking place, while the shutter on
the focal plane of the imager is open.

2. Exposure readout – this is the actual process of
transferring the data from the detector to the slice
FPGA. During this time, data words are delivered to the
slice FPGA and either compressed in real time (for
CCD slice channels) or averaged and stored in the
SDRAM for compression after the readout period (for
NIR slice channels).

3. File downlink set up – this is the process of configuring
each slice to prepare for extracting file data from the
flash memories.

4. File downlink – this is the process in which previously
stored file data are extracted from the flash memory
and forwarded to a downlink controller for
transmission to a

Slice 1

Slice 40

Slice Box 1

Down Link Controller

150 MHz

25 MHz Transmitter

150 Mbps

Transmitter

Slice 1

Slice 40

Slice Box 2

Fig. 6. Down Link Architecture

ground station

To set up an exposure, the ICU will provide a list of
available flash memory blocks (including a chip ID targeting
the specific flash devices on the slice) and write these to a
flash block ID RAM on the slice FPGA. The ICU also
provides the count of the number of such blocks provisioned.
After the flash memory blocks have been provisioned, the
ICU will configure the programmable blocks in the FPGA
including the data compression blocks (pre-scaler and
lossless), and the flash controller. The flash controller will be
programmed with a “data readout” command code. Once the
controller and compression blocks have been configured, the
ICU will issue a command to the front end to begin the
delivery of data. The slice is required to accept the incoming
data fast enough to prevent any bottlenecks. The compressed
packet data will fill the flash memory page buffers. Each byte
written to the page buffers is counted. Once a page buffer is
filled, the flash controller will retrieve the ID of the first
allocated flash memory block from the flash block ID RAM
and use this to construct a command sequence to be issued to
the flash memory for executing a page program operation
(which commits a page consisting of 2048 bytes of data to the
designated flash block). At the end of a page program

operation, a program status operation is executed. If the
operation is errored, the location of the bad block is recorded
by the slice FPGA. This information will be read by the ICU
after the readout is completed so that the ICU can update a list
of bad blocks, removing them from the list of blocks available
for file storage.

Each time a filled page buffer is written to the designated
block, a page counter in the flash controller is incremented.
When the number of pages in a block is reached, the block is
full. This causes the flash controller to retrieve the next
allocated block from the flash block ID RAM. The number of
blocks in use is counted. This process continues as long as the
flash controller is enabled (by the enabling bit assigned to the
controller in the block enable register). If the number of
blocks consumed is greater than the number allocated by the
ICU, the flash controller writes a “block overflow” code to its
internal error register. It also suspends the acceptance of any
further data from the front end. Once the block is disabled, the
ICU can read the error code register to determine if the
readout was successful. The ICU can also read the count of
bytes that were written to the flash and the identities of any
errored blocks observed during the process.

The file downlink process is set up by having the ICU write
the identities of flash blocks that have been used to store a
specific file. The file to be downlinked may be requested from
the ground individually or as part of a group of files. The ICU
retains the list of flash blocks in which the data resides. The
ICU writes the block locations to the flash block ID RAM and
the number of blocks for the file. The ICU also programs a
file byte count for the file into registers in the flash controller
and the FPGA’s downlink control block. Once the set up has
been completed, the ICU enables the flash controller and the
downlink controller. File data values are extracted by the flash
controller and held in the flash page buffers. As soon as a
buffer is filled, the downlink controller is notified and begins
extracting data from the filled buffer. The downlink control
block of the FPGA controls the flow of data because it must
convert the bytes into a serial bit stream bracketed by start,
parity, and stop bits. Each transmitted byte is counted and
when the transmitted byte count equals the file byte count
programmed by the ICU, the downlink control block of the
FPGA suspends operation. If the process is terminated before
this byte count is reached, an error code (early downlink
termination) is set in the error register of the downlink control
block.

