
1

A framework for constructing adaptive and
reconfigurable systems

Pierre-Etienne Poirot, Jerzy Nogiec, and Shangping Ren

Abstract—This paper presents a software approach to aug-
menting existing real-time systems with self-adaptation capa-
bilities. In this approach, based on the control loop paradigm
commonly used in industrial control, self-adaptation is decom-
posed into observing system events, inferring necessary changes
based on a system’s functional model, and activating appropriate
adaptation procedures. The solution adopts an architectural
decomposition that emphasizes independence and separation of
concerns. It encapsulates observation, modeling and correction
into separate modules to allow for easier customization of the
adaptive behavior and flexibility in selecting implementation
technologies.

Index Terms—control, adaptation.

I. INTRODUCTION

Evolution in software systems has created the need for
real-time systems to be self-adaptive and autonomous. Due
to technological advances (ubiquitous networks, powerful mi-
crocontrollers), today’s industrial systems are often immersed
in complex and changing environments, which makes their
construction, evolution and maintenance increasingly more
challenging [1]. Notably, as human intervention in those envi-
ronments can be costly and time-consuming, those systems are
increasingly expected to be made self-adaptive and to handle
internal errors, resource variability or changing user needs [4].

Additionally, as software control benefits from Moore’s law
in performance and sophistication, current systems are becom-
ing prohibitively complex, to the point that their complexity is
becoming a major problem [1]. As many control activities are
increasingly depending on computers, it can not be expected
that most users or organizations will have the means to deal
with that complexity [2]. As a result, there is a strong incentive
for these systems to become autonomous and self-adaptive
in order to manage themselves efficiently and with minimal
human intervention.

In this paper, we present a solution to extend existing
systems with self-adaptation capabilities while maintaining
the new features separated from the original functionality. An
externalized adaptation scheme based on the observe-reason-
modify paradigm is applied, which decomposes the adaptation
process into three orthogonal subtasks: observation, modeling
and correction. The approach itself is general and could be
applied to a broad class of observable systems.

Manuscript received May 10, 2007; This work was supported by the U.S.
Department of Energy.

P. E. Poirot and J. Nogiec are with the Technical Division, Fermi National
Accelerator Laboratory, Batavia, IL, 60510.

P. E. Poirot and S. Ren are also with the Department of Computer Science,
Illinois Institute of Technology, Chicago, IL 60616.

The rest of this paper is organized as follows: section II
details related work with focus on architectural self-adaptation.
Section III details our approach for automating reconfiguration
and creating systems that can adapt to their runtime conditions.
Section IV briefly outlines our prototype implementation.
Finally, section V summarizes and concludes the paper.

II. RELATED WORK: ARCHITECTURE-BASED
SELF-ADAPTATION

Most industrial systems are not designed to be self-adaptive,
but rather to be extremely stable in order to operate reliably
in a production environment. By design, in those systems,
users may hardly customize the system or tailor its behav-
ior at runtime. External self-adaptive approaches have been
studied recently and have shown to be a practical solution
for providing self-adaptation to these systems [4], [8], [7].
These approaches adopt traditional control theory that has been
used and proved to be an effective solution [9] in hardware
design and industrial automation. They place general adap-
tation mechanisms in separate modules that can be created,
modified, extended and reused across various applications.
Nevertheless, while the concept of a control feedback loop is
simple, i.e., sensing (observing), calculating (reasoning) and
acting (adapting), what to observe, how to reason and when
to act are difficult to define and the decisions regarding the
what, how and when play an important role in the success of
external, feedback loop - based adaptation schemes.

The seminal Rainbow by Garlan and al. [4], [5] illustrates
the challenges of architecture-based self-adaptation, such as
latency and suitable decomposition. It provides generic self-
adaptation through gauges (monitoring), a model manager, a
constraint evaluator, an adaptation engine (reasoning), an adap-
tation executor and effectors (adapting). To use it, it requires an
extensive knowledge of the system properties, constraint rules,
adaptation strategies, and adaptation operators, split among
multiple components. Other works in this area include [6],
[7], [8], [9].

