
COUPLED OPTICS RECONSTRUCTION FROM TBT DATA  

USING MAD-X∗ 

Y. Alexahin, E. Gianfelice-Wendt (FNAL, Batavia, IL), 

V. Kapin (MEPhI, Moscow, Russia), F. Schmidt (CERN, Geneva, Switzerland)

Abstract 
Turn-by-turn BPM data provide immediate information 

on the coupled optics functions at BPM locations. In the 

case of small deviations from the known (design) 

uncoupled optics some cognizance of the sources of 

perturbation, BPM calibration errors and tilts can also be 

inferred without detailed lattice modeling. In practical 

situations, however, fitting the lattice model with the help 

of some optics code would lead to more reliable results. 

We present an algorithm for coupled optics reconstruction 

from TBT data on the basis of MAD-X and give examples 

of its application for the Fermilab Tevatron accelerator. 

INTRODUCTION 

Precise knowledge of the beam optics is a prerequisite 

for successful performance of an accelerator. It is 

important to have tools for measurement and correction of 

beta-beating, coupling, for detection of sources of optics 

imperfections. There is a number of methods for optics 

measurement – ORM, AC dipole, TBT – of which the 

turn-by-turn (TBT) method looks preferable since it 

provides immediate information on the eigenmodes of 

betatron oscillations. 

Some information on sources of optics perturbation, as 

well as BPM calibration errors and tilts can be inferred 

from the TBT data using perturbation theory without 

detailed lattice modeling (see e.g. Ref.[1]). However, this 

approach fails in the presence of both focusing and BPM 

errors which are typical for interaction regions in 

colliders.  

To disentangle the effect of optics perturbation from 

BPM errors and pinpoint the sources of perturbations it is 

necessary to construct a lattice model and fit its 

parameters to the measurement data. The code for 

matching must handle the coupled optics case since the 

working point of most accelerators is close to the diagonal 

to allow space for various tune shifts. 

MAD-X [2] (unlike its predecessor MAD-8) is capable 

of matching coupled optics and – which is no less 

important – allows user-defined expressions in matching 

constraints. In this report we show how to use MAD-X for 

coupled optics reconstruction and determination of BPM 

calibration errors and tilts from TBT data. 

BASIC RELATIONS 

Coupled motion description in MAD  

There are two representations of coupled optics 

functions available in MAD-X: the Mais-Ripken 

functions [3] computed by PTC_TWISS command and 

the Edwards-Teng functions [4] computed by the kernel 

TWISS command. Based on these representations two 

versions of the program were developed [5]. Though the 

Mais-Ripken parameterization is more suitable for TBT 

data analysis it requires loading the PTC module 

increasing occupied memory and computation time which 

may be critical for a console application. Therefore we 

present here only the version employing the Edwards-

Teng parameterization. 

Coupled transverse oscillations of a particle can be 

described as 
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where 
mmm aiaa ′′+′=  are constants of the motion changing 

at the origin by a factor exp(2πiQm) from one turn to 

another, 
mm πµϕ 2= are betatron phase advances 

(Qm ≡µm(C) ), 
m
V  are real 4×2 matrices which can be 

expressed via the Edwards-Teng optics functions and 2×2 
coupling matrix R also computed by the TWISS 

command
†
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whereR =-SRS is the symplectic conjugate to R and 
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with αm, βm, m =1,2 being Twiss parameters for the two 

normal modes of oscillations. 

From BPMs we have information only on the beam 

position so only the spatial components of eq.(1) will be 

used which we rewrite in the form
‡
: 
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where Vkl are real and imaginary components of the 

transfer matrix eigenvectors which can be expressed via 

the Mais-Ripken functions as 

                                                 
† MAD Physicist’s Guide gives different definition for R from actually 

used in MAD. 
‡ Please note that Vkl are not the elements of matrices from eq.(1). −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

* Work  supported by Fermi Research Alliance, LLC under Contract 

DE-AC02-07CH11359 with the U.S. DOE. 

FERMILAB-07-290-AD



.sin,cos

,sin,cos

2,312,3

2,112,1

ymymmymymm

xmxmmxmxmm

VV

VV

Φ=Φ=

Φ=Φ=

−

−

ββ

ββ
  (5) 

From eqs. (1)-(5) follow relations between the Mais-

Ripken and Edwards-Teng functions 
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BPM errors  

Besides electronics errors there are orbit drifts leading 

to variation in differential BPM response so the BPM 

calibration factors should be corrected for every 

measurement. Defining the calibration factors as the ratio 

r = xactual / xreported and taking also into account possible 

BPM tilts χ we can write for BPM readings 
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ALGORITHM FOR OPTICS 

RECONSTRUCTION 

We assume here that data for both normal modes is 

available which is usually the case.   

TBT data processing 

The first step is to analyze the TBT data by the master 

program into the normal modes which can be done along 

the lines presented in Ref.[1]. Components Vkl at 

horizontal and vertical BPMs can be obtained by 

separating real and imaginary parts in equations 
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Complex amplitudes are not known in advance exactly. 

