

CDF Event Monitoring System and Operation
Kaori Maeshima

(For the CDF Collaboration)

Abstract -The foundation of the CDF Run II online event
monitoring framework was implemented well before the start of
the physics runs, allowing development of a coherent monitoring
software across all the subsystems, consequently making
maintenance and operation simple and efficient. Only one shift
person is needed to monitor the entire CDF detector, including
the trigger system. High data quality is assured in real time and
well defined monitoring results are propagated coherently to
offline data sets used for physics analysis. We describe the CDF
Run II online event monitoring system and operation, including
the remote monitoring shift operation started in November 2006.

Index Terms—CDF, Online Monitoring, Data Quality

Monitoring, Remote Operations, Run II

I. INTRODUCTION
 The CDF Run II detector [1] started taking data in mid-year
2001. Since that date the Tevatron has continued to improve
by delivering higher luminosity; CDF has recorded over 2 fb-1
of data for a wide range of physics analysis to date (April,
2007). There are many people and components involved in
order to take high quality data with high efficiency. The CDF
online monitoring plays one of the important roles to achieve
this goal. The online event monitoring processes have been
running continuously since the beginning of 2001 and their
results are routinely checked in real time by one of the three
people on shift, called Consumer Operator (CO), for all the
sub-systems. Monitored results are also checked
automatically. The other two on shift are: ACE (main DAQ
person) and SciCo (scientific coordinator, a shift leader).

The CDF Run II online event monitoring system was
designed in 1998. The main design goal is to deliver a
coherent integrated online monitoring system across all the
sub-detectors (including trigger system) to ensure high quality
data to be taken with high efficiency. It is designed such that
monitored results can be easily viewed by the shift crew in
the control room as well as the experts located anywhere in
offsite to ensure the prompt feedback in case of problems.
This feature also allowed an almost transparent transition to
later remote CO operation. Since the design stage in 1998,
we have been going through different phases of the
monitoring operation as the CDF run II progresses:

 The author, Kaori Maeshima is with the Fermi National Accelerator
Laboratory, Batavia, IL 60510 USA (phone: 630-840-3917; e-mail:
maeshima@fnal.gov).

1. Implementation phase: core monitoring framework
and the first order individual monitoring programs

2. Detector commissioning phase: (for the initial stage
commissioning as well as for the various upgrades
throughout the Run II period): we use the same
monitoring system to debug and commission the
detector sub-systems by the experts.

3. Steady state operation: use online monitor around the
clock by the shift crew; also used by the sub-system
experts for maintenance and debugging.

4. Throughout the period of 2 and 3, improve and
refine the monitoring programs and mode of
operation while maintaining the 24/7 working
version of online monitor system in the control
room. It should be noted, here, that though we have
made many operational improvements, the initial
design and implementation of the online monitoring
framework and the interfaces to individual
monitoring programs remain unchanged.

5. Establish official remote online monitoring shift in
2006.

We describe here, the design and implementation process
of the CDF run II online monitoring framework and monitors
(section II), maintenance and performance of the monitoring
system (section III), issues related to the monitoring shift
operation (section IV), and finally, the remote monitoring
shift operation officially started in 2006 (section V).

II. DESIGN AND IMPLEMENTATION OF CONSUMER
FRAMEWORK AND CONSUMERS

A. Requirements and Placement of the Monitors
In order to achieve the goal of efficient and good quality

data taking, followings are the essential technical
requirements for the design:

1. Avoid interference with the data acquisition
2. A monitoring process to be able to receive

selected events according to the trigger types or
streams

3. Modular design such that it is possible to run
different monitoring modules in different
processes in parallel as well as being able to run as
a combined process.

4. Guarantee each monitoring process an adequate
input event rate.

5. Implement structures and interfaces which are
common to all monitoring processes; we named
this common basis for all monitoring programs,

FERMILAB-CONF-07-132-E

which are called Consumers in CDF, the
Consumer Framework.