III. EXTENDING EXISTING SYSTEMS WITH
SELF-ADAPTATION CAPABILITY

Dissimilarly from the approaches mentioned above, our
solution aims to streamline the adaptation process by creating
a small, modular adaptation loop encapsulating adaptation
behaviors into separate modules that can be created, modified
and reused across multiple systems. Our solution empha-
sizes decomposition into three levels (observation, modeling
and correction) that support independent specifications, while

FERMILAB-CONF-07-103-TD



2

keeping the adaptation process external to the controlled
system (Figure 1).

A. Control-loop architecture

As a solution, we employ an external feedback loop de-
signed to externalize the adaptation logic out of the controlled
system to allow for easier conception, maintenance and modi-
fication of the adaptive behaviors. In this approach, the system
is monitored and compared to a system model that determines
if or how the system should be adapted, in response to either
internal behavioral changes or external stimuli. It differs from
the ad hoc and static approaches that may often be used in
practice, which are typically system-specific and restricted to
a class of similar applications. Figure 1 illustrates our adaptive
architecture.

Fig. 1. Self-adaptation scheme

B. Decomposition

In our adaptation solution, each section of the framework is
decomposed into independent components (event generators,
inference engine, model evaluator and actuators) that encapsu-
late their design and implementation and work independently
from the rest of the system. Called modules, these components
communicate through standard interfaces that employ various
technologies such as direct calls, JNI calls or interprocess
communications (see section IV). Modules are designed, im-
plemented and refined without regard to other parts of the
framework and rely on standardized interactions, which makes
them independent from the actual system and communications
logic.

As shown in Figure 2, the approach employs a minimum
of dimensions involved in adaptive behaviors: system observa-
tion, system modeling and system correction. These modules
are separated, so that the adaptation loop can be substituted
easily. In other words, different strategies or methodologies
for observation, modeling and executing adaptation can be
integrated based on the application needs. For instance, we
use a knowledge-based system for observation, an event-driven
Finite State Machine (FSM) for modeling the system adapta-
tion and a multithreaded server to independently perform the
system’s automatic adaptation. Specific real-time applications
can use different adaptation models (such as Specification
and Description Language (SDL) models) for representing

the running system, while having identical monitoring and
adaptation modules. Such separation and independence not
only enhance software reusability, but also, more importantly,
provide additional dimensions of flexibility in choosing adap-
tation schemes and building self-adaptive applications.

Fig. 2. Layers of self-adaptation

C. Observation layer

The observation layer consists of an interface to the con-
trolled system, which allows for monitoring event traffic and
introspecting component states, and an inference module,
which abstracts system-level events into model-domain events,
and hence abstracts the state of the controlled system. In our
prototype implementation (see the next section), we use a
knowledge-based system to analyze a stream of events and
generate new information about the system. The purpose of
the inference engine is to transform a stream of low-level
monitoring events into higher-level state change events. For
example, increasing message queues can be interpreted as
network performance degradation and generate the network
degradation event. The remainder of the adaptation loop works
exclusively on the system model events, such as our example
network performance degradation event, and is screened from
the numerous low-level events coming from the controlled
system. How this information is determined can be altered
without disrupting the rest of the adaptation system.

D. Model layer

Following the information produced by the inference mod-
ule, the model module maps the system’s activity onto a model
of the system to choose how or whether the application should
adapt or reconfigure. The model engine adds an intermediate
level between observation (such as a network degradation)
and applied reaction (such as a higher compression rate).
It evaluates the specified model to trigger the adaptation
strategies.

In the current version, the adaptation model of the system
is abstracted through an event-driven FSM that defines the



3

setaudio_highqual; 
setvideo_losslylow;

setaudio_highqual; 
setvideo_losslymed;

Lossly high
Low quality audio

Lossly high
Medium quality audio

Lossly high
High quality audio

Lossly medium
Low quality audio

Lossly medium
Medium quality audio

Lossly medium
High quality audio

Lossly low
Low quality audio

Lossly low
Medium quality audio

Lossly low
High quality audio

undercap

undercap & 
highspeed_link

undercap & 
highspeed_link

undercap

undercap undercap

undercap

undercap & 
highspeed_link

Fig. 3. Partial example of a model controlling a multimedia application.
Adaptive behaviors and evolution of the software can be altered by changing
the graph (undercap and highspeedlink are inferences from low-
level events).

desired adaptive behavior of the system. This allows for
sophisticated adaptive behaviors that are easily alterable and
comprehensible. The states used in the FSM may differ from
the functional model of the system, as various states of the
system may not be considered by the adaptation. In our current
design, the FSM produces service requests when it transitions
between states in response to the events generated by the
inference module (see figure 2).