Their absolute values are equivalent to common factors in 

the BPM calibration constants which can be adjusted 

during the fitting process by requiring the average value 

of the calibration constants for BPMs of each orientation 

to be one. The argument of am can be found from the 

requirement that the corresponding betatron phase 

advance be zero at the lattice starting point which is 

automatically assumed in MAD. To preserve the balance 

between the number of variables and constraints we 

impose the requirement on the tunes to match the 

measured ones. 

Initial values of complex amplitudes am, BPM 

calibration factors and tilts can be found with the help of 

perturbation theory as described in Ref.[1]. 

MAD-X macros for eigenvectors 

First, the expressions for eigenvectors components Vkl 

should be introduced. We do this in two steps: express 

them via the Mais-Ripken functions according to eqs.(5) 

which are then replaced by the Edwards-Teng functions 

using  eqs. (6): 

 
detR:=RM11*RM22-RM12*RM21;        
kappa:=1/(1+detR); 
betaX1:=kappa*BETAX; phiX1=2*Pi*mu_x; ... 
V11:=sqrt(betaX1)*cos(phiX1); ... 

 

Also, MAD should be told where to take the values of 

primary functions from: 

 
BETAX:=table(twiss,BETX);  
mu_x:=table(twiss,MUX); 
RM11:=table(twiss,R11); ... 
 

Now we can build a macro-command which will fill the 

columns of the TWISS table with the desired functions: 

 
TWISS_eigen:  
macro={select,flag=twiss,clear; 
select,flag=twiss,column=name,keyword,s,L, 
BETX,ALFX,MUX,BETY,ALFY,MUY,R11,R12,R21,R22
,V11,V12,V13,V14,V31,V32,V33,V34;  
twiss,rmatrix;}; 

Matching procedure 

    Next, we should name the values of eigenvectors at 

BPMs to use them in constraints and show from which 

row of the TWISS table they should be taken, e.g. for the 

BPM named M01: 

 
 V11_M01:=table(twiss,M01,V11); ... 
 

The matching module runs as 

 
match, use_macro; 
vary,name=psix0; vary,name=psiy0; 
vary,name=QF1->K1; ... 
vary,name=r_M01; vary,name=t_M01; ... 
global, q1=Q1_TBT, q2=Q2_TBT; 
use_macro, name=TWISS_eigen; 
constraint, expr=V11_M01+V31_M01*t_M01 
=r_M01*(V11_M01_TBT*cos(psix0)  
+V12_M01_TBT*sin(psix0)); ... 
jacobian,calls=10000,tolerance=1.e-10; 
endmatch; 

where psix0  and  psiy0 are corrections to the phase 
of a1 and  a2 respectively. 

TEVATRON INJECTION LATTICE TEST 

    The above described fitting procedure has been tested 

using as target values the eigenvector components 

generated with MAD-X for the Tevatron injection optics. 
Then the strengths of two skew quadrupoles were 

changed from their nominal values and a tilt of 0.01 rad 

was introduced for one of the horizontal BPMs prior to 

fitting. Using 11 skew quadrupoles and the tilt of all 118 



horizontal BPMs as variables, MAD-X was able to find in 

217 iterations with high accuracy the correct values for all 

11 skew quadrupoles  (see Fig.1) and the original tilt of 

all BPMs. 

 

 
.                                

Figure 1:  Algorithm test  

SUMMARY AND OUTLOOK 

Method of optics reconstruction proposed in this report 

is potentially a powerful tool. However, the fitting 

procedure for a machine as complicated as the 

TEVATRON takes too long time to be used in online 

applications. One step of full optics reconstruction which 

requires fitting over 900 parameters takes more than one 

hour on a 2GHz PC. 

There are several possibilities to speed up the 

calculations. The first one involves the internal MAD-X 

matching procedure. The TEVATRON lattice version 

used in our preliminary tests consists of 13260 elements. 

The TWISS command of the current MAD-X code tracks 

the lattice optical functions via the element-by-element 

advancing, and therefore it is very time consuming for 

such large rings. The discussed optics reconstruction 

algorithm deals with a small subset of lattice elements, 

namely, for TEVATRON, 236 BPMs and 432 variable 

quadrupoles simulating focusing errors, while other 

elements between them are unchanged and can be 

replaced by equivalent sector maps. This may reduce the 

computation time by an order of magnitude. 

Some gain in computation speed can be achieved by 

simply removing unnecessary elements from the machine 

lattice file. 

One more possibility for significant reduction in the 

computation time with the present version of MAD-X is 

to divide the matching process in two parts: 1) MAD 

fitting the magnetic element strengths as described here 

with fixed values of BPM calibration factors and tilts; 2) 

adjustment of the calibration factors and tilts by the 

master program on the basis of simple least square fit and 

providing these values to MAD for the next iteration. This 

will eliminate the unnecessary and time consuming 

numerical computation of derivatives w.r.t. the BPM 

parameters. 
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