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Abstract

We consider the different options proposed for the LHC
IR upgrade. The two main categories: quadrupoles first (as
in the baseline design) and dipoles-first have complemen-
tary strengths. We analyze the potential of the proposed
designs by calculating important performance parameters.
We also propose a local scheme for correcting the quadratic
chromaticity.

INTRODUCTION

The US-LARP program on the LHC Interaction Region
(IR) upgrade is focused on the second phase of the upgrade
where the magnets and layout of the IR will be changed
and the detectors also upgraded. It is envisioned that the
present NbTi magnets in the IR will be replaced by larger
aperture magnets built with Nb3Sn cable. Several layouts
have been proposed for this upgrade including among them
a new version of the baseline quadrupole first design and
also two flavors of the dipole first design [1, 2]. The two
dipole first designs under study feature in one case triplet
focusing with anti-symmetric optics and in the other dou-
blet focusing with symmetric optics in the inner IR mag-
nets. Doublet optics leads to a larger luminosity at the cost
of producing elliptical beams at the IP and enhanced chro-
maticities. Both head-on and long-range beam-beam ef-
fects are enhanced with the doublet optics so this option
may need dedicated beam-beam compensation in order to
offer any advantages. In this report we will analyze in some
detail (a) the differences between the quadrupole-first and
dipole-first optics with triplet focusing, (b) the advantages
of moving the magnets closer to the IP and (c) a local chro-
maticity correction scheme for the quadrupole-first optics.

COMPARISON OF QUAD-FIRST AND
DIPOLE-FIRST

The requirements on the aperture are about the same
in all designs (within 10%) even though the beta func-
tions are about three times larger in the dipole first designs.
The difference arises because both beams are accommo-
dated within a single aperture in the quadrupole-first de-
signs while the beams are separated into different apertures
in the dipole-first designs. Figure 1 shows the matched op-
tics through IR5 withβ∗ = 0.25m for the quadrupole-first
and dipole-first optics with triplet focusing. In all cases, ex-
tra space has been left for charged particle absorbers TAS
and neutral absorbers TAN to cope with the larger particle
debris from the interaction point (IP).The first magnets start
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Figure 1: Twiss functions through IR5 for two layouts with
β∗ = 0.25m. Top: quads-first; Bottom: dipoles-first with
triplet focusing.

at 23m from the IP in both cases but the triplet quadrupoles
in the dipole-first case start at 55.5m from the IP.

The largeβ functions in the triplets also increase the
chromaticity of the ring at collision optics. With the base-
line design atβ∗ = 0.5m, the natural linear chromaticity
is about -136 units while atβ∗ = 0.25m this increases to
about -200 units. With the dipole-first optics shown above,
the chromaticity increases further to about -340 units. This
requires larger sextupole strengths for linear and nonlin-
ear chromaticity correction. We will examine this for the
quadrupole-first design in a later section.

One of the main advantages of the dipole-first design
is the earlier separation of the beams - this reduces the
number of long-range beam-beam interactions. The left
plot in Figure 2 shows the beam separations (units ofσ)
against the distance from the IP. The separations for the
quadrupole-first case range from 6.9- 12.7σ and the inter-
actions extend to±60m from the IP while with the dipoles-
first, the separations are constant at 8.9σ and the interac-
tions occur within∼ ±40m from the IP. The right plot in
this figure shows the tune footprint due to the beam-beam
interactions in the two cases. Expectedly, the footprint is
smaller in the dipoles-first case especially at amplitudes
larger than 2σ.

The LHC working point is closest to 13th order reso-
nances but lower order order resonances, 3rd and 10th,
are also nearby. We have calculated the resonance driv-
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Figure 2: Left: Beam separation at the long-range interac-
tions for the two layouts. Right: Tune footprints up to 6σ
from beam-beam interactions in the two cases.
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Figure 3: Left: Comparison of 3rd order resonance driv-
ing terms; Right: Comparison of a diffusion coefficient vs
amplitude for the two layouts

ing terms from the beam-beam interactions using the re-
sults in reference [3]. In all cases the resonance strengths
are either lower or significantly lower for higher order res-
onances with dipoles-first. An example is shown of 3rd
order resonance terms in the left plot of Figure 3. The right
plot in this figure shows the results of diffusion coefficients
from tracking with the code BBSIM. There is a jump in the
diffusion at 7σ with quads-first, but with dipoles-first the
jump occurs at the larger amplitude of 8σ. Table 1 summa-
rizes the main parameters of the two layouts.

DEPENDENCE ON L*

It is possible that the IR magnets can be moved closer to
the IP in the second phase of the IR upgrade. This would
have the benefit of loweringβ∗ for the sameβmax and in-
creasing the luminosity reach. We have examined the rel-
ative increase for the two layouts as a function of L*; the

Quads Dipoles
first first

βmax [m] 9484 26092
Max aperture [mm] 101 107
Max pole tip field [T] 10.1 10.7
Q’ of ring -200, -194 -333, -340
Max 3rd order RDT 0.9×10−3 0.5×10−3

Max 10th order RDT 0.16×10−3 0.3×10−5

Beam-beam diffusion Jump at 7σ Jump at 8σ
Max ED [mW/g] -1.0 0.6

Table 1: Summary of main parameters for the two IR lay-
outs. Abbreviations: RDT - beam-beam resonance driving
term, ED: energy deposition in triplet

distance to the first magnet from the IP. For this study the
optics was matched to reasonable values at Q4, the first of
the outer quadrupoles, as the inner triplet focusing strength
increases with lower L*. The luminosity depends directly
on β∗ through the spot size at the IP but also indirectly on
β∗ via the crossing angle. In order to keep the beam sepa-
ration constant whenβ∗ decreases, the crossing angle must
be increased as1/

√
β∗. This reduces the luminosity gain.

