

Lambda Station: Alternate network path forwarding for
production SciDAC applications

Maxim Grigoriev1, Andrey Bobyshev1, Matt Crawford1, Phil DeMar1, Vyto
Grigaliunas1, Alexander Moibenko1, Don Petravick1, Harvey Newman2, Conrad
Steenberg2, Michael Thomas2
1Fermilab, PO BOX 500, Batavia, IL 60510, USA

2Caltech, 1200 East California Boulevard, Pasadena, CA 91125, USA

maxim@fnal.gov

Abstract. The LHC era will start very soon, creating immense data volumes capable of
demanding allocation of an entire network circuit for task-driven applications. Circuit-based
alternate network paths are one solution to meeting the LHC high bandwidth network
requirements. The Lambda Station project is aimed at addressing growing requirements for
dynamic allocation of alternate network paths. Lambda Station facilitates the rerouting of
designated traffic through site LAN infrastructure onto so-called "high-impact" wide-area
networks. The prototype Lambda Station developed with Service Oriented Architecture (SOA)
approach in mind will be presented. Lambda Station has been successfully integrated into the
production version of the Storage Resource Manager (SRM), and deployed at US CMS Tier1
center at Fermilab, as well as at US-CMS Tier-2 site at Caltech. This paper will discuss
experiences using the prototype system with production SciDAC applications for data
movement between Fermilab and Caltech. The architecture and design principles of the
production version Lambda Station software, currently being implemented as Java based
webservices, will also be presented in this paper.

1. Introduction

1.1. Motivations

The upcoming era of LHC high data volume distributed GRID computing implies extra
requirements on resource management applications. There will be a large demand for network aware
applications capable of reserving dedicated high performance network circuits. Correspondingly,
there will also be a need for services capable of dynamic allocation of such high performance network
paths. Lambda Station is a service that addresses the need for dynamic reconfiguration of the local
network infrastructure to enable use of high bandwidth, alternate network paths by specific
applications for designated traffic flows.

FERMILAB-CONF-07-478-CD

mailto:maxim@fnal.gov

1.2. Basic terms

We assume that reader is familiar with networking terminology and further in the text we will refer
to the Policy Based Routing as PBR. The PBR Client is the system or cluster and applications
running on it and sourcing traffic flows that can be subject for Policy Based Routing. Also, the Flow
is a stream of packets with some attributes in common, such as endpoints IP addresses (or some range
of addresses), protocols, protocol’s port (or range of ports) if applicable and differentiated services
code point (DSCP). The Lambda Station (λS) is a host with special software, referred as λS API and
designed to control traffic path across Local Area Network on demand of applications and interfacing
Wide Area Network. The ticket is a placed alternative network path reservation on the Lambda
Station from authenticated and authorized client, which goes through several states and has some finite
time duration.

1.3. Lambda Station project

The Lambda Station project [1] was started about 3 years ago by Wide Area Networking group at
Fermilab and network researchers from Caltech. The original goal of the project was to design a
secure network service which will be able to configure alternate network paths between local
production computing resources and advanced high performance network paths made available for
specific data intensive applications. More details on the progress of the project can be found in [2] and
[3]. In summary, Lambda Station is targeting on dynamic, per flow, alternate network path selection
with graceful cutover and fallback. Among our goals were providing network awareness plugins for
commonly used networked applications, and researching the behavior of network aware applications
with flow-based network path forwarding. Last, but not least, a major goal was to incorporate the λS
API within SRM [4], the production storage resource management software used within the CMS
Tier-1 facility. This presentation will cover basic building blocks of the Lambda Station architecture,
major interface calls, developed and deployed Perl based API, developed Java API and integration
with SRM production environment at Fermilab US CMS [5] Tier1 site and Caltech Tier2 site.

