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Abstract 
  Two barrier RF systems were fabricated, tested and 
installed in the Fermilab Main Injector. Each can provide 
8 kV rectangular pulses (the RF barriers) at 90 kHz. When 
a stationary barrier is combined with a moving barrier, 
injected beams from the Booster can be continuously 
deflected, folded and stacked in the Main Injector, which 
leads to doubling of the beam intensity. This paper gives a 
report on the beam experiment using this novel 
technology. 

INTRODUCTION 
At present the Fermilab Main Injector (MI) can deliver 

about 3.3 × 1013 protons at 120 GeV to the targets every 
2.4 seconds for a beam power of about 270 kW. The limit 
mainly comes from two sides: the injection time (67 ms 
per Booster pulse) and the number of Booster pulses that 
can be injected into the MI. The recently approved NOvA 
project would convert the Recycler to a proton 
accumulator and thus eliminate the long injection front 
porch in the MI. In order to increase the number of 
Booster pulses, the slip stacking method has been studied 
and made significant progress [1]. This paper introduces 
another stacking method that makes use of RF barriers. 

A new type of barrier RF system was discussed in 
previous publications [2-4]. It is made of an RF cavity and 
a modulator. Both are connected by two impedance 
matching transformers and long 50 Ω cables. The cavity is 
made of Finemet cores, a low Q high μ material 
manufactured by Hitachi Co. The modulator uses a pair of 
bipolar high voltage fast MOSFET switches made by 
Behlke Co. The first unit was installed in the MI in 2003. 
After successful operations, a second unit was installed in 
2006. Figure 1 shows the two RF cavities and modulators. 
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By using two RF barriers, 
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ject 12 Booster pulses to the MI instead of 6 or 7 as in
day’s operation.  
 

METHOD 
The injected Booster beam is intentionally given a 

momentum offset Δp, which leads to a drift of the beam at 
the rate: 
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volution frequency (89.815 kHz), p the normal injection 

momentum (8.89 GeV/c), and η the slip factor (−8.88 × 
10−3). Th

pulses is 0.8 μs instead of the normal value of 1.6 μ  
makes it possible to inject 12 pulses instead of 6 for the 
same total beam width of 9.6 μs, leaving a room (1.6 μs) 
for the kicker firing time. A stationary RF barrier prevents 
the earlier injected beam from entering the space reserved 
for later pulses. A moving barrier serves the purpose for 
reducing the momentum spread of the stacked beam. The 
method is illustrated in Figure 2. 
 

 
Figure 2: Injection of 12 Booster pulses using RF barriers. 

There are two conceivable ways to create an injection 
momentum offset. One is to raise the injection magnetic 
field B, another to increase the injection RF frequency f 
(which is locked between the MI and Booster at 
injection). However, the former is wrong because it would
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put the beam on a smaller closed orbit that makes it 
impossible to maintain the right harmonic number (h = 

8). Therefore, it was decided in our experiment to raise 
the injection RF frequency while keeping B at the normal 
value. 

Because during MI injection the slip factor has opposite 
sign in the MI (−8.88 × 10−3) and in the Booster (2.27 × 
10−2), a higher RF frequency would have opposite effect 
on the beam energy in the two machines. The net change 
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is a sum of the two effects. The following is a numerical 
illustration. 

The normal RF frequency at injection is 52,811,400 Hz. 
To lower the injection beam energy, the frequency was 
changed to 52,812,060 Hz, an increase of Δf = 660 Hz. 
This corresponds to an increase of momentum in the MI: 
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 the Booster, however, this frequency corresponds to a In
momentum decrease since η  has positive sign (above 
transition): 
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d energy spread of the Booster beam at 

low intensity is ±6.1 MeV (see below).  the highest 
energy particles in the beam have an offset of −12 MeV, 

 

Therefore the momentum offset of the Booster beam in 
the MI is a sum of the two, i.e. Δp/p = −0.196%, or an 
energy offset ΔE = −18 MeV.  
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Figure 5: Top left – 6 injections (green lines), top right – 6 
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Another was moving at a speed of 0.8 μs every Booster 
cycle as shown in Figure 3. 
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EXPERIMENTAL RESULTS 
Because this method has strong dependence on the 
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again and contained within two barriers. 
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Figure 6 shows the injection of 8, 10 and 12 pulses 
respectively. 
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rrier unless its momentum spread is larger than the 

barrier height. The barrier height is well known: 
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in which β is the relativistic factor, Vb and Tb the barrier 
voltage and width, respectively, and E the beam energy. 
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Figure 8: Left – no penetration at 9.5 kV, right – 
penetration at 9 kV. 
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Figure 7: Top left – 12 injections (green lines), red line is 

celerated to 120 GeV, 
bottom right – beam at 120 GeV.  

 

the RF voltage, top right – recaptured beam at 8 GeV, 
bottom left – 12 injected pulses ac


	INTRODUCTION
	METHOD
	PROCEDURE
	EXPERIMENTAL RESULTS
	DIRECT MEASUREMENT OF BEAM MOMENTUM SPREAD 
	REFERENCES



