

Abstract—In preparation for NOvA, a future neutrino

experiment at Fermilab, we are developing a system for passing
control and status messages in the data acquisition system. The
DAQ system will consist of applications running on
approximately 450 nodes. The message passing system will use a
publish-subscribe model and will provide support for sending
messages and receiving the associated replies. Additional features
of the system include a layered architecture with custom APIs
tailored to the needs of a DAQ system, the use of an open source
messaging system for handling the reliable delivery of messages,
the ability to send broadcasts to groups of applications, and APIs
in Java, C++, and Python. Our choice for the open source system
to deliver messages is EPICS. We will discuss the architecture of
the system, our experience with EPICS, and preliminary test
results.

I. INTRODUCTION
HE NOνA experiment is designed to study νμ νe
oscillations in the existing Fermilab neutrino beam using

detectors on the Fermilab site and in northern Minnesota.
Official data taking is expected to start in 2010, and a
prototype detector will be built and operated in 2008 with
reduced data acquisition needs.

The data acquisition (DAQ) system for the larger detector
in Minnesota will contain ~250 data combiner modules
(DCMs) and ~180 buffer nodes connected by a Gigabit
Ethernet network. Physics data will be collected from front-
end digitizer modules by the DCMs and sent to the buffer
nodes, from which data in time slices of interest will be sent to
mass storage. Control and status messages will use the same
network as the physics data, and each DCM and buffer node
will send and receive these types of messages as well as
transfer physics data. The DAQ system will contain 10-20
control and monitoring applications in addition to the DCMs
and buffer nodes, so the total number of nodes that will make
use of the messaging system is approximately 450. More
details on the NOνA experiment and its data acquisition
system can be found in [1] and [2].

II. MESSAGE PASSING TERMINOLOGY
To help provide a background for our discussion of the

NOνA DAQ messaging system, we provide the following
definitions of terms, some of which are commonly used in
message passing systems and some of which are unique to the

system that we are discussing here:
• message – data in a well-defined format that is used to

communicate between distributed applications.
• message passing system (or messaging system) – a

means of communication between software
components or applications that is loosely coupled.
Messages are sent to and read from pre-defined
destinations without the sender or receiver needing to
know details about the other’s location or
implementation.

• message producer – a software component that creates
messages and sends them to other components in the
system.

• message consumer – a software component that
receives messages and makes use of the information
contained in them.

• message destination – a logical location to which
messages are sent and from which they are received.

• point-to-point messaging – a system of message
delivery in which each message is delivered to a single
consumer. In this model, message destinations may
include buffering so that messages may be consumed at
a later time than when they were produced.

• publish-subscribe messaging – a system of message
delivery in which multiple consumers may receive a
particular message. Consumers register interest in a
particular destination (subscribe) and subsequently
receive one copy of each message sent to that
destination. Producers create and send messages to
specified destinations (publish) without needing to
know the number or location of interested consumers.
Destinations do not provide any buffering, so
consumers only receive messages after their
subscriptions have been registered.

• notification message – an informational message that
generates no response from the recipient(s).

• request message – a message that requests that the
recipient(s) execute a specific action and report
information on the result of that action back to the
originator.

• reply message – a message that reports the result of a
requested action.

Additional information on messaging terms, concepts, and

A System for Exchanging Control and Status
Messages in the NOνA Data Acquisition

Kurt Biery, Glenn Cooper, Stephen Foulkes, Gerald Guglielmo, Luciano Piccoli, Margaret Votava
Fermi National Accelerator Laboratory, Batavia, IL 60510 USA

T

FERMILAB-CONF-07-101-CD

patterns can be found in [3] and [4].

III. REQUIREMENTS
The high-level goals of the message passing system are to

provide a robust communications channel between
applications at runtime and a straightforward interface for
application developers during development.

In addition to these general goals, the system must meet the
following specific requirements:
• support several categories of messages – e.g., control

commands, status and error reports, and queries for
information;

• automatically associate replies with their corresponding
requests;

• allow messages to be sent to individual applications
(“directed messages”) as well as groups of applications
(“broadcasts”);

• allow applications to specify synchronous or
asynchronous receipt of messages;

• make use of a publish-subscribe model for message
delivery so that messages may be monitored without
disrupting the system;

• support the physical subdivisions of the DAQ network
(e.g., into subnets or regions) and the logical
subdivision of the DAQ system (e.g., into separate
partitions of DAQ elements); and

• provide sufficient data transfer capacity to support
approximately 20 request/reply exchanges per second.

