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        Parameters of fundamental interest for charged 
particle beams are the beam current, temporal 
distribution, and transverse position. These quantities are 
amenable to measurement with non-intercepting devices 
sensitive to the electromagnetic fields of the beam.  A 
conceptual introduction to such devices is presented. The 
basic interactions with the electromagnetic fields of the 
beam and methods for estimating signal levels, 
sensitivities, and frequency response are described. An 
overview of typical devices appropriate for different beam 
energies, intensities, and time structures is given.  
  
I. INTRODUCTION 

 
Electromagnetic beam monitors produce signals by 

sampling the electromagnetic fields of the charged 
particle beam. They offer a non-disruptive means to 
observe and quantify numerous important properties of 
that beam itself or of the accelerator or transport line 
environment in which the beam travels.  

 Fundamental parameters that can be measured 
directly with these monitors include the beam current, the 
temporal distribution of particles in the beam, and the 
transverse position of the beam in the chamber. Signal 
frequencies ranging from DC to several GHz are 
accessible with suitably designed monitors and 
electronics. 

A fundamental understanding of the electromagnetic 
fields carried by a charged particle beam and the 
interaction of these fields with the beam environment is 
important in order to interpret beam monitor signals and 
to appreciate the parameters that drive the design and 
limit the performance of various monitors. 

  Beam monitors can be designed to sense a beam’s 
electric field, magnetic field, or combination of each. 
Devices that rely primarily on interaction with the beam's 
electric field are often called capacitive pickups. The 
amplitude of a capacitive pickup signal is independent of 

the direction the beam is traveling; signal polarity 
depends on the sign of the beam particles’ charge. 
Pickups designed to interact with the magnetic field are 
called magnetic pickups or more commonly current 
monitors. Magnetic pickup signal amplitude is also 
independent of beam travel direction; signal polarity is 
determined by the product of particle charge and direction 
of travel, i.e. the sign of electric current. Pickups that 
couple to both the electric and magnetic fields can 
produce signals of either polarity depending on the 
relative electric and magnetic coupling. These monitors 
offer the possibility of an amplitude response that is 
dependent on the direction of beam travel without regard 
to the particle charge, a directional coupler. 

 
II. THE FIELDS 

 
The beam, as an assembly of electrically charged 

particles, carries an electric field with strength 
proportional to the total charge.  Beams are normally 
enclosed inside an evacuated chamber bounded by an 
electrically conducting metallic wall. The electric field 
will induce an image charge on the inner surface of the 
chamber wall and under static conditions no electric field 
from the beam exists outside the conducting chamber.  

A beam, however, does not normally stand still. As 
an ensemble of charged particles in motion, the beam 
represents an electric current and carries a corresponding 
magnetic field. The beam current may be continuous as in 
a storage ring or pulsed as in an induction linac; within 
that macroscopic time scale, the beam is typically 
modulated with an RF structure and formed into bunches.  

For an isolated assembly of charge at rest, the electric 
field is radial in three dimensions from the ‘center-of-
mass’ of the distribution according to Gauss’s Law; the 
magnetic field is absent. When the distribution is enclosed 
in a conducting tube, the typical beam chamber, the 
density of induced charge in the tube wall is greatest 
where the electric field is largest, that is, nearest to the 
beam charge distribution. The electric field configuration 
of the combined beam/induced charge distribution is 
concentrated radially between the beam and the nearest 
tube walls; the component along the axis of the tube is 
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greatly reduced. If the tube radius is small relative to the 
axial beam dimensions of interest (e.g. bunch length), the 
static situation is well approximated by a two-dimensional 
electric field that is radial and orthogonal to the axis of 
the tube.  

When the assembly of charge moves, a magnetic 
field appears in accordance with Ampere’s Law. The 
direction of the magnetic field is perpendicular to the 
direction of motion and encircles the beam current. As the 
beam velocity becomes relativistic, the electric and 
magnetic fields become completely orthogonal to each 
other and to the direction of motion as described by the 
Lorentz transformation. These fields exhibit the 
characteristics of TEM waves. The TEM condition is a 
useful and accurate approximation for most beam monitor 
design purposes, except in the case of extremely non-
relativistic beams in geometries with unfavorable beam-
to-environment aspect ratios.  