E. Correction layer

The correction layer applies the service requests determined
by the model module. The execution of a service request is
hence decoupled from its selection. The correction module
is designed to execute service requests while maintaining the
system’s consistency (such as flushing a subsystem before
reordering the components in a dataflow subsystem [10]).
Inspired by [4], [5], service requests are currently implemented
as scripts operating on the target system. These scripts imple-
ment the activation procedures used to perform functional or
structural adaptation.

The activation layer is designed to hide the specificity of
the adaptation scripts (e.g. steps for changing compression
algorithms) from the model of the system. This significantly
simplifies the adaptive model of the system, as the details of
these requests (e.g. switch to a higher compression rate) can be
redefined later on without any changes to the adaptive model.

IV. IMPLEMENTATION

Currently, a prototype implementation of the proposed
framework in Java is available. Relying on a design by inter-
faces, the current framework is centered around the concept
of events, which are discrete tuples of information transiting
between modules, and abstract channels that transfer events
between modules. The framework includes an inference mod-
ule based on Jess, a sophisticated knowledge engine developed
at Sandia Lab [11], an event-driven FSM module to represent
the system as a state machine, and a multithreaded adaptation
module, to service and assign worker threads to execute
adaptation scripts. In addition to the presented features, the
framework also implements necessary utility classes (special-
ized channels, display GUI, etc.).

V. CONCLUSION

In this article, we presented a framework and methodology
for adding an external control and adaptation capabilities
to existing systems. The solution emphasizes separation of
concerns and modularity of the adaptation process. Similarly
to other efforts, its purpose is to design general mechanisms to
develop systems that would adapt to their operating conditions
and operate autonomously, and therefore fulfill the need for
self-adaptive software expressed by the industry.

Our solution relies on previous work in external, control-
based and model-based self-adaptation, but is distinguished by
its decomposition of the adaptation process. The framework
is decomposed into the observation, model and correction
layers that are virtually independent from each other. Hence, it
supports modularization and allows for the adaptation process
to be customized for specific needs or application domains.
The observation, model and correction modules can be sub-
stituted to fulfill a particular need. The framework relies on
the first layer, the observation module, to infer information
about the controlled system and allow adaptation decisions to
be based on high level information rather than many low-level
events. Then, the model module maps these observations onto
an actual model of the system, which in turn permits situa-
tional adaptation. Finally, the correction module independently
executes appropriate adaptation tasks and abstracts away the
concerns necessary to realize the adaptation.

REFERENCES

[1] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing
era” IBM Systems Journal, vol. Volume 42, Number 1, pp. 33–38, 2003.

[2] Microsoft, “Microsoft dynamic systems initiative:
The drive to self-managing dynamic systems” 2005,
http://www.microsoft.com/windowsserversystem/dsi/.

[3] J. O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, Volume 36, Number 1:41–50, 2003.

[4] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture” IEEE Computer, vol. Volume 37, Issue 10, pp. 46–54, October
2004.

[5] D. Garlan and B. Schmerl, “Model-based adaptation for self-healing
systems” in WOSS ’02: Proceedings of the first workshop on Self-healing
systems, New York, NY, USA, 2002, pp. 27–32.

[6] G. Karsai, Á. Lédeczi, J. Sztipanovits, G. Péceli, G. Simon, and
T. Kovácsházy, “An approach to self-adaptive software based on su-
pervisory control” in IWSAS, 2001, pp. 24–38.

[7] G. Kaiser, J. Parekh, P. Gross, and G. Valetto, “Kinesthetics eXtreme:
An external infrastructure for monitoring distributed legacy systems” in
Autonomic Computing Workshop Fifth Annual International Workshop
on Active Middleware Services (AMS’03), 2003.

[8] Y. Qun, Y. Xian-Chun, and X. Man-Wu, “A framework for dynamic
software architecture-based self-healing” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 4, pp. 1–4, 2005.

[9] Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung,
“Self-managing systems: A control theory foundation” in 12th IEEE In-
ternational Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS ’05), 2005.

[10] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management” The VLDB Journal, vol. 12,
no. 2, pp. 120–139, 2003.

[11] S. N. L. Ernest Friedman-Hill, “Jess” http://herzberg.ca.sandia.gov/jess/.