It is also desirable to make use of an existing messaging
system to provide the low-level message transport and
management of subscriptions (a messaging “provider” from
our perspective) and allow the replacement of one provider
with another with minimal disruption to the full system should
that become necessary.

IV. SAMPLE SCENARIOS
Figures 1, 2, and 3 show several message passing scenarios

that we expect in the DAQ system. The first diagram
illustrates the sending of notification messages from one
application to another. An example of this scenario is the
reporting of status information to a central monitor
application. The second diagram illustrates the transfer of a
request from one application to another and the transfer of a
reply back to the original application. An example of this
scenario is a control application requesting a state transition
from a data taking application, and the data taking application
reporting success or failure.

The third diagram illustrates the broadcast of a request to
several applications and their corresponding replies. In
addition, it shows the presence of a message monitoring
application that spies on the outgoing broadcasts for
diagnostic purposes. An example of this scenario is a control
application sending a transition request to all of the

applications in the system, and the applications reporting the
success or failure of the transition.

Several aspects of these diagrams should be noted. First, in
our system, producers and consumers can both send and
receive messages. The difference lies in the types of messages
that they send and receive. Notifications and requests are sent
from producers and received by consumers, whereas replies
are sent from consumers and received by producers. As such,
the producer and consumer names relate to the production and
consumption of the original message, not any associated reply.

A second aspect to note is that although broadcasts in our
system simplify the sending of messages from a producer,
they don’t necessarily simplify the receiving of replies. A
producer that broadcasts a request to a group of consumers
needs each of the consumers to report the result of the
requested action, and it needs to have a list of consumers so

Fig. 2. A typical use case in which requests are sent from one application to
another, and replies are returned to the originator. The request messages are

shown with solid lines and the replies with dashed lines

requests

Producer

Destination A

Destination B

replies

Consumer

Fig. 3. A typical use case in which messages are broadcast to a group of
processes, each member of the group sends a reply to the originator, and
the original messages are monitored by a process designed for that task.

The request messages are shown with solid lines and the replies from
individual consumers with dotted and dashed lines.

requests

Producer

Destination A

Destination B

replies

Consumer B
(responder)

Consumer A
(responder)

Consumer C
(monitor)

Fig. 1. A simple use case in which messages are sent from one
application to another, and no responses are generated.

notifications

Producer Destination A Consumer

that it can react accordingly if one or more of the consumers
do not respond in a timely way. A broadcast of a notification,
however, gains the full benefit of grouping the consumers
together because replies are not generated for notifications.

V. ARCHITECTURE AND DESIGN
To meet the messaging needs of the NOνA DAQ system,

we have created the Responsive Messaging System (RMS). It
makes use of a third-party message passing system to provide
message transport and management of subscriptions, and it
includes two relatively thin layers of software to provide the
desired application level interface and encapsulate provider-
specific details.

The software stack is shown in Fig. 4. The RMS public
layer provides the classes and interfaces to be used by
application software. By design, it is independent of any
details of a particular underlying messaging provider. The
RMS provider layer provides the bridge between the RMS
public layer and the third-party system.

A. RMS Public Layer
The primary classes and interfaces contained in the RMS

public layer are shown in Figures 5 and 6.
The producer and consumer classes provide methods for

sending and receiving messages. Both classes provide
internal buffering so that the receipt of messages at the
provider level is decoupled from their receipt at the
application level independent of whether the application level
processing is done synchronously or asynchronously. In
addition, the producer class contains logic to filter out
uncorrelated replies.

The RmsDestination class provides a provider-neutral
representation of a message destination. It is implemented as

a set of property name and value pairs, where the property
names are predefined keywords that specify the destination.
Required properties include “target” and “service”. The target
property is used to indicate the intended recipient(s), and the
service property indicates the category of messages (e.g.,
control, status, or heartbeat). Additional supported properties
include “messageType” (notification, request, or reply) and
“partitionNumber” which can be used to specify a subset of
the elements in the DAQ system.