If L* is decreased by more than half the bunch spacing,
then the number of long-range interactions also decreases.
An empirical scaling relation derived in reference [4] sug-
gests that the crossing angle needs to scale with this number
NLR as

√
NLR. It is possible that if some form of long-

range beam-beam compensation such as wire compensa-
tion were shown to be effective, then the crossing angle
would not have to be increased with decreasingβ∗. This
would allow the full increase in luminosity to be attained.
The left plot in Figure 4 shows the increase in luminosity if
the crossing angle does indeed have to scale as

√

NLR/β∗,
i.e. without any compensation, for the two layouts. The
right plot shows the luminosity gain if the crossing angle
stays constant. Long-range compensation together with the
quads-first layout could potentially allow a 40% increase in
luminosity if L* is reduced to 13m from the present 23m.
Without an effective compensation scheme, the gains in lu-
minosity are low but instead lower values of L* may still
be useful for gaining operational margin. Instead of lower-
ing β∗, βmax could be lowered while keepingβ∗ constant
thereby increasing the available aperture in the quadrupoles
and lowering the chromaticity.

The two plots in Figure 5 show the change in chromatic-
ity of the insertion as L* is changed in the two layouts. Fig-
ure 6 shows the geometric aberrations due to a multipole
errorb3 in each of the IR quadrupoles for the two layouts.
With quadrupoles-first, the aberrations are nearly constant
as L* is reduced below 17m. On the other hand with the
dipoles-first layout, the aberrations are significantly larger
and also keep increasing as L* is reduced. This also shows
that the dipoles-first layout will be more sensitive to align-
ment errors.

NONLINEAR CHROMATICITY
CORRECTION

The correction schemes for the chromaticity and geo-
metric aberrations due to the IR quadrupoles will need to
be revisited for the upgrade. We consider here an alterna-
tive method for correcting the quadratic chromaticity in the
quadrupoles-first layout. The presently envisioned com-
pensating method is via a global scheme using 4 x 8 = 32
sextupole families per beam [5]. The alternative local cor-
rection scheme discussed here is based on one proposed in
Reference [6] to correct both Q’ and Q” with a set of 4 sex-
tupole families per beam. Localized correction has the ad-
vantage that the IR’s can be operated independently and the
global chromaticity and tunes fixed by other constraints.

The local scheme requires using the arc sextupoles in
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Figure 4: Left: Relative luminosity gain with lower L* if
the crossing angle scales as

√

NLR/β∗ for the two lay-
outs. Right: The same but in the case that the crossing
angle stays constant, for example due to beam-beam com-
pensation.
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Figure 5: Left: Chromaticity of an insertion with quads-
first vs L*, Right: The same but for dipole-first.
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Figure 6: The geometric aberrations of insertions due to the
b3 multipole in the triplet quads for the two layouts.b3 is
assumed to be constant.

the 22 cells in each sector bracketing the IR’s. With the
phase advance in the arc cells close to 90◦ in both planes,
the fractional tunes across the entire IR plus 44 cell sec-
tion are tuned to (.75, .75), which helps to reduce the first
order chromaticβ-waves . The distribution of sextupoles
is illustrated in Figure 7. The SF1 and SD1 families are
situated(2n + 1)π/2 in phase from the IP. The SF2 and
SD2 are interleaved with members of the first families and
spacedmπ in phase from the IP. Correction of the second
order chromaticity Q” requires all 4 sextupole families. By
adding and subtracting equal strengths to the SF1 and SF2
sextupoles, respectively, Q’ is guaranteed not to change to
first order, but provides the flexibility to cancel Q” as well.
(Similarly for SD1 and SD2). The final sextupole fields
are given in Table 2. The maximum available sextupole
strength is 4500 T/m2. Figure 8 shows the tune variation
with momentum across the 2 sectors plus IR forQ′ = 0,
and also bothQ′ andQ” = 0. (∆p/p = ±3.33 × 10−4 is
the full bucket size). Correction of the second order terms
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Figure 7: Schematic layout of the sextupoles for 2nd order
chromaticity correction with the quadrupole-first IR optics.

SF1/SF2 [T/m2] SD1/SD2 [T/m2]
2136/1955 -4392/-3984

Table 2: Sextupole strengths for correcting Q’ and Q”

significantly flattens the tune variation. The residual curva-
ture is due to third order terms. Figure 9 shows that after
cancelling Q’ and Q”,∆β∗/β∗ changes are on the level of
1% across the momentum range
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Figure 8: Tune variation (left: horizontal, right: vertical)
with only linear chromatic correction and with both linear
and quadratic chromatic correction.
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Figure 9: Relative variation inβ∗ (left: horizontal, right:
vertical) with only linear chromatic correction and with
both linear and quadratic chromatic correction.