It is convenient to consider the beam and associated 
fields using Fourier analysis methods and to describe the 
current in the frequency domain. This naturally leads to 
discussion of a beam monitor’s performance in terms of 
frequency response.  

The beam current typically presents a broad 
frequency spectrum. There is always a non-zero 
component of the current at zero frequency, DC, due to 
the fact that a beam represents a net transport of particles 
with (normally) like charges from one point to another. At 
the other end of the spectrum, there is often a RF 
frequency component to the beam, and if not, there 
remains an intrinsic high frequency component, the shot 
noise, due to the quantized nature of discrete charged 
particles.  

Figure 1 shows a simplified beam structure described 
by just one non-zero frequency term. This is a biased 
cosine-like line charge distribution with unit wavelength 
and amplitude. More generally, such a distribution with 
amplitude A and wavelength (bunch length) Lb moving at 
velocity βc is described by:  
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To an observer at a fixed position in x, the 

distribution presents a bunch frequency of f = β·c/Lb. The 
beam current of this charge distribution, observed at x = 0 
is:  
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where ω = 2πf. The zero-frequency term of magnitude 
β·c·A represents the DC or average beam current.  

It is important to realize that f, β, and Lb are not 
independent; when two are chosen, the third is 
determined.  In a Linac, the frequency is generally a fixed 
parameter. In this case, Lb, the bunch length, is the 
dependent variable and it is proportional to the beam 
velocity. Therefore, all other conditions being equal, the 
bunch length will increase as a function of energy, i.e. 
position along the Linac, until the beam becomes 
relativistic. In a synchrotron the harmonic number, the 
ratio of beam bunch frequency to revolution frequency, is 
fixed. This establishes a fundamental wavelength, bunch 
spacing, of the charge distribution. In this case, the 
frequency is the independent variable and it must change 
in proportion to beam velocity. 

Any physical beam structure can be represented by a 
linear superposition of frequencies according to Fourier 
analysis methods; therefore this simple single frequency 
example paves the way to interpretation of any beam. 
 
III. ACCESS TO THE FIELDS OF THE BEAM 
 

An electromagnetic beam monitor depends on 
interaction with the fields of the beam to produce a signal. 
Therefore, it must include a sensor located in a region 
where the fields are present.   

In the case of static fields, the typical conducting, 
non-magnetic, beam chamber effectively shields regions 
outside the chamber. This implies that the sensing 
electrode of a capacitive monitor must reside inside the 
chamber. That same chamber, however, is completely 
transparent to the static magnetic field associated with the 
DC component of the beam current.* This offers the 
possibility of a magnetic monitor to measure DC and low 
frequency beam current signals from outside the typical 
metallic beam chamber without any special modification!  

The static signals are normally of secondary interest. 

Figure 1. Cosine-like charge distribution, dq/dx. 

__________________ 
* Try it! Experiment with a permanent magnet and 
magnetic paper clips. You will find no difference in 
magnetic strength at a given distance whether the 
magnet is bare or contained within a non-magnetic 
(copper or stainless steel) metal enclosure.  



To access the information-rich parts of the spectrum at 
moderate and high frequency, the time-varying 
components of the electromagnetic fields must be 
detected. At even relatively low frequencies, the typical 
conducting chamber walls begin to attenuate the magnetic 
field. According to Faraday’s Law, a time-varying 
magnetic field will induce an emf in the chamber walls 
forcing currents to flow so as to counteract changes in the 
intercepted magnetic flux. The ‘wall currents’ will be 
opposite polarity from the beam current. As the induced 
wall current magnitude approaches equality with the 
beam current, the field outside the chamber is cancelled.  

The attenuation of an electromagnetic wave in a 
conductor is captured in the concept of skin depth. The 
skin depth is the characteristic length in which the wave 
amplitude is reduced by a factor of e or -8.69 dB. In a 
non-magnetic, good conductor the skin depth is given by:  
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where ρ is the resistivity of the conductor and f is the 
wave frequency. 

The attenuation through a material thickness, t, is 
8.69*t/δ dB. For example, at 10 MHz, a typical 1/32” 
(0.794mm) stainless beam tube wall presents a thickness 
of 6.1 skin depths and will attenuate magnetic fields 
propagating through to the exterior by 53dB.  This is 
sufficient to clobber the sensitivity of most practical beam 
monitors. At any given frequency and thickness, the 
shielding effectiveness of a copper chamber is 55dB 
better than that of stainless steel. 