The RmsMessage class defines message objects at the
public layer, and instances of this class are used for all types
of messages (notifications, requests, and replies). Each
message contains a header and a body, and the header
information includes a unique identifier, the length of time
that the message is valid (time-to-live), the timestamp of when
the message was sent, the intended destination for the

1 1 1..*1..*

MessageListener

Operations
public void onMessage(RmsMessage)

RmsProducer

Operations
public RmsProducer(RmsConnection, RmsDestination)
public RmsProducer(RmsConnection, RmsDestination[])
public void sendMessage(RmsMessage)
public RmsMessage receiveReply()
public RmsMessage receiveReply(long timeout)
public RmsMessage receiveReplyNoWait()
public void setReplyListener(MessageListener)

RmsDestination

Operations
public string getProperty(string name)
public void setProperty(string name, string value)

Fig. 5. Partial class diagram for the RMS public layer. Attributes and operations of
primary interest are shown. Additional classes and interfaces are shown in Fig. 6.

RmsConsumer

Operations
public RmsConsumer(RmsConnection, RmsDestination)
public RmsConsumer(RmsConnection, RmsDestination[])
public RmsMessage receiveMessage()
public RmsMessage receiveMessage(long timeout)
public RmsMessage receiveMessageNoWait()
public void sendReply(RmsMessage)
public void setMessageListener(MessageListener)

Application software

RMS public layer

RMS provider layer

Third party libraries

DAQ network
and third-party

servers (if needed)

Fig. 4. Outline of the software stack used by the
Responsive Messaging System.

message, and information about the source of the message.
Request message headers additionally include a reply
destination, and reply headers additionally include a
correlation ID that is used to match the reply to the originating
request.

The RmsMessage body is designed to hold the serialization
of an application level object. It is implemented as a class that
contains the class name of the serialized object as well as the
serialized data.

Application level message classes implement an interface
(Transmittable) that defines serialize and deserialize methods
so that they can be easily stored in and read from RMS
message bodies. In addition, the RmsMessage class
implements this interface so that producers and consumers can
treat these messages in a generic way.

B. RMS Provider Layer
The RMS provider layer contains interfaces that are

independent of the third-party provider and classes that
implement these interfaces for a particular provider. For
simplicity, only the provider-neutral interfaces are shown in
Fig. 7.

The RmsConnection interface contains the operations that
the public layer needs from the provider. These include
sending string messages to specified destinations and
specifying listeners for receiving messages from particular
destinations. The ProviderListener interface is used when the
provider layer notifies the public layer that a message has
arrived.

VI. THE EPICS RMS PROVIDER
Our choice for the initial RMS provider is the Experimental

Physics and Industrial Control System (EPICS) [5]. EPICS is
an open source control and monitoring system used by many
particle accelerators and scientific experiments, and it
provides distributed messaging along with many additional

features and tools. Communication in EPICS uses a custom
protocol named “channel access” (CA), and data reside in
well-defined locations called “process variables” (PVs). The
system provides server applications that are used to host
process variables and provides libraries in C and Java to write
data to the process variables and monitor them for changes.

We selected EPICS after evaluating several existing open
source messaging systems, including several pure publish-
subscribe systems. Although EPICS was not intended to be
used as a publish-subscribe messaging system, it was the only
candidate that would not have required significant
development work to make it production-ready, and it had the
advantage of already being used by our group in other
projects.

Our use of EPICS is limited to using channel access servers
to host process variables to which we write string messages
and which we monitor for updates. This effectively creates a
publish-subscribe messaging system with the possibility of

1

Transmittable

Operations
public string serialize()
public void deserialize(string serializedData)

MessageBody

Attributes
private string _className
private string _content

Fig. 6. Partial class diagram for the RMS public layer. Attributes and operations of
primary interest are shown. Additional classes and interfaces are shown in Fig. 5.

RmsMessage

Attributes
private string _id
private string _correlationId
private RmsDestination _destination
private RmsDestination _replyDestination
private date _sentTime
private date _correlationTime
private long _timeToLive

Operations
public MessageBody getBody()
public Transmittable getBodyObject()
public void setBody(MessageBody body)
public void setBody(Transmittable bodyObject)

RmsConnection

Operations
public void sendMessage(RmsDestination, string)
public void addListener(RmsDestination, ProviderListener
public void removeListener(ProviderListener)
public boolean supportsDestination(RmsDestination)
public RmsDestination getReplyDestination(RmsDestination)

ProviderListener

Operations
public void onMessage(string)

Fig. 7. Class diagram for the interfaces that are part of the RMS
provider layer.

multiple applications being notified of an update to a process
variable’s value. The data format of the process variables
used in RMS is a simple byte array of fixed size.