2. Lambda Station API

2.1. Building blocks

There are several services working together on Lambda Station. The major one is λS Controller. It
manages persistence in the form of the active tickets queue, processes all tickets, and starts related
services. These services are implemented as Java threads, where there is a thread for every incoming
or out-coming λS request, and a single thread for λS-λS service dedicated to network topology, PBR
clients definition propagation, and λS service parameters discovery. For example the simplest
reservation lifecycle can be expressed as:

– reservation request is received on the λS request interface from the client
– authorization verified for the service request
– new open ticket is added to the tickets queue
– λS Controller forwards reservation request to remote λS for reciprocal action
– λS Controller sends request to Network Configurator to configure network devices about 5

minutes before the reservation activation time
– λS Controller sends another configuration request to Network Configurator at ticket

expiration time to restore original configuration

Figure 1 illustrates how different λS services communicate with each other.

Storage & application space

λλSS request interfaceλλS S Management &
Reporting Interface

MySQL DB
requests,
Authorization

λλSS--λλS S service

λλS S Controller

local
definitions

online
updates

SOAP/JClarens

NETWORK CONFIGURATOR

CISCO Force10 WAN

Management

SOAP/JClarens

Remote Lambda Station

Data Exchange

Control & Management

SOAP over HTTPS

λλSS Persistence

Vendor specific modules

λλSS--λλS S service

λλSS request interface

Storage & application space

λλSS request interfaceλλS S Management &
Reporting Interface
λλS S Management &

Reporting Interface

MySQL DB
requests,
Authorization

λλSS--λλS S serviceλλSS--λλS S service

λλS S Controller

local
definitions

local
definitions

online
updates
online
updates

SOAP/JClarens

NETWORK CONFIGURATOR

CISCO Force10 WAN

Management

SOAP/JClarens

Remote Lambda Station

Data Exchange

Control & Management

Data Exchange

Control & Management

SOAP over HTTPS

λλSS Persistence

Vendor specific modules

λλSS--λλS S serviceλλSS--λλS S service

λλSS request interface

Figure 1 Lambda Station building blocks

2.2. Software layers

The design of the Lambda Station was chosen to be based on Service Oriented Approach
principals. Therefore, every Lambda Station presents complete and independent set of webservices
complied with WS-I Version 1.1 WebServices Interoperability Profile. This provided platform
flexibility for Lambda Station clients and network aware applications by encapsulating any
complexity of implementation within the simple, publicly available webservices interface described by
the WSDL file. After implementing prototype λS server in Perl and testing functionality of the λS
services on the WAN test-bed, we have started implementing the production λS server in Java. This
idea was supported by portability of Java SDK, and the presence of a large variety of open source
projects targeted on delivering easy to use webservices frameworks. The need for production quality
solution led us to select the Tomcat [9] webserver with Apache’s Axis [10] webservices framework.
The Axis framework allowed us to utilize WSDL2Java converter, and gave us opportunity to build
dynamically interface description classes around WSDL interface. The same Metadata-to-JavaObjects
approach was used for building XML binding classes.

The JClarens [11] webservices toolkit was added to bring such features as reusable database
connections pool, security certificates loading, user’s session management, basic service configuration
management, and background threads control. Another task was to provide support for our XML
configuration files, and add validation into the process of unmarshalling of the incoming XML
fragments inside of SOAP envelopes. After functionality tests of the several XML binding APIs, we
decided to use Apache’s XMLBeans [12] as the most mature product, as well as the one with most
complete support for XML schema.

On the backend of the λS, we employed MySQL DB as universal storage for the JClarens internals
and λS operational data. The schematic view of the interactions between different layers of the λS
software can be seen in Figure 2.

Tomcat / Axis container

Client API

JClarens

LS request service

Active tickets Queue

Network Configurator

LS/PBR XML config
 management

MySQL DB

 LS2LS PBR/LS
 config service

LS Controller

Figure 2. Interactions between different layers of the λS API

2.3. Network Configurator service

The Network Configurator service stands a little bit aside from other API, since it has been

implemented only in Perl. The purpose of this service is to modify dynamic configurations of the local
network devices. Therefore, this module is very vendor specific. In case of Fermilab’s λS service, it is
customized to work on Cisco™ routers and switches. Lambda Station may relay calls for Network
Configurator through a separate web services interface. Alternately, this service may connect to the
λS backend database to check the list of tickets that require network reconfiguration. In case of
Cisco™ routers, the IOS version must support sequencing type of the named ACLs. Also, the
interface on which PBR is applied needs to be configured with “ip policy route-map”, route map
needs to be configured as ordered list of match/action statements, and match criteria need to be
associated with ACLs.