Files are retained in the flash memories even after the data
has undergone a downlink operation. This makes the data
available if it is necessary to repeat the transmission process.
For example, if poor weather conditions prevent the data from
being received free of errors, the ground operations may
request the transmission of the file again. Since the files are
stored in a random access fashion, individual files are
available for extraction. Once a file has been received on the
ground, the ICU can be commanded to erase the flash blocks
in which the data for the file were stored. The ICU will
achieve this by providing the flash block ID RAM with the

blocks to be erased and by writing the “erase flash blocks”
command code (along with a count of the number of blocks to
be erased) to the flash controller. If flash operation status
queries result in the identification of errored blocks, the ICU
can obtain this information and remove such blocks from the
list of available blocks for use in future image storage
operations.

VI. NIR CHANNEL OPERATION SEQUENCE
NIR slice channels are operated differently due to the fact

that the data will not be compressed concurrently with the
readout process. As mentioned earlier, multiple readout
operations are executed for a given exposure of the NIR
detector. The final value stored for a given pixel is obtained
by summing several “negative” readouts (resulting from
readout of the detector before exposure), with a number of
“positive” readouts (resulting from readout of the detector
after exposure). The resultant sum is equivalent to the
difference of the “after exposure” readout images with the
“before exposure” readout images. The result is scaled by
simple shifting by a programmable number of bits prior to
storage in the SDRAM.

During the readout of NIR channels, the flash controller is
not active. Instead, the accumulator controller and the
SDRAM controller are enabled. Data accumulation is
performed in one of two accumulation buffers by either
adding to or subtracting from earlier accumulated values
which are held in locations in SDRAM (one location for each
pixel). The accumulator controller acts concurrently with the
SDRAM controller using the shared pair of accumulation
buffers. When a buffer is filled with accumulated data from an
ongoing readout cycle, that buffer is turned over to the
SDRAM controller which commits the partial sum to
designated locations in the SDRAM. The SDRAM controller
must write this data out to storage, pre-load the next buffer of
data from another block of SDRAM locations, and meet its
refresh cycle timing commitments before the second buffer
has filled with accumulated data. A separate refresh counter
will autonomously increment and the SDRAM controller will,
between data transfer operations, read the counter. The count
that is recorded will be used to execute an equal number of
refresh cycles before the SDRAM controller returns to the
activities of reading and writing from the accumulation
buffers.

The SDRAM controller will extract the final averaged data
for the nth exposure during the mth exposure period where m =
n + 1. During the data compression phase, the SDRAM
controller, the data compression blocks, and the flash
controller will all be enabled. The flash block ID RAM will
have been set up with the allocated flash blocks as well. The
SDRAM controller is responsible for providing the necessary
word strobes to the data compression block as it makes data
from the SDRAM available to the compression block.
Processing flow is illustrated in Figure 7.

Accumulate
Negative
In Buffer A

Accumulate
Positive
In Buffer B

ICU Issues Store/Compress
Command for Contents
Of Buffer A to Flash

ICU Issues Command Set
And Start

Dark Frames

Exposed
Frames

NIR
Reset

Shutter
Open

Fig. 7. NIR Channel Processing Flow

Accumulate
Negative
In Buffer B

ICU Issues Command Set
And Start

Accumulate
Positive
In Buffer A

NIR
Reset

Accumulate
Negative
In Buffer A

VII. DESIGN PROTOTYPING
Many of the features described here have been tested in a

prototyping design called the TSDC Firmware Development
Card (illustrated in Figure 8). This card includes an Actel
A3P1000 flash-based FPGA, 8 Gbits of flash memory, and
256 Mbits of SDRAM. This card emulates the slice hardware
(see Figure zz). The emulation of the front end (for delivery of
image data) and the ICU control unit (for commanding the
slice FPGA) is provided by a Programmable Test Adapter
(PTA), a general purpose data acquisition board developed by
the Electronic Systems Engineering Department at the Fermi
National Accelerator Laboratory.