6. Minimize the dependency between the monitoring
process and the display process. This is to: a)
allow a single display process to be able to
connect to display results from any monitor; b)
any user activities while using a display process
should not slow down or interfere the monitoring
process; c) multiple users can run multiple display
processes to view the same monitored results

7. In order to make implementation and development
of each consumer monitor program easier, so that
the whole system will mature as a coherent
package for users: provide to the monitor code
writers the base monitoring program with all the
common features, a simple script for getting
started, examples, documentation and assistance.
The monitoring code should be easy to debug and
validate on online and offline without changes in
code (only the run-time parameters change). Also
to provide 24/7 event server independent of the
DAQ status.

8. Provide online monitor release.
9. Provide a common structure in the display GUI in

the form of separate folders with different
characteristics (slide show, warning, experts, etc.)

10. Offer remote access to view the monitoring
results.

11. Stable operation for long time periods
12. A large part of the Consumer Framework should

be kept independent of the CDF analysis
framework – this allows us to develop a universal
tool which can be ported easily to other
applications.

The CDF online event flow (a simplified version) is shown
in Fig. 1. The highest trigger level (Level 3) is a software
trigger using a large PC farm. The events passed Level 3
trigger are sent to a process called Consumer Server Logger
(CSL) [3]. Information about the event size, rates, and
number of triggers is indicated in Fig. 1. The CSL has two
main functionalities. Its first principle function is to log all the
events which passed Level 3 trigger for the physics analysis.
The other is to serve events to the online event consumers.
The box where the online event monitor system resides is
indicated at the right hand bottom. Consumers run on
dedicated pc nodes which are different from the Level 3
clusters.

CSL assures that having the functionality of data serving
does not cause significant dead time to data acquisition, while
delivering sufficient rate to consumers. Any problems

Fig. 1. Online event flow and online monitors

(crashes, memory leak, etc.,) associated with individual
monitor programs do not interfere the data taking process.
The CSL saves the begin-run record in each run; whenever a
consumer connects to the CSL for the first time, the CLS
passes the begin-run record the first thing to allow the
consumer to initialize for the run configuration. At the time of
the connection, a consumer can request to receive a choice of
triggers from CSL. It is designed such that a consumer which
is requesting a very rare trigger can receive the event even
when there are other consumers requesting high rate triggers.
There are certain classes of events which are needed for
debugging purpose but those events may not pass the physics
triggers in Level 3. For these cases, we have created new
debug triggers which can be fed to appropriate monitor
processes. The total event input rate to the consumers is ~ 20
Hz. This rate is sufficient to monitor almost all the system
sufficiently, with the exception of SVTSPYMon which is a
monitor for the displaced vertex trigger system (SVT) in the
Level 2 trigger system. In this case the event source is not
from CSL, but from the front-end crate level. Since
Consumer Framework is designed essentially independent
from the CDF event analysis framework (requirement 12),
SVTSPYMon is able to use the large part of Consumer
Framework. Consequently, users can use and view
SVTSPYMon results just in the same way as all the other
consumer monitor results. Above described is satisfying the
requirement 1 through 4.

B. Consumer Framework Design

The core part of Consumer Framework is written in C++
and makes heavy use of the ROOT [2] package. The design
and the components of the Consumer Framework are shown
in Fig.2. Eleven monitoring programs (10 consumer
processes including the event display program plus
SVTSPYMon) are implemented by sub-system experts and
running continuously based on the common framework. The
major components of the framework are: 1) base classes

providing common functionality like creating canvases of
histograms and storing log files, handling errors and alarms,
2) display server, which is used to distribute the monitoring
results via a client-server mechanism, 3) display clients that
feature an intuitive GUI which allows to browse and request
the available results, 4) Consumer State Manager, 5) Error
handling and forwarding. After the steady shift operation
started, above core functionalities continued to be used,
however, we have made some additional improvements which
are described in sections IV and V.

B.1 Consumers

One of the important design choices was to implement a
distributed system with numbers of different consumers
running in parallel on different machines rather than one large
combined monitor executable running on a central process or
running multiple copies of the same combined executable in
different nodes. This distributed design gives several
advantages: 1) Consumers are developed by many sub-system
experts. Less dependency between different types of monitors
makes the process of development and debugging much
easier. 2) One monitor’s run-time problem (crashes, memory
leak, etc.) does not affect the other monitor. These types of
problems occurred quite frequently in the early run II running
period when monitor programs were being worked on
intensively, and we were very glad we designed the system in
this way. 3) A different monitor can get a choice of different
triggers. 4) Some consumer jobs are CPU bounded rather than
limited by the available input rate. We can adjust and
optimize the input rates to different monitors.

