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Lattice QCD results for the B — D®/v form factors: F(1) and G(1)

R. S. Van de Water*
Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA

I review the current status of lattice QCD calculations of the B — D and B — D™ form factors
and discuss prospects for their improvement. Successful calculations within the quenched approxi-
mation demonstrate the power of lattice methods for calculating F'(1) and G(1), and the unquenched
calculations in progress should soon allow for a 2 — 3% exclusive determination of |Ve|.

I. INTRODUCTION AND MOTIVATIONS

Experimental measurements of the exclusive decays
B — Dfv and B — D*{v, in combination with theoret-
ical input, allow for a precise measurement of the CKM
matrix element |Vi3|. The B — D) branching fractions
are proportional to |V, |%:

dI’(B DI
% = known factor x |Vep|*|Fp—p(w)[?
w
dlI'(B D~
% = known factor x |V |?|Fp_p-(w)]?,
w

where w = v - v’ depends upon the B— and D— me-
son velocities, v and v’, and the form factor F(w), pa-
rameterizes the nonperturbative contribution to the de-
cay. Thus experiments can only measure the product
F(w) x |Vep|, and lattice QCD calculations of the form
factor are needed to extract the CKM matrix element.
Because a single ¢? point determines the normalization,
one typically chooses the zero recoil point (w = 1) where
the lattice calculation is easiest.

The B — D and B — D* form factors were calculated
by the Fermilab Lattice collaboration using the quenched
approximation (neglecting dynamical quark effects) in
Refs [1, 2]. Unquenched calculations are in progress by
the Fermilab/MIIC Lattice Collaboration, and a prelim-
inary result for the B — D form factor was presented
at Lattice 2004 [4]. While the quenched calculations
used Wilson light quarks, the unquenched calculations
use the publicly available “2+1 flavor” MILC configu-
rations which have three flavors of improved staggered
quarks: one heavy quark flavor that has a mass close to
that of the strange quark (ms) and two degenerate light
quarks with masses ranging from m/10 < m; < my [3].
Both sets of calculations use the Fermilab formulation for
the b and ¢ quarks.

II. OVERVIEW OF B — D AND B — D* FORM
FACTOR CALCULATIONS

In this section I will review the method used by the
Fermilab Collaboration to calculate Fp_,p(1) [also re-
ferred to as G(1)] and Fp_p-(1) [also called F'(1)]. This
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approach is the only one currently being used in un-
quenched simulations.

The B — D decay amplitude depends upon two form
factors, hy and h_:

B—D MmB —MpD ;, Bp
Fp_p(w) =hi""(w) e —— hZ= 5 (w).
Although hy and h_ could in principle be extracted di-
rectly from the lattice B — D correlation function, the
errors resulting from this method would be large. Thus
one instead constructs double ratios of correlation func-
tions which isolate the form factors of interest:
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thereby canceling out the bulk of statistical fluctuations
from Monte Carlo simulations as well as many systematic
erTors.

In contrast, the B — D* decay amplitude only de-
pends upon one form factor, h4,:

-7:B~>D*(1) = hAl(l)'

Because, however, h4,, cannot be determined from a sin-
gle double ratio, one must use Heavy Quark Effective
Theory (HQET) as an intermediary. When expanded
in powers of the heavy-quark mass to O(1/mg)), ha, (1)
depends upon three different HQET matrix elements :

by 204 lp

ha, (1) = 1— _
(1) =14 (2m,)? + 2memp  (2myp)?

The HQET matrix elements £y, £, and £p can in turn
be determined from the heavy quark mass dependence
of three different double ratios. For example, the heavy-
quark mass dependence of R, allows the extraction of
Ly
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Once ly, {4, and {p have all been determined in this
manner, they can be combined to form h4, (1)
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FIG. 1: Schematic of B — D and B — D™ form factor calcu-
lations.

The calculations of F(1) and G(1) share certain es-
sential features: both use the same code (although with
different operators) to generate correlation functions and
take advantage of double ratios to reduce statistical and
systematic errors. The calculation of G(1), however, uti-
lizes significantly less computing resources than that of
F(1). This is because G(1) is extracted directly from lat-
tice data at the tuned bottom and charm masses, whereas
F(1) is reconstituted from HQET matrix elements, the
determination of which requires lattice data at multiple
heavy quark masses. The difference in between the F'(1)
and G(1) calculations is illustrated schematically in Fig-
ure 1.