PCI Test Adapter
Connection* Flash Memory

SDRAM

FPGA
(Actel A3P1000)

* For ICU and Front End Emulation

Debug Header

Fig. 8. SNAP Firmware Development Prototype

The application software for commanding the slice
operations is written using Microsoft Visual C++. The major
functions corresponding to slice operations (set up, readout,
data compression, downlink, and flash block erase) are
provided as button and text box controls to aid in the
operation and debugging of the system. Figure 9 illustrates the
user interface.

Fig. 9. SNAP System Emulator GUI

 While prototyping has made use of a reprogrammable
FPGA, components of the system have been evaluated to
obtain estimates of the resource utilization required in a
typical space-qualified FPGA (an Actel RTAX2000S antifuse-
based FPGA). A brief summary of these estimates is provided
in Table 1.

In addition to logic resources, SRAM resources in the
FPGA are also required to implement features such as the
flash block ID RAM, flash memory page buffers, CCSDS
packet format buffers, accumulation buffers (for NIR channel
processing), and pre-scaler lookup table storage. Estimates of
the SRAM resource utilization to support these features are
provided in Table 2 for the same space-qualified FPGA:

TABLE 1

FPGA LOGIC RESOURCE ESTIMATES (RTAX2000S)
Functional Block R Cells C Cells
Lossless Compression:
Option Sequence Length Evaluation

8 % 8 %

Lossless Compression:
Compressed Data Formatting

6 % 5 %

Lossless Compression:
Prediction Error Mapper

1 % 1 %

Lossless Compression:
All Blocks

17 % 17 %

Flash Memory Controller 2% 6 %
SPI-like Communications Interfaces 2% 2 %
Total 23 % 26 %

The figures listed represent the percentage of the total number of respective
cell type available in the indicated device. Not all functional blocks for the
design have been estimated at this time.

TABLE 2
FPGA SRAM RESOURCE ESTIMATES (RTAX2000S)

FPGA SRAM Functional
Block

Bytes Device
Utilization

Flash Block ID RAM 512 1.4 %
Flash Memory Page
Buffers

4096 11 %

CCSDS Source Packet
Buffers

4096 11 %

NIR Channel Accumulator
Buffers

2048 5.5 %

Square Root Pre-scaler
Lookup Table

8192 22 %

Total 18944 51 %

The figures listed represent the percentage of the total number of SRAM bits
available in the indicated device.

In order to protect against single event upsets (SEUs) in the

design, error detection and correction blocks will be
implemented to envelope the sensitive memory portions of the
design. For example, the lookup table for the optional pre-
scaler needs to be protected so such measures will be applied
to this table. Other portions of the design that may benefit
from this approach include the accumulator buffers in the NIR
channel processing and the flash memory page buffers. The
data being written in packet format will have error detection
bits added before the data are written to the flash.

ACKNOWLEDGMENT
The author wishes to express his gratitude to the members

of the SNAP Collaboration on whose behalf this paper is
presented.

REFERENCES
[1] G. Aldering et.al., “Overview of the Supenova/Acceleration Probe

(SNAP)”, Proc. SPIE Vol 4835, pp/ 146-157, 2002.
[2] “CCSDS Recommendation for Lossless Data Compression”, CCSDS

121.0-B-1, Blue Book, May 1997.
[3] H. Lin, J. Marriner, “Preliminary Report on Lossy Image Compression

by Square Root Prescaling”, unpublished.
[4] “CCSDS Report Concerning Telemetry: Summary of Concept and

Rationale”, CCSDS 100.0-G-1, Green Book, December, 1987.

Ryan Rivera received a B.S. degree in computer engineering from the
University of Illinois, Urbana-Champaign in 2004. He received an M.S.
degree in electrical engineering from the University of Illinois, Urbana-
Champaign in 2006. Since July, 2006, he has been a member of the Electronic
Systems Engineering department at the Fermi National Accelerator Laboratory
in Batavia, IL.

	I. INTRODUCTION
	II. Data Acquisition System Architecture
	III. FPGA Firmware Architecture
	IV. Data Compression And Storage
	V. CCD Channel Operation Sequence
	VI. NIR Channel Operation Sequence
	VII. Design Prototyping