The CSL serves in total 9 monitoring programs and event
display: YMon (occupancies for all the sub detectors except
Silicon), XMon (trigger rates), LumMon (luminosity),
TrigMon (trigger logic), Stage0 (drift chamber calibrations),
BeamMon (beam position), ObjectMon (reconstructed
objects like jets, electron and photon candidates, muon
candidates and tracks), SVXMon (chip-wise silicon
information: raw ADC counts, pedestals, signal-to-noise),
DAQMon (DAQ), DAQErrorMon (examine events with
DAQ errors, and L1 auto accept events). The consumers can
be configured and parameters can be customized via a
steering file (in CDF jargon called a talk-to) which is read in
at start-up.

Consumers use the CDF event analysis framework called
AC++. Each AC++ job consists of different modules. An
input module receives the events from the CSL. The
ConsumerFrameworkModule contains a list of all monitor
objects that analyze the data. The monitor objects inherit from
the BaseMonitor class and are written by the experts of the
detector subsystem. The BaseMonitor supplies functions, e.g.
to register Root objects, remove them, report errors, create a
custom Root canvas for the histograms and save all

Fig. 2 Design of the Consumer Framework

Root objects into a file. The information about each registered
object is stored in the ConsumerInfo object. This object and
all registered Root objects are sent to the display server by the
ConsumerFrameworkModule. The code for the sending of
the objects is encapsulated in its own class. This allows
extraction of all the classes of the client-server framework
from the package and to use them outside the CDF software
environment as a generic tool. At the end of each run the Root
objects of each monitor are saved into a file and the results of
the data checking are put into a database to allow the
assessment of the run quality by combining all consumer
results.

B.2 Display Servers

Another major design decision was to separate the
publishing of monitoring results from the consumer jobs, in
order to increase stability and smoothness of operation
(system requirement no. 6). Thus, we designed a client-server
model to transport the monitoring results to the user. Each
consumer has its own server program. The display servers
receive all monitoring results from the consumers via a push
protocol. The update occurs by default every 10 events. The
update frequency can be customized via a steering file. To
increase the performance we do not instantiate objects inside
the display servers but rather keep them in a raw buffer type
format. The display servers are running on the same machine
as the consumers. The bandwidth of the internal socket
communication is about 10 MByte/s. Since each consumer
and its display server are running on the same machine, we
can start the server process from the consumer in an
automated way using fork and exec. When the consumer
exits, the server is stopped automatically.

B.3 Display Clients

The display clients [4] connect to a server and request
specific monitoring results via a pull protocol. Multi-point to

The State Monitor is a watchdog process which displays
the status summary of all the consumer monitors on a web
page. The state monitor provides information on how many
events each consumer has processed, on which machine the
consumer and the affiliated server are running and the port
number on which the server offers its service to the display
clients. The status web page updates itself automatically in
every 2 minutes, with an option of manual update at any time.
Those monitors which have had a status change (for example,
change in number of events processed, or change in run
numbers) since the last update are indicated as “green”,
otherwise as “red” to show the active/inactive states of
monitors on the consumer status web page. The display client
reads the information about each monitor from this status
page in order to connect to the appropriate port for the desired
monitor process.

Fig. 3. a typical view of the computer screen when operating a

display client (a YMon plot)

 multi-point connections are available, i.e. several display
clients can connect to one server and one display client can
also connect to several display servers at the same time, as
shown in Fig. 2. After connection to a server, the display
clients first requests a list of all objects which are available by
that server (the ConsumerInfo object). This list is presented
to the user in a list tree of the GUI. The user has access to the
available objects via atomized requests: The user chooses
from this list an object he wants to view. The request is sent
to the server and the object is returned. Inter-process
communication between consumer and display server on one
hand and display server and display client on the other hand is
realized by socket connections provided by the ROOT
package (TSocket).