2.4. Basic interface calls

There are several calls which client needs to know in order to negotiate alternative path reservation

with λS.
• openSvcTicket

o Major λS operational request, places alternative path reservation (“ticket”)
o Accepts svcTicket element as an argument, validated by XML schema
o Returns udpated svcTicket XML element with ticket ID

• updateFlowSpecs
o updates flow specification for the “ticket”
o Accepts svcTicket XML element as an argument, validated by XML schema
o Returns true or false

• getTicket
o get svcTicket XML element with full information about placed “ticket”
o Accepts “ticket” ID
o Returns svcTicket XML element

• cancelTicket
o cancel existed “ticket”, ticket will be closed and network topology will be changed
o back to production path
o Accepts “ticket” ID
o Returns true or false

2.5. “ticket” operational modes

Three operational modes should be considered for every openSvcTicket call. All modes are subject
to TLS/SSL-based and rules-based authorization.

• new ticket
o create a new “ticket”
o client must be authorized for local λS and station must be authorized for remote λS

• join ticket
o join already active “ticket” (in case of multiple requests for the same flow)
o existing “ticket” parameters will be reused

• extend ticket
o extend already active “ticket”
o endtime will be extended

3. Utilizing Lambda Station with SRM production environment

3.1. SRM production environment

At the present time, a Storage Resource Manager (SRM) at US CMS Tier1 in Fermilab controls
more than 100 read/write nodes, about 1PB (PetaByte) of tape-backed pools, and more than 100TB in
the resilient storage, spread across 650 worker nodes. The Tier2 facility at Caltech has 75 worker
nodes with about 55TB in the resilient storage. The most recent observed SRM data traffic between
Fermilab and Caltech is shown on the Figure 3.

10TB
50TB

10TB10TB
50TB

Figure 3. Traffic volume between Fermilab and Caltech, observed by PhEDEx

3.2. λS awareness in SRM

The λS awareness was introduced by injecting into the SRM API several CLI calls to the client λS
API placed on the same host. On the Figure 4 there is a schematic view of the interactions between λS
services and SRM.

Wide Area Network

USCMS Tier1

Advanced Networks

CMS core router
FNAL λλSS

Site Network

StarLight

CMS SRM

Caltech

Caltech λλSS

SRM

USCMS Tier2

normal traffic flow (production path)

High Impact traffic (alternative path)

λλSS - λλSS control messages

Client to λλSS requests

ACLs to router

Wide Area Network

USCMS Tier1

Advanced Networks

CMS core router
FNAL λλSS

Site Network

StarLight

CMS SRM

Caltech

Caltech λλSS

SRM

USCMS Tier2

normal traffic flow (production path)

High Impact traffic (alternative path)

normal traffic flow (production path)

High Impact traffic (alternative path)

λλSS - λλSS control messages

Client to λλSS requests

λλSS - λλSS control messages

Client to λλSS requests

ACLs to router

Figure 4. λS awareness in the SRM

Production US CMS SRM server sends request to λS to send Fermilab CMS Tier-1/Caltech Tier-2
traffic across the Advanced Network infrastructure. If λS service is available, the designated traffic
gets re-routed through the alternative path. Currently, there were about 500 λS requests per day from
the Tier-1 SRM. All requests are processed automatically, without intervention from the user.

4. Project accomplishments

The major milestones for the project to date are:

– Development and release of the Perl-based API version 1.0 (a fully functional prototype
supporting whole cycle of λS functionality)

– Deployment of a high bandwidth, alternate network path between Fermilab and Caltech and
successfully utilization of that path with λSs installed at Fermilab and Caltech.