Readers familiar with EPICS will recognize that we are
using a small fraction of the functionality and tools available
in that system, but our primary needs are for it to handle the
low-level message transport and the management of
subscriptions.

A. Modifications to the EPICS Base System
Our initial attempts to use EPICS base version 3.14.8.2 for

RMS were complicated by the lack of guaranteed delivery of
PV updates. Multiple updates to a particular PV in a short
period of time occasionally resulted in only the last update
being sent to applications that were monitoring that PV. We
believe that this is part of the EPICS design, but this behavior
did not match our requirements for an RMS provider. An
ideal RMS provider has the following behavior:

• attempt to deliver each message to every consumer,
• notify producers of delays in delivering messages, and
• support a configurable timeout for attempts to deliver a

message to an unresponsive consumer.
Fortunately, it was straightforward to modify a local copy

of the EPICS CA server code base to provide this
functionality.

B. Message Delivery with EPICS
As mentioned previously, byte array process variables

hosted by channel access servers are the mechanism that we
use to pass messages with EPICS. The sending of a message
corresponds to writing the serialized message string to the PV,
and the receiving of messages is accomplished with callbacks
using EPICS monitors.

Within the RMS system, the process variables that are
needed for an application to communicate with another
application depends primarily on whether the communication
will use directed messages or broadcasts. Our model for
delivery of directed messages is to define an “inbox” PV for
each application and use these inboxes as the destinations for
messages and replies. Broadcasts use global outbox PVs for
sending messages and global inbox PVs for replies. These
two types of communication are illustrated in Figures 8 and 9.

For receiving directed messages, an application creates a
consumer associated with a destination that has its target
property set to the application name. The EPICS provider
layer code takes care of translating the destination object
properties to a process variable name. For receiving broadcast
messages, an application creates a consumer associated with a
destination that has its target property set to the broadcast
target. (In both cases, the destination service property and
other necessary properties are set appropriately.)

The naming convention for directed message PVs is
<targetName>/<serviceName>/inbox. Broadcast process
variables are named <regionName>/<partitionNumber>/

<targetName>/<serviceName>/<mailbox> and include
support for multiple regions and partitions.

C. EPICS RMS Provider Layer Implementation Details
The process variables that we use for exchanging messages

with EPICS have a fixed size, but we would like to avoid any
limitation on the size of messages at the application and public
layers. To support this, we developed functionality in the
EPICS provider layer to split messages that are longer than the
PV byte arrays into fragments when sending messages and to
reassemble the fragments when receiving messages.

At the application and RMS public layer levels, directed
message and broadcast destinations should be treated
equivalently. However, the provider layer needs to know the
difference. To support this in the EPICS provider code, we
have created a configurable list of broadcast destinations that
is used to determine the appropriate translation from generic
destination to appropriate PV name.

D. A Suite of EPICS Channel Access Servers
We are currently planning to host a relatively small number

of process variables (2-10) on each channel access server.
This will cause the overall number of CA servers to be rather

requests

Broadcast
Inbox PV

replies

Broadcast
Consumer A

Broadcast
Producer

Broadcast
Outbox PV

Broadcast
Consumer A

Fig. 9. Broadcast messages use outboxes and inboxes designated for
that purpose. The process variables are hosted by one or more

channel access servers.

Application B

Application A

Application B
Inbox PV

replies

requests

Application A
Inbox PV

Fig. 8. Directed messages use inboxes associated with individual
applications. The inboxes are implemented as EPICS process variables

hosted by one or more channel access servers

large, but it will help isolate the effect of any problems in one
part of the system. In particular, we want to separate the
servers that handle different categories of messages (control,
error reporting, etc.) from each other so that bottlenecks in
delivery of one category don’t affect any of the others.

We are currently investigating ways to efficiently deploy
and manage the CA servers that will be needed for the full
DAQ system.

VII. ALTERNATE PROVIDERS
We believe that we have achieved our goal of allowing the

underlying messaging provider to be replaced in a
straightforward way should that become necessary. Several of
the systems that we initially considered as providers used a
more traditional publish-subscribe model than what we have
created with EPICS. To ensure that these systems continue to
be candidates for an RMS provider, we were careful to
consider typical publish-subscribe subscription models during
the design of RMS.

For reference, the steps needed to add another provider for
RMS would consist of implementing the RmsConnection
interface for that provider, creating whatever support classes
might be needed, and deploying the servers that handle
communication for that provider.