The display clients offer an auto-update mode to users,
such that selected objects will be automatically updated with a
specified update frequency, the default being 5 seconds.
Another important feature of the display is the slide show
option. The consumer writers can flag certain histograms or
canvases as particularly important. If the user switches the
slide show on, the display window will pop up and the
flagged objects will consecutively be shown on this window.
Aside from the fact that “slide show” feature is useful in the
control room, it turns out that organizing the each monitor
results to be sorted into “essential” (slide show folder),
“expert”, and “warning” folders, etc. causes an very important
effect operationally. The organized monitor output across all
the sub detector gives the coherence in viewing the results
even when we use the alternative web based GUI.

B.4 Error handling and forwarding

Above all it is the purpose of the monitoring to find errors
in the data and produce warnings about faulty distributions.

Thus, it is important to get an overview about the error
messages produced by the monitoring processes. For this
purpose we collect error messages of all consumers by a
central process: the consumer error receiver. The last ten
messages of each consumer are displayed on a web page.

Serious error messages are forwarded to the main DAQ
error handler process for the shift crew to take necessary
actions. These messages have to be registered in advance to
acquire a specific error key, which allows the error receiver to
identify them. The registered error messages are forwarded to
the handler and can prompt an automated action, for example
to halt, recover and resume data taking.

B.5 State Monitor

C. Implementation

The monitoring framework which deals with the common
functionalities was implemented before any of the consumer
monitor developers stared coding. In addition to the
framework code, the framework team also provided various
tools for the monitor code writers to make the job easier and
also to ensure the code developed coherently across all the
sub detector systems. Such tools include: documentation and
instructions with examples, one line “getting-started” script
which creates and builds an example monitoring program
with all the hooks necessary to run in the online environment,
coherent code management scheme which allows building an
online monitoring release and easy ways to test the code
online and offline. A consumer monitoring program can be
tested on online or offline without a change in the binary.
One only needs to modify the run time parameters in a trivial
manner. In order to make online testing procedure of the
monitors easier, we have setup a special CSL which reads raw
data files and serves to consumers constantly in low rate (~1
Hz). The CDF DAQ system is setup so that it can run in
different partitions. The main data taking DAQ typically runs
in partition 0. This playback mode CSL (which is serving
events to consumers constantly) always runs in partition 14.

A partition number is one of the parameter for a consumer to
connect to an appropriate CSL process. Having the partition
14 allows us to test online monitors on the online
environment at any time even when the data taking is not in
progress. The existence of the partition 14 was especially
useful in the early stage when the accelerator and CDF data
taking performance was not as consistent, while at the same
time a large amount of monitor code development was taking
place.

III. MAINTENANCE AND PERFORMANCE OF THE
MONITORING SYSTEM

Two cvs packages called ConsumerFramework and
Consumer contain all the code directly related to the online
event monitors. We build an online monitor release
(cdfsoftb0 release) based on the offline release with patches
necessary to run with the most updated online monitoring
code. There are many other packages besides the Consumer
and ConsumerFramework packages which are needed for
inclusion from the newest version to build cdfsoftb0; for
example, trigger emulation packages frequently change.
Having an independent (independent from the Level 3 trigger
release, for example) online monitor release is quite
important, since the nature of the online monitoring task is to
be versatile, while also needing to be organized (must be
running all the time). Many unforeseen problems occur as we
run the detector operation, and monitoring programs must be
able to respond and adjust to the new finding promptly.

CPU, disk space, and memory usage of the nodes where
monitors run must watched in an automated way, especially
the disk space. We run a cron job to clean up, move and
archive monitored result files and log files. The disk space
where the result files are temporary stored is big enough to
keep all the result files from the most recent ~3 months
running.

IV. MONITORING SHIFT OPERATION
The original design and implementation of the

ConsumerFramework and Consumers provided the
fundamental functionalities for the online monitoring, and this
framework works very well. However, as we gain more
experiences using the monitoring system with the 24/7 shift
operation, we identified some areas where improvement is
required. None of the improvement is to alter the original
design, but they are additions.

