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We measure the large-scale real-space power spectrum P (k) using luminous red galaxies (LRGs)
in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cos-
mological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a
matrix-based power spectrum estimation method using Pseudo-Karhunen-Loève eigenmodes, pro-
ducing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power
and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions
in the range 0.01 h/Mpc < k < 0.2 h/Mpc. Results from the LRG and main galaxy samples are con-
sistent, with the former providing higher signal-to-noise. Our results are robust to omitting angular
and radial density fluctuations and are consistent between different parts of the sky. They provide
a striking confirmation of the predicted large-scale ΛCDM power spectrum. Combining only SDSS
LRG and WMAP data places robust constraints on many cosmological parameters that complement
prior analyses of multiple data sets. The LRGs provide independent cross-checks on Ωm and the
baryon fraction in good agreement with WMAP. Within the context of flat ΛCDM models, our LRG
measurements complement WMAP by sharpening the constraints on the matter density, the neutrino
density and the tensor amplitude by about a factor of two, giving Ωm = 0.24±0.02 (1σ),

∑
mν ∼

< 0.9
eV (95%) and r < 0.3 (95%). Baryon oscillations are clearly detected and provide a robust measure-
ment of the comoving distance to the median survey redshift z = 0.35 independent of curvature and
dark energy properties. Within the ΛCDM framework, our power spectrum measurement improves
the evidence for spatial flatness, sharpening the curvature constraint Ωtot = 1.05±0.05 from WMAP
alone to Ωtot = 1.003± 0.010. Assuming Ωtot = 1, the equation of state parameter is constrained to
w = −0.94±0.09, indicating the potential for more ambitious future LRG measurements to provide
precision tests of the nature of dark energy. All these constraints are essentially independent of
scales k > 0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive
published analyses where nonlinear modeling is crucial.

I. INTRODUCTION

The dramatic recent progress by the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) and other experi-
ments [1–4] measuring the cosmic microwave background
(CMB) has made non-CMB experiments even more im-
portant in the quest to constrain cosmological models and
their free parameters. These non-CMB constraints are
crucially needed for breaking CMB degeneracies [5, 6];
for instance, WMAP alone is consistent with a closed
universe with Hubble parameter h = 0.3 and no cosmo-
logical constant [7]. As long as the non-CMB constraints
are less reliable and precise than the CMB, they will be
the limiting factor and weakest link in the precision cos-
mology endeavor. Much of the near-term progress in cos-
mology will therefore be driven by reductions in statisti-
cal and systematic uncertainties of non-CMB probes of
the cosmic expansion history (e.g., SN Ia) and the matter
power spectrum (e.g., Lyman α Forest, galaxy clustering
and motions, gravitational lensing, cluster studies and 21
cm tomography).

The cosmological constraining power of three-
dimensional maps of the Universe provided by galaxy
redshift surveys has motivated ever more ambitious ob-
servational efforts such as the CfA/UZC [8, 9], LCRS
[10], PSCz [11], DEEP [12], 2dFGRS [13] and SDSS [14]
projects, resulting in progressively more accurate mea-
surements of the galaxy power spectrum P (k) [15–30].
Constraints on cosmological models from these data sets
have been most robust when the galaxy clustering could
be measured on large scales where one has confidence in
the modeling of nonlinear clustering and biasing (e.g.,
[7, 31–42]).

Our goal in this paper therefore is to measure P (k)

on large scales using the SDSS galaxy redshift survey in
a way that is maximally useful for cosmological param-
eter estimation, and to explore the resulting constraints
on cosmological models. The emphasis of our cosmo-
logical analysis will be on elucidating the links between
cosmological parameters and observable features of the
WMAP and SDSS power spectra, and on how these two
data sets alone provide tight and robust constraints on
many parameters that complement more aggressive but
more systematics-prone analyses of multiple data sets.