VIII. XML DATA BINDING
Our choice for the format of the serialized message strings

is XML. This means that all classes that implement the
Transmittable interface must have the ability to translate their
internal data into XML and vice-versa.

As an example of a serialized representation of an
application level object, the following string shows the XML
for an object that requests a state transition:

<transitionRequest partitionNumber="0">
 <action>Initialize</action>
</transitionRequest>

After this object is wrapped in a full RmsMessage object, its
serialization looks like the following string:

<rmsMessage
 id="e890ec1b-6993-87bf-1004-487f02533400"
 sentTime="2007-04-23T13:42:33.805-05:00"
 timeToLive="5000">
 <destination>
 <property name="target">
 <value>dcm000</value>
 </property>
 <property name="service">
 <value>control</value>
 </property>
 <property name="messageType">
 <value>request</value>
 </property>
 </destination>
 <reply-destination>
 <property name="target">
 <value>RunControl0</value>

 </property>
 <property name="service">
 <value>control</value>
 </property>
 <property name="messageType">
 <value>reply</value>
 </property>
 </reply-destination>
 <body className="TransitionRequest">
 <transitionRequest

 partitionNumber="0">
 <action>Initialize</action>
 </transitionRequest>

 </body>
</rmsMessage>

It should be noted that the XML string from the original
transition request is HTML encoded when it is stored in the
RmsMessage body.

To facilitate the translation of the Transmittable objects in
RMS to XML, we have chosen to use the Castor open source
data binding framework for Java [6] and the CodeSynthesis
XSD open source data binding compiler for C++ [7]. These
tools allow us to specify application level messages in XML
Schema Definition files and generate the corresponding
classes from the schemas. With a few minor modifications,
the generated classes automatically provide the serialization
and deserialization functionality that is needed to implement
the Transmittable interface.

IX. SAMPLE USAGE
As an example of how the RMS APIs will be used, the

following list contains the steps that an application would use
to send a request and receive the resulting reply:

1. Create an instance of the provider-specific class that
implements RmsConnection.

2. Create an RmsDestination object containing the
destination to which the message will be sent.

3. Create an RmsProducer instance using the connection
and destination objects from steps 1 and 2.

4. If asynchronous processing of replies is desired, create
an instance of a class that implements MessageListener
and pass that listener to the producer.

5. Create an instance of the desired application level
message class that implements the Transmittable
interface.

6. Create an instance of the RmsMessage class and add
the message class from step 5 to its body.

7. Send the message using the producer sendMessage()
method.

8. Read the reply with one of the producer synchronous
receive methods or process it in the MessageListener
object created in step 4.

The steps to receive a request and send a reply are similar but
would use an instance of the RmsConsumer class rather than
an RmsProducer.

Applications are not limited to single producer or
consumer, nor are they limited to one function (producing or

consuming). A single application may send messages to
several destinations using one or more producers and also
receive messages from several destinations using one or more
consumers.

X. CURRENT STATUS
At this time, the development of the Java API is nearly

complete, the development of the C++ API is ongoing, and the
development of the Python API has not yet begun.

Using a small demo system, written in Java, that exercises
the broadcasting of transition requests to two simulated DCM
applications and receiving the replies, we have measured a
sustained rate of approximately 20 exchanges per second.
This rate matches the requirement listed in Section III. This
test used the Java RMS API and hosted all of the applications
needed for the test, including the EPICS channel access
servers, on a single Linux node. Higher rates may be
achievable with multiple CPUs.

REFERENCES
[1] NOνA Collaboration. NOνA Proposal and Talks. http://www-

nova.fnal.gov.
[2] R. Kwarciany, G.M. Guglielmo, W. Haynes, F.V. Pavlicek, “Nova

DAQ: Data Combiner and Timing System,” Proceedings of the IEEE
Real Time Conference 2007, Batavia, Illinois, May 2007, to be
published.

[3] Java Message Service Tutorial.
http://java.sun.com/products/jms/tutorial.

[4] G. Hohpe and B. Woolf, Enterprise Integration Patterns, Addison-
Wesley, 2004.

[5] Experimental Physics and Industrial Control System.
http://www.aps.anl.gov/epics.

[6] The Castor Project. http://www.castor.org.
[7] CodeSynthesis XSD, XML Data Binding for C++.

http://www.codesynthesis.com/products/xsd.