Thus, nearly all practical beam monitor designs, 
capacitive or magnetic require a "window to the beam". 
The monitor, capacitive or magnetic, must be located 
within the vacuum chamber or the conducting path in the 
chamber wall must be broken.  

 

IV. A CAPACITIVE BEAM PICKUP 
 

Figure 2 shows an example capacitive beam pickup 
in a beam tube with a representative positively charged 
beam structure. It is a thin-walled, isolated annular 
electrode of length Le concentric with and located inside a 
conducting beam tube with a single tap point connection 
to transmit the signal. This pickup is sensitive only to the 
electric field of the beam; the geometry presents no loop 
area to intercept any azimuthal magnetic flux lines. 

Figure 3 a plot showing a cross-section of the 
electrode and a simple beam charge distribution. 
Assuming a purely transverse electric field, the charge 
induced on the inside of the capacitive electrode at any 
time is equal to the total beam charge contained within the 
linear extent of the electrode and opposite in sign.  This is 
given by: 
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which evaluates to  
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where Le is the electrode length and Lb = 2·π·β·c/ω is the 
spatial period, the wavelength, of the sinusoidal 
modulation of the line charge distribution.   

The signal tap on the electrode allows observation of 
the monitor signal. The electric potential between the 
unloaded electrode and the beam tube, that is the 
electrode voltage, is simply V = qt/C, the electrode charge 
as observed at the tap point divided by the electrode 

 
Figure 2. Example Capacitive Pickup with Beam Charge 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.Cross-section of Capacitive Pickup and Charge 



capacitance. The capacitance is purely a geometrical 
factor and for this geometry approaches a value of 
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for Le >> (b-a) where the electrode length is large relative 
to electrode-to-tube wall spacing.  

At this point it must be noted that the electrode 
charge observed at the tap point, qt, is not identical to the 
total electrode charge, qe, as computed above!! Missing 
from that analysis is consideration of the time delay for a 
charge induced at any longitudinal position along the 
electrode to be recognized at the tap point. This 
information can only travel at the speed of an 
electromagnetic wave through the medium. In the case of 
a monitor with vacuum as the only dielectric, this is the 
speed of light. At low frequencies the effect is negligible, 
but at frequencies where the transit times become a 
significant fraction of the period and the bunch length is 
comparable to the electrode length, the impact is large. 

Accounting properly for signal propagation times 
(ignoring azimuthal effects on the assumption of 
cylindrical symmetry), the electrode charge observed at 
the tap point at any time is equivalent to the sum of the 
charges induced at all longitudinal segments of the 
electrode at a time earlier by an amount x/v, where x is 
the position of the segment relative to the tap point and    
v = β·c for vacuum. Mathematically the time at each 
position along the electrode is weighted by the transit 
time to the tap point and the expression for the charge 
observed at the tap point becomes 
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The result of the integral is 
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Comparing this to the earlier expression for qe(t), 
there is a factor of two difference in the argument of the 
sin(x)/x term. This correctly places the first null in the 
frequency response, sin(2·π·Le/Lb) = 0, at the frequency 
where the electrode length is one half the bunch (wave) 
length. The first null of the qe expression appears when 
Le= Lb. At low frequencies, long wavelengths, where Le 
<< Lb and sin(x)/x ≅ 1, the transit time effect has little 
impact as expected and the two expressions converge.  

From a circuit perspective, it is useful and correct to 
model the pickup as a current source driving the electrode 
capacitance in parallel with any external monitoring 
circuit load. The source current is just the time derivative 
of the beam-induced charge as observed at the tap point: 
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For a given charge distribution amplitude, the signal 
current is directly proportional to frequency and is 
modulated by the sin(x)/x term. The current is zero at zero 
frequency and at frequencies where ω·Le/β·c = N·π, that is 
when the electrode length is an integer number of half 
wavelengths. In the common case, where the electrode is 
short compared to the wavelength, the sin(x)/x term is 
unity and the signal current magnitude becomes simply 
A·Le·ω.  

With a simple resistor as a monitoring load and in the 
‘short electrode’ regime, the circuit model is the electrode 
current source driving the parallel combination of the 
electrode capacitance and the load resistor. The frequency 
response of the resulting signal voltage will be: 
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where τ = R·C is the time constant of the system. At low 
frequencies, ω << 1/τ, the signal voltage is A·Le·ω·R, 
directly proportional to the frequency. Above the corner 
frequency, ω > 1/τ, the signal voltage becomes constant at 
magnitude A·Le/C until the short electrode limit is 
violated and the sin(x)/x modulation becomes manifest. 