III. SYSTEMATICS IN LATTICE
CALCULATIONS

Lattice calculations typically quote the following
sources of error:

1. Monte carlo statistics and fitting,

2. Tuning the lattice spacing, a, and quark masses,
3. Matching lattice gauge theory to continuum QCD,
4. Extrapolation to continuum,

5. Chiral extrapolation to physical light quark masses.

Some lattice simulations also neglect dynamical quark
loops — this is known as the “quenched approximation”.
Errors 3 and 5 in the above list are the dominant sources
of uncertainty in current heavy-light lattice calculations,
and I will discuss them in turn.

Because a generic lattice quark action will have dis-
cretization errors o (amg)™, one cannot use most light-
quark actions to make heavy quarks (~ m., m;), for
which amy is of O(1) at currently available lattice spac-
ings. The “Fermilab” method addresses this problem by
using HQET to match continuum QCD directly to lattice
gauge theory, thereby allowing systematic elimination of
heavy quark discretization errors order-by-order [5-7].

This requires tuning the parameters of the lattice action
and lattice currents to the continuum, and typically the
matching coefficients are calculated using lattice pertur-
bation theory [8]. Within the Fermilab formalism, one
can combine all of the errors associated with discretiz-
ing the action into “heavy quark discretization errors”
and estimate their size using knowledge of short-distance
coefficients and power-counting.

The second significant source of error in most heavy-
light lattice calculations is the chiral extrapolation. Be-
cause current lattice simulations are restricted to quark
masses heavier than & m/10, one must extrapolate lat-
tice results to the physical values of the up and down
quark masses. For simulations using staggered quarks,
one must extrapolate with functional forms from stag-
gered chiral perturbation theory (SxPT), which accounts
for both the next-to-leading order light quark mass de-
pendence and light quark discretization effects through
O(o%a2A2QCD)[9711]. Although the use of SxPT has
been extremely successful for light-light meson quantities
such as m, and f, it is important to keep in mind that
staggered lattice results agree with experimental values
after chiral extrapolation in large part because the simu-
lated quark masses are light and the lattice calculations
are already close to the correct answer.

Figures 2 (a) and (b) show extrapolations with SYPT
of the B — D and B — D* form factors, respectively.
The B — D form factor does not depend significantly
on the light quark mass, and the systematic error as-
sociated with the chiral extrapolation is correspondingly
small [12]. For the B — D* form factor, however, extrap-
olation using the correct SyPT expression is essential.
This is because the cusp located at m2 = (mp« —mp)?,
whose depth is proportional to the D — D* — 7 coupling
in continuum xPT, becomes washed out by the presence
of additional “tastes” of pions in the staggered lattice
theory [13].

IV. QUENCHED RESULTS FOR F(1) AND G(1)

Using the methods described in the previous two sec-
tions, the Fermilab Collaboration determined G(1) to 2%
accuracy [1]:

Fp_p(l) =1.058 + 0.016 £ 0.0037) 042,

where the errors are from statistics and chiral extrapo-
lation, m¢ tuning, and perturbative matching, respec-
tively. (Note that this calculation was only performed at
a single lattice spacing.) They also determined F(1) to
4% accuracy [2]:

_ +0.0238+-0.0156+0.0032+-0.0000
'7:B—>D*(1) - O'9130:l:—0.0173—0.0157—0.0141—0.01637

where the errors are from statistics, mg tuning and
matching, lattice spacing dependence, and chiral extrap-

olation, respectively. Although these results do not re-
flect the systematic uncertainty due to quenching, they
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FIG. 2: Chiral extrapolations of the B — D [plot (a)] and B — D= [plot (b)] form factors [12, 13]. The dashed curves are fits to
the lattice data using the appropriate staggered xPT expressions and the solid curves are the continuum extrapolations. Note
that the B — D form factor has a mild light quark mass dependence, whereas the B — D™ extrapolation depends strongly on
the value of the the D — D* — 7 coupling, g», which determines the depth of the continuum cusp.

show that all other sources of uncertainty are under con-
trol, and thus demonstrate the viability of the double
ratio method for precise calculations of the B — D)
form factors at zero recoil.