In case of the CDF shift operation, one person from the
generic pool of CDF physicists, at a given time, is on the
Consumer Operator (CO) shift. This person looks after all

Fig. 4 ConCon (Consumer Control) GUI.

the detector and data taking components using this online

monitoring tool (i.e., monitoring shifts are not done by each
sub-system expert). Soon we reached the point that we
needed the minimum but sufficient, official and clear
instructions for CO: which plots to look at, how often, how
one can decide the sub detector is good or bad, a clear set of
instructions of what to do when a monitored result is found to
be problematic, and provide with a method to propagate the
good/bad decisions. The first non trivial part of this job is to
converge to the clear set of official instruction, since it
involves many people and systems and needed some time and
experience for experts to learn what is good/bad and what
criteria to designate.

The set of clear instructions for a CO materialized as a
single interactive summary web page called “CO Check List”,
from where the CO would always starts. From this page, the
CO is provided the clear set of instructions, views of relevant
histograms (with a reference plots side-by-side) via web links,
and also buttons to click to store the checked results
(good/bad, comments, etc..) which are stored in the run
summary data base. Two things to note here are: 1) the
detector conditions changes from time to time. Hot channels
and dead channels come and go. Many of those problems are
foreseen and dealt with in software automatically. But not all
cases can be coded all the time. As for the detector operation
and shift crew, it is important to be able to differentiate
“known problems” from “new problems”. The first thing
what CO person does before starting the actual detector
check-list is to examine the web page called “Fix List” which
is linked from the top of the “CO Check List” page. The
“Fix List” web page keeps the up-to-date list of the “know
problems”. 2) In the ConsumerFramework BaseMonitor
class, we have added a functionality to save all the monitoring
result root files in some time interval (set to 5 minutes) during
a run. These root files are called “temp_root files”. They get
overwritten in every 5 minutes. This is all done in the
ConsumerFramework level, so that no Consumer code needs

to be modified in order to do this. These “temp_root files”
are the ones linked from “CO Check List” so that a CO can
check everything via web pages. In the early time when “CO
Check List” web page was created, only the minimum
essential plots could be viewed via a web page. But soon it
was implemented such that we can see any monitored results
using a web page in a similar way as the display client. This
is especially useful for the experts who are paged and located
offsite. Accessing information via a web page is typically
much faster and easier than running a special application
program locally to view the results.

V. REMOTE MONITORING SHIFT

Relatively recently in 2006, the CDF operation group
started considering a possibility of remote CO shifts.
Motivations are the following:

• Avoid oversea missions for CO shifts to save money
to allow more people to be onsite for other activities.

• Reduce the number of people on shift during the
night at FNAL.

• Acquire know-how for future applications of remote
shifts (LHC, ILC…)

• Collaborators from Pisa and Tsukuba University
were chosen as pilot institutions for the CDF Remote
CO shift project.

• The project was developed in cooperation with CMS
ROC group [5] at FNAL using the multipurpose
remote operation room setup in the Wilson Hall 11th
floor at FNAL.

The goal for the remote CO shift is: there should be no
compromise in data quality nor efficiency ― the remote CO
person should be able to do all the things local CO person is
supposed to be doing. Due to the fact that the procedure of
the CO shift operation has been well established and basically
all one needs to view and act on are web based (hence
remotely accessible), the transition to making the remote shift
was relatively painless and transparent. In addition to
performing online monitoring during physics runs, a CO has
another duty to check all the detector calibration results
between the stores. As in the online monitoring case, the
procedure of checking the calibrations has been well
established and all tools (which CO uses) are web based.
 There are a few things specifically for a remote shift which
we needed to setup and test:

• Establish contact people for the remote operation
(local and remote) and always have a back-up
solution (local back-up CO) in case of network
outage, etc. Establish and document any specific
issues to do with remote CO (e.g. overlap shift
information transfer procedure).

Fig. 3 Pictures of the CDF control room with online monitor displays (top)

and Pisa CDF remote CO shift room (bottom)

• Setup and test reliable human communication
system. We use Polycom with point-to-point
connection which has been found to be very stable.
International telephone call is always a backup
solution.