In a parallel paper, Percival et al. [43] present a power
spectrum analysis of the Main Galaxy and LRG samples
from the SDSS DR5 data set [44], which is a superset of
the data used here. There are a number of differences
in the analysis methods. Percival et al. use an FFT-
based method to estimate the angle-averaged (monopole)
redshift-space galaxy power spectrum. We use a Pseudo-
Karhunen-Loève method [45, 46] (see further discussion
and references below) to estimate the real space (as op-
posed to redshift space) galaxy power spectrum, using
finger-of-god compression and linear theory to remove
redshift-space distortion effects. In addition, the many
technical decisions that go into these analyses, regarding
completeness corrections, angular masks, K-corrections
and so forth, were made independently for the two pa-
pers, and they present different tests for systematic un-
certainties. Despite these many differences of detail, our
conclusions agree to the extent that they overlap (as dis-
cussed in Section III F and Appendix A1), a reassuring
indication of the robustness of the results.
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A. Relation between different samples

The amount of information in a galaxy redshift survey
about the galaxy power spectrum Pg(k) and cosmological
parameters depends not on the number of galaxies per se,
but on the effective volume of the survey, defined by [47]
as

Veff(k) ≡
∫ [

n̄(r)Pg(k)

1 + n̄(r)Pg(k)

]2

d3r, (1)

where n̄(r) is the expected number density of galaxies in
the survey in the absence of clustering, and the FKP ap-
proximation of [19] has been used. The power spectrum
error bars scale approximately as ∆Pg(k) ∝ Veff(k)−1/2,
which for a fixed power Pg is minimized if a fixed to-
tal number of galaxies are spaced with density n̄ ∼ P−1

g

[48]. The SDSS Luminous Red Galaxy (LRG) sample
was designed [49, 50] to contain such “Goldilocks” galax-
ies with a just-right number density for probing the power
around the baryon wiggle scale k ∼ (0.05 − 0.1)h/Mpc.
For comparison, the SDSS main galaxy sample [50] is
much denser and is dominated by sample variance on
these scales, whereas the SDSS quasar sample [51] is
much sparser and is dominated by Poisson shot noise.
As shown in [36], the effective volume of the LRG sam-
ple is about six times larger than that of the SDSS main
galaxies even though the number of LRGs is an order of
magnitude lower, and the LRG volume is over ten times
larger than that of the 2dFGRS. These scalings are con-
firmed by our results below, which show that (∆Pg/Pg)

2

on large scales is about six times smaller for the SDSS
LRGs than for the main sample galaxies. This gain re-
sults both from sampling a larger volume, and from the
fact that the LRG are more strongly clustered (biased)
than are ordinary galaxies; Pg for LRGs is about 3 times
larger than for the main galaxy sample.

We will therefore focus our analysis on the SDSS LRG
sample. Although we also measure the SDSS main sam-
ple power spectrum, it adds very little in terms of sta-
tistical constraining power; increasing the effective vol-
ume by 15% cuts the error bar ∆P by only about
(1 + 0.15)1/2 − 1 ∼ 7%. This tiny improvement is eas-
ily outweighed by the gain in simplicity from analyzing
LRGs alone, where (as we will see) complications such as
redshift-dependence of clustering properties are substan-
tially smaller.

A complementary approach implemented by [41, 42]
is to measure the angular clustering of SDSS LRGs with
photometric redshifts, compensating for the loss of radial
information with an order of magnitude more galaxies
extending out to higher redshift. We will see that this
gives comparable or slightly smaller error bars on very
large scales k ∼< 0.02, but slightly larger error bars on
the smaller scales that dominate our cosmological con-
straints; this is because the number of modes down to a
given scale k grows as k3 for our three-dimensional spec-
troscopic analysis, whereas they grow only as k2 for a
2-dimensional angular analysis.

B. Relation between different methods

In the recent literature, two-point galaxy clustering
has been quantified using a variety of estimators of both
power spectra and correlation functions. The most re-
cent power spectrum measurements for both the 2dFGRS
[26, 29] and the SDSS [30, 38, 43] have all interpolated
the galaxy density field onto a cubic grid and measured
P (k) using a Fast Fourier Transform (FFT).

Appendix A1 shows that as long as discretization er-
rors from the FFT gridding are negligible, this procedure
is mathematically equivalent to measuring the correlation
function with a weighted version of the standard “DD-
2DR+RR” method [52, 53], multiplying by “RR” and
then Fourier transforming. Thus the only advantage of
the FFT approach is numerical speedup, and comparing
the results with recent correlation function analyses such
as [36, 54–56] will provide useful consistency checks.