Finally, signal power is considered. This is the power 
available to compete with noise and is what gets burned in 
the load resistor. In the low frequency regime, ω << 1/τ, 
the signal power is V2/R = (1/R)·(A·Le·ω·R)2. In the mid-
band region, ω > 1/τ and ω < 2π·β·c/Le, where the signal 
amplitude is constant with frequency, the power is        
V2/R = (1/R)·(A·Le/C) 2. 

The effect on signal power of operating the 
capacitive monitor at signal frequencies above or below 



the corner frequency is underscored by taking the ratio of 
the power in the two regimes. That ratio is: 

 

lowfrequency
midband

A Le⋅ ω⋅ R⋅

A Le⋅

C

⎛
⎜
⎝

⎞
⎟
⎠

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

2

ω
2

R2
⋅ C2

⋅

 
 
The defining low frequency condition, ω << (1/RC), 
implies that ω2·R2·C2 << 1. Therefore the available power 
from a given monitor at a selected signal frequency will 
always be less if that frequency is below the corner 
frequency of the system than if it is in the mid-band 
region. 

The mid-band power can be written as  
 

V2/R = (1/R)·(A·Le/C) 2 = (A·Le) 2/(C·τ) 
 

Substituting for the capacitance find: 
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The power is proportional to geometrical parameters 
including the length of the electrode, proportional to the 
square of the amplitude of the charge distribution, and 
inversely proportional to the system time constant.  

Maximum signal power at a particular frequency, ω, 
is obtained if the time constant is set approximately equal 
to 1/ω. A larger time constant sacrifices signal power as 
1/ τ and, as shown above, operating below cutoff is a 
losing proposition.  

This discussion was based on cylindrical electrode 
geometry with 360° angular extent around the beam. 
Useful pickups are regularly made with electrodes that 
subtend a much smaller angle. Button electrodes are an 
example. The previous discussion applies directly to 
electrodes occupying only a fraction of the circumference 

with only a reduction in the signal amplitude by the 
fraction of the circumference covered. An important 
difference, however, is that the smaller electrode is 
sensitive to the position of the beam relative to the axis of 
the beam tube. At low to moderate frequencies, where the 
wavelength is long compared to all dimensions of the 
pickup and azimuthal wave propagation can be ignored, 
the cylindrical electrode is completely insensitive to the 
beam position. All electric field lines within the 
longitudinal extent of the electrode terminate on the 
electrode regardless of the transverse beam position. 
 
V. A MAGNETIC BEAM PICKUP 
 

Magnetic pickups operate according to Faraday’s law 
of induction: a loop experiences an induced electromotive 
force equal to the negative of the time rate of change of 
magnetic flux through the loop. Detect the emf in a loop 
that intercepts magnetic flux from the beam current and 
you have a magnetic beam monitor.  

The most common magnetic beam monitor is the 
current transformer shown in schematic form in Figure 4. 
The beam serves as a single turn primary winding 
inducing magnetic flux into the annular cross-section of 
the toroidal magnetic core. An N-turn sense winding on 
the core intercepts the flux in the core and generates a 
signal on the load resistor. The response of the monitor is 
like that of any transformer, except that the beam current 
is unaffected by induced currents flowing in the 
secondary winding (provided that the secondary voltage is 
not comparable to the beam energy). 

In a core with moderate to high permeability, the flux 
due to any current ik in an N-turn winding k is: 
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where h is the thickness of the core along the beam axis, a 
is the inner radius of the core and b is the outer radius of 
the core. The total flux in the core is the sum of that due 
to the single-turn beam current and that due to current in 
the N-turn sense winding. Note that the flux due to the 
sense current will be directed opposite to that of the beam 
current according to Faraday’s Law. 
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Faraday’s Law also requires that the sense winding 
voltage obey:  
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Figure 4. Simple Beam Current Transformer Schematic
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The self-inductance of the secondary winding is a 
geometrical property of the system and is given by  
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Simultaneous solution of the two flux equations and 
substitution of the expression for the inductance yields the 
familiar transformer response: 
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where τ = Ls/Rs is the time constant of the sense circuit. 
Below the corner frequency, ω << 1/τ, the signal voltage 
magnitude is ω·τ·Rs·ib/Ns.  In mid-band, the magnitude is 
Rs·ib/Ns and the sense winding current equals the beam 
current divided by the number of sense winding turns.  