– λS awareness build into well known applications, Iperf (lsiperf) and traceroute (lsTraceroute)
– Version 1.0 of the API integrated into the production release v.1.7.0 of the SRM.
– The λS-aware production SRM running at Fermilab’s US CMS Tier1 and Caltech Tier2 sites.
– Interoperable Java implementation of the λS’s major components developed, with support for

Perl and Java clients.

5. Future development

The main goal has been to release production quality λS Java API and integrate it with production
SRM at Fermilab’s US CMS Tier1 site, and at participating CMS Tier2 sites where there is a need for
alternative path forwarding. In the past several months, another goal has emerged. There are several
projects targeted on dynamic manipulation of network paths. Some of them are oriented towards Wide
Area Networks (WANs), and are carried by research network providers. The OSCARS [13] project
was started by ESnet two years ago, and delivers APIs capable of on-demand creation of end-to-end
circuits, based on MPLS technology. The DRAGON [14] project has a goal to deliver software
capable of Dynamic Resource Allocation via GMPLS Optical Networks. Finally, the TeraPaths [15]
project, based at Brookhaven National Lab, is designed to provide end-to-end Virtual Network Paths
with QoS Guarantees.

All of these projects operate with almost identical pieces of networking information, such as
“flows”, and all are trying to design their software as set of the secure independent web services.
Optimally, OSCARS would interoperate with Lambda Station and TeraPaths, in order to achieve end-
to-end reservation guarantee. However, there was no effort made initially to synchronize development
activities of the various projects. Our new goal is to develop a common interface standard for these
projects to promote interoperability. Lambda Station and the other projects need to collaborate on
uniform messaging protocol in order to orchestrate their webservices into the truly versatile enterprise
bus defined by Service Oriented Architecture. We need to formalize authentication and authorization
mechanisms and describe set of XML schemas for common interface calls and common data objects.
This task will take some effort in the beginning but then will allow easily accommodate any new
control plane networking API. We are looking forward to present some level of integration in the
nearest future and more information can be found on the collaborative Wiki page [16].

6. References

[1] Lambda Station project webpage, http://www.lambdastation.org
[2] P. Demar et al., “LambdaStation: A forwarding and admission control service to interface

production network facilities with advanced research network paths”, Proceedings of
CHEP2004, Interlaken, Switzerland, September 2004

[3] A. Bobyshev et al., “Lambda Station: Production Applications Exploiting Advanced Networks
in Data Intensive High Energy Physics”, Proceedings of CHEP2006, Mumbai, India,
September 2006

[4] Fermilab SRM Wiki page, https://srm.fnal.gov/twiki/bin/view/SrmProject/WebHome
[5] US CMS, http://www.uscms.org

http://www.lambdastation.org/
https://srm.fnal.gov/twiki/bin/view/SrmProject/WebHome
http://www.uscms.org/

[6] WS-I Basic Profile Version 1.1, Final Material, 2006-04-10
[7] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
[8] gLite project, http://glite.web.cern.ch/glite/
[9] Apache Tomcat project, http://tomcat.apache.org
[10] Apache Axis project, http://ws.apache.org/axis/
[11] JClarens project, http://clarens.sourceforge.net/jclarens/
[12] Apache XMLBeans project, http://xmlbeans.apache.org
[13] ESnet OSCARS project, http://es.net/oscars
[14] DRAGON project, http://dragon.east.isi.edu/twiki/bin/view/Main/WebHome
[15] Terapaths project, https://www.racf.bnl.gov/terapaths
[16] LambdaStation-TeraPaths-OSCARS integration Wiki page,

https://wiki.internet2.edu/confluence/display/CPD/LambdaStation+and+TeraPaths

http://www.w3.org/TR/wsdl
http://glite.web.cern.ch/glite/
http://tomcat.apache.org/
http://clarens.sourceforge.net/jclarens/
http://es.net/oscars
https://wiki.internet2.edu/confluence/display/CPD/LambdaStation+and+TeraPaths
https://wiki.internet2.edu/confluence/display/CPD/LambdaStation+and+TeraPaths