The above results can, however, be improved in many
ways. Unquenched calculations that include the effects
of three light quark flavors are in progress [4, 13]. These
will have lighter quark masses and increased statistics,
and eventually finer lattice spacings, as compared to the
quenched calculations. Heavy-quark discretization errors
can be reduced through the use of 2-loop perturbative
(or fully nonperturbative) matching. The heavy-quark
action can also be improved by nonperturbatively de-
termining the clover coefficient in the heavy-quark ac-
tion as presented in Ref. [14], by extending the Fermilab
method to include higher-dimension operators in the ac-
tion as outlined in Ref. [15], or by some combination
of these two approaches. Finally, calculations of the
B — D™ form factors with different light quark actions
(e.g domain-wall, overlap, or improved Wilson) or dif-
ferent heavy quark actions (e.g NRQCD) would provide
valuable cross-checks.

One promising alternative to the Fermilab formulation
of heavy quarks is the step-scaling method of Guagnelli
et. al., introduced in Ref. [16]. In this approach one cal-
culates the quantity of interest on at least two lattices of
different volumes. The lattices must have sufficiently fine
lattice spacings that heavy quark discretization errors are
under control [(amg) < 1] and perturbation theory is
valid. One can then use knowledge of the scaling behav-
ior with volume to extrapolate the two finite-volume re-
sults to infinite volume. A preliminary determination of
the B — D form factor at w = 1.05 in the quenched ap-
proximation using the step-scaling method was presented

at this workshop by Tantalo [17]:

Fp—p(1.05) = 0.986(30) (preliminary).

Neglecting quenching errors, the above result has a 3%
uncertainty, and is therefore competitive with the Fermi-
lab approach.

V. PROGRESS IN UNQUENCHED
CALCULATIONS OF F(1) AND G(1)

The Fermilab Collaboration presented a preliminary
unquenched result for the B — D form factor in 2004 [4]:

FHT2 1) = 1.074 (18)sa(16)sys  (preliminary)

(Vo] 3.8 (1)sa(6)sys x 1072 (preliminary).

As shown in Fig. 3, it is consistent with the earlier
quenched value. Although the above result quotes a 2%
error, it was determined with a single lattice spacing.
This calculation, however, is still in progress, and the
final result will have many improvements as compared
to the preliminary number. It will have four times the
statistics, an additional data point at an even lighter
quark mass, and an additional (larger) lattice spacing
to estimate the lattice spacing dependence. In addition,
while the above calculation performed a simple linear ex-
trapolation in the light quark mass, the improved calcu-
lation will use the correct SYPT expression [12].
Although there has not yet been an unquenched calcu-
lation of the B — D* form factor, one can make a rea-
sonable “prediction” of what the errors will be based on
the quenched calculation and other factors. Recall that
the total error in the quenched value of F(1) is 4 %. In
addition to removing the quenching uncertainty, the un-
quenched calculation will have increased statistics and a
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FIG. 3: Comparison of quenched and unquenched determina-
tions of the B — D form factor. [4]

chiral extrapolation using the appropriate SYPT expres-
sion. Furthermore, because Sy PT includes light quark
discretization effects, this will not only reduce the chiral
extrapolation error but also reduce the lattice spacing un-
certainty. Thus the total error in the unquenched result
for F(1) will likely be 2-3%. A significant source of error
in the calculation of F'(1) turns out to be the uncertainty
in the D — D* — 7 coupling, g,; this is because the size
of the continuum cusp in Fig. 2(b) varies by + 1% when
gr is varied within its experimental uncertainty. Thus, in
order to get below the 2-3% level, a better experimental
(or lattice) determination of g, may be necessary.

VI. SUMMARY AND PROSPECTS FOR
EXCLUSIVE DETERMINATION OF |V,;|

The CKM matrix element |V,;| is currently known to
4% from exclusive decays, and this error is limited by
the theoretical uncertainty in the B — D) form fac-
tors at zero recoil [18]. Quenched results demonstrate
the capability of lattice QCD calculations to determine
F(1), G(1) to a few percent accuracy, and unquenched
calculations are in progress using the same methodol-
ogy. Although the quoted errors will likely only go from
4%—2-3% between the quenched and unquenched cal-
culations, the results will be on a stronger theoretical
footing, and hence more reliable. Reducing the errors to
below 2-3%, however, will require additional work, such
as higher-order matching and a better determination of
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