Signal power available from this monitor in the mid-
band frequency range is 
 

V2/R = (1/Rs)·(Rs·ib/Ns)2 
 
Using the equation for Ls to eliminate Ns, the power 
expression for the magnetic pickup becomes 

 

Pwr
ib

2

τ

μr μo⋅ h⋅ ln
b
a

⎛⎜
⎝

⎞⎟
⎠

⋅

2 π⋅
⋅

  
 

This result can be compared to that of the capacitive 
pickup operating in mid-band recalling that the amplitude 
of the beam current, ib, for the charge distribution used in 
the capacitive example is (as simple as) A·β·c.  

The ratio of the signal power available from a 
magnetic and capacitive monitor of the same length, h = 
Le, the same radial dimensions a and b, and the same time 
constant τ is: 
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Several observations are noteworthy.  
• In the absence of magnetic or dielectric materials,    

μr = εr = 1, the power from the magnetic monitor can 
never exceed that from the capacitive monitor.  
o For non-relativistic beams, the capacitive 

monitor provides greater signal power than the 
magnetic monitor by a factor of 1/ β2.  

o For relativistic beams the available power from 
the two monitors is identical. 

• The addition of magnetic or dielectric material 
enhances the relative performance of the magnetic 
monitor, an advantage that can be dramatic as 
commonly available magnetic materials can offer 
permeability > 10,000. Hence, the predominance of 
magnetic type beam current monitors.  

• Capacitive monitors, in the relativistic beam regime, 
can offer benefits in instances where the signal power 
is adequate and at high frequencies where the 
advantage of magnetic materials can be lost. 
 
As with capacitive pickups, a magnetic pickup need 

not be cylindrically symmetric about the beam.  Figure 5 
shows an example of a simple loop type magnetic pickup. 
It consists of a section of semi-rigid coaxial cable forming 
a loop inside the beam tube. The center conductor, 
slightly longer than the outer conductor, is connected to 
the inside wall of the beam tube. The outer conductor is 
connected to the beam tube where the cable or 
feedthrough connector passes through the wall and is left 
open at the free end inside. The center conductor in 
conjunction with the beam tube wall defines a loop area 
will intercept a fraction of magnetic flux lines from the 
beam in the tube. Flux changes generate an emf that 
appears at the output terminals. The outer conductor of 
the coaxial line inside the beam tube serves to shield the 
center conductor from electric fields enabling the 
coupling to be purely magnetic.  

The simple construction of this monitor with a 
uniform coaxial transmission line facilitates preservation 
of good performance at high frequencies. The coaxial line 
is usually terminated in its characteristic impedance to 
maintain flat frequency response. The inductance of a 
pickup of this style with centimeter scale loop dimensions 
is of the order of 100 nH. This, combined with a typical 
50 ohm load resistance, results in a time constant on the 
nanosecond scale. This puts the mid-band response of 
such a pickup into the hundreds of MHz range. 
Nevertheless, due to the simplicity of design and ease of 
implementation, these monitors often find application 

Figure 5. Magnetic loop pickup. 
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with signals below the corner frequency. This loop 
monitor offers significant sensitivity to the transverse 
beam position since the magnetic fields of the beam are 
strongest in near proximity to the beam axis. Frequency 
response of the monitor exhibits the sin(x)/x modulation, 
alike the capacitive monitor, with zeroes where the length 
of the loop parallel to the beam axis is an integer multiple 
of half wavelengths.  
 
VIII. CONCLUSION 
 

An attempt has been made to provide a conceptual 
understanding of the operation of simple beam monitors 
based on principles of fundamental physics.  

Basic concepts of electric (capacitive) and magnetic 
beam monitors have been presented. Equations for 
estimating the quantitative performance of monitors of 
each type with simple geometries were derived. 
Comparison of the signal power available from each of 
the two types of monitors has been made. 

It is difficult to give justice to many important 
aspects of beam monitors in a short paper. It is hoped that 
the present discussion provides a sound base for further 
exploration of the subject. 
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