Another approach, pioneered by [45], has been to con-
struct “lossless” estimators of the power spectrum with
the smallest error bars that are possible based on infor-
mation theory [23, 24, 27, 28, 34, 45, 46, 57, 58]. We
will travel this complementary route in the present pa-
per, following the matrix-based Pseudo Karhunen-Loève
(PKL) eigenmode method described in [28], as it has the
following advantages:

1. It produces power spectrum measurements with
uncorrelated error bars.

2. It produces narrow and well-behaved window func-
tions.

3. It is lossless in the information theory sense.

4. It treats redshift distortions without the small-
angle approximation.

5. It readily incorporates the so-called integral con-
straint [16, 59], which can otherwise artificially sup-
press large-scale power.

6. It allows testing for systematics that produce excess
power in angular or radial modes.

These properties make the results of the PKL-method
very easy to interpret and use. The main disadvantage
is that the PKL-method is numerically painful to im-
plement and execute; our PKL analysis described below
required about a terabyte of disk space for matrix stor-
age and about a year of CPU time, which contributed to
the long gestation period of this paper.

The rest of this paper is organized as follows. We de-
scribe our galaxy samples and our modeling of them in
Section II and measure their power spectra in Section III.
We explore what this does and does not reveal about cos-
mological parameters in Section IV. We summarize our
conclusions and place them in context in Section V. Fur-
ther details about analysis techniques are given in Ap-
pendix A.
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FIG. 1: The redshift distribution of the luminous red galaxies used
is shown as a histogram and compared with the expected distribu-
tion in the absence of clustering, ln 10×

∫
n̄(r)r3dΩ (solid curve) in

comoving coordinates assuming a flat ΩΛ = 0.75 cosmology. The
bottom panel shows the ratio of observed and expected distribu-
tions. The four vertical lines delimit the NEAR, MID and FAR
samples.

II. GALAXY DATA

The SDSS [14, 60] uses a mosaic CCD camera [61] on
a dedicated telescope [62] to image the sky in five pho-
tometric bandpasses denoted u, g, r, i and z [63]. Af-
ter astrometric calibration [64], photometric data reduc-
tion [65, 66] and photometric calibration [67–70], galax-
ies are selected for spectroscopic observations [50]. To a
good approximation, the main galaxy sample consists of
all galaxies with r-band apparent Petrosian magnitude
r < 17.77 after correction for reddening as per [71]; there
are about 90 such galaxies per square degree, with a me-
dian redshift of 0.1 and a tail out to z ∼ 0.25. Galaxy
spectra are also measured for the LRG sample [49], tar-
geting an additional ∼ 12 galaxies per square degree,
enforcing r < 19.5 and color-magnitude cuts described
in [36, 49] that select mainly luminous elliptical/early
type galaxies at redshifts up to ∼ 0.5. These targets
are assigned to spectroscopic plates of diameter 2.98◦

into which 640 optical fibers are plugged by an adap-
tive tiling algorithm [72], feeding a pair of CCD spectro-
graphs [73], after which the spectroscopic data reduction
and redshift determination are performed by automated
pipelines. The rms galaxy redshift errors are of order 30
km/s for main galaxies and 50 km/s for LRGs [49], hence
negligible for the purposes of the present paper.

Our analysis is based on 58, 360 LRGs and 285, 804
main galaxies (the “safe13” cut) from the 390, 288 galax-
ies in the 4th SDSS data release (“DR4”) [74], processed
via the SDSS data repository at New York University
[75]. The details of how these samples were processed
and modeled are given in Appendix A of [28] and in [36].
The bottom line is that each sample is completely speci-
fied by three entities:

1. The galaxy positions (RA, Dec and comoving red-
shift space distance r for each galaxy),

2. The radial selection function n̄(r), which gives the
expected number density of galaxies as a function
of distance,

3. The angular selection function n̄(r̂), which gives the
completeness as a function of direction in the sky,
specified in a set of spherical polygons [76].

Our samples are constructed so that their three-
dimensional selection function is separable, i.e., simply
the product n̄(r) = n̄(r̂)n̄(r) of an angular and a radial
part; here r ≡ |r| and r̂ ≡ r/r are the comoving radial dis-
tance and the unit vector corresponding to the position
r. The effective sky area covered is Ω ≡

∫
n̄(r̂)dΩ ≈ 4259

square degrees, and the typical completeness n̄(r̂) exceeds
90%. The radial selection function n̄(r) for the LRGs is
the one constructed and described in detail in [36, 56],
based on integrating an empirical model of the luminosity
function and color distribution of the LRGs against the
luminosity-color selection boundaries of the sample. Fig-
ure 1 shows that it agrees well with the observed galaxy
distribution. The conversion from redshift z to comoving
distance was made for a flat ΛCDM cosmological model
with Ωm = 0.25. If a different cosmological model is
used for this conversion, then our measured dimensionless
power spectrum k3P (k) is dilated very slightly (by ∼< 1%
for models consistent with our measurements) along the
k-axis; we include this dilation effect in our cosmological
parameter analysis as described in Appendix A4.