• A few procedures which a local CO was doing must
be revised due to the security issues. One of which
was a procedure to start and stop all the monitoring
processes. This was done by typing in a simple
script from an online account before. A new
consumer control GUI (ConCon) was created, and
by having the ConCon GUI window pop up at the
remote site, the remote CO can start/stop the
processes without a problem. The ConCon GUI also
improved the local CO operation. Fig. 4 shows the
picture of the GUI.

All the above items were setup and tested after the summer
of 2006. After several successful parallel CO shifts
(simultaneous remote and local COs), the official remote shift
operation was started in November 2006 from Pisa. Since
then, typically in the frequency of one week per month, owl
shifts (midnight to 8 am local time) have been taken from

Pisa. So far, after 6 months and 8 weeks of remote CO shifts,
we have experienced no unexpected problems (there was one
scheduled ~15 minutes network outage.) A picture of the
CDF control room where online monitoring displays are
(top), and a picture of the Pisa remote CO room (bottom) are
shown in Fig. 5. We are currently testing the remote shift
setup at Tsukuba University and expect to come officially
online very soon.

The Screen Snapshot Service (SSS) [6] is a software
package which puts images on a screen onto a web page,
allowing remote viewing of the screen display. The SSS
comprises three components: producer, server and client. The
producer, implemented as a Java application, periodically
captures screen images of a specified computer desktop and
sends the snapshots to a server. After receiving the images
from the producer, the server converts images to PNG format,
and then serves them to clients. The server runs under
Tomcat. The client periodically fetches snapshots from the
server and displays snapshots in a web browser. The SSS was
initially developed for the CMS remote operation in mind.
After the initial development, multiple nodes are running SSS
in the CDF control room making some of the information
which was not previously available viewable from remote
sites, such as the main run control state, etc. The SSS is
strictly a viewer and does not allow any controls from remote
location. Remote operation people at Pisa are now
considering increasing the number of display screens now
that SSS can serve useful screen images.

VI. CONCLUSION
Since the integrated online monitoring scheme was

proposed in 1998, it went through various phases but the
monitoring programs have been always running since early
2001 and they are essential and integral parts of the CDF Run
II data taking operation. Over the course of years, we have
developed significant amount of web based tools for the shift
and detector operation, which enabled the recent transition to
remote CO shift to be simple. The remote monitoring shifts
were found to be just as effective as the local shift from the
recent experience. It is important to have: a good coherent
foundation for the monitoring framework, coherent
development of the monitoring programs and operation,
collaborative effort to converge on clear ways of determining
the essential problems and instructions for shift crew, and to
make the information easily accessible remotely for experts
and remote monitoring shifts.

ACKNOWLEDGMENT
The author would like to thank T. Arisawa, W. Badgett, K.

Biery, D. Fabiani, A.D. Hahn, D. Hirschbuehl, K. Ikado, T.
Kubo Y. Kusakabe, J. Naganoma, K. Nakamura, C. Plager, E.
Schmidt, F. Scuri H. Stadie, R. Tsuchiya, G. Veramendi, T.
Vaiciulis, W. Wagner, H. Wenzel, M. Worcester, K. Yorita
and the support from many CDF colleagues, especially from

the CDF operation group, and the CMS ROC group at FNAL.

REFERENCES
[1] D. Acosta, et.al., Phys. Rev. D71, 032001 (2005)
[2] R. Brun, et.al, http://root.cern.ch
[3] M. Shimojima et al., Consumer-Server/Loger system for the CDF

experiment, 11th IEEE NPSS Real Time Conference, June 1999, Santa
Fe, U.S.A.

[4] Original design of display client comes from LHCb experiment
[5] http://uscms.org/roc
[6] http://home.fnal.gov/~beiry/ScreenSnapshotService

http://home.fnal.gov/%7Ebeiry/ScreenSnapshotService

	I. Introduction
	II. Design and Implementation of Consumer Framework and Consumers
	III. maintenance and performance of the monitoring system
	IV. Monitoring Shift Operation
	V. Remote monitoring shift
	VI. Conclusion