For systematics testing and numerical purposes, we
also analyze a variety of sub-volumes in the LRG sam-
ple. We split the sample into three radial slices, labeled
NEAR (0.155 < z < 0.300), MID (0.300 < z < 0.380)
and FAR (0.380 < z < 0.474), containing roughly
equal numbers of galaxies, as illustrated in Figure 2.
Their galaxy-weighted mean redshifts are 0.235, 0.342
and 0.421, respectively. We also split the sample into the
seven angular regions illustrated in Figure 3, each again
containing roughly the same number of galaxies.

It is worth emphasizing that the LRGs constitute a
remarkably clean and uniform galaxy sample, contain-
ing the same type of galaxy (luminous early-types) at all
redshifts. Not only is it nearly complete (n̄(r̂) ∼ 1 as
mentioned above), but it is close to volume-limited for
z ∼< 0.38 [36, 49], i.e., for our NEAR and MID slices.
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FIG. 2: The distribution of the 6,476 LRGs (black) and 32,417 main galaxies (green/grey) that are within 1.25◦ of the Equatorial plane.
The solid circles indicate the boundaries of our NEAR, MID and FAR subsamples. The “safe13” main galaxy sample analyzed here and
in [28] is more local, extending out only to 600h−1 Mpc (dashed circle).

III. POWER SPECTRUM MEASUREMENTS

We measure the power spectrum of our various samples
using the PKL method described in [28]. We follow the
procedure of [28] exactly, with some additional numeri-
cal improvements described in Appendix A, so we merely
summarize the process very briefly here. The first step
is to adjust the galaxy redshifts slightly to compress so-

called fingers-of-god (FOGs), virialized galaxy clusters
that appear elongated along the line-of-sight in redshift
space; we do this with several different thresholds and
return to how this affects the results in Section IV F2.
The LRGs are not just brightest cluster galaxies; about
20% of them appear to reside in a dark matter halo with
one or more other LRG’s. The second step is to expand
the three-dimensional galaxy density field in N three-



6

FIG. 3: The angular distribution of our LRGs is shown in Hammer-Aitoff projection in celestial coordinates, with the seven colors/greys
indicating the seven angular subsamples that we analyze.

dimensional functions termed PKL-eigenmodes, whose
variance and covariance retain essentially all the informa-
tion about the k < 0.2h/Mpc power spectrum from the
galaxy catalog. We use N = 42,000 modes for the LRG
sample and 4000 modes for the main sample, reflecting
their very different effective volumes. The third step is
estimating the power spectrum from quadratic combina-
tions of these PKL mode coefficients by a matrix-based
process analogous to the standard procedure for mea-
suring CMB power spectra from pixelized CMB maps.
The second and third steps are mathematically straight-
forward but, as mentioned, numerically demanding for
large N .

A. Basic results

The measured real-space power spectra are shown in
Figure 4 for the LRG and MAIN samples and are listed
in Table 1. When interpreting them, two points should
be borne in mind:

1. The data points (a.k.a. band power measurements)
probe a weighted average of the true power spec-
trum P (k) defined by the window functions shown
in Figure 5. Each point is plotted at the median
k-value of its window with a horizontal bar ranging
from the 20th to the 80th percentile.

2. The errors on the points, indicated by the vertical
bars, are uncorrelated, even though the horizon-
tal bars overlap. Other power spectrum estimation
methods (see Appendix A1) effectively produce a
smoothed version of what we are plotting, with er-
ror bars that are smaller but highly correlated.

Table 1 – The real-space galaxy power spectrum Pg(k) in units
of (h−1Mpc)3 measured from the LRG sample. The errors on Pg

are 1σ, uncorrelated between bands. The k-column gives the
median of the window function and its 20th and 80th percentiles;

the exact window functions from
http://space.mit.edu/home/tegmark/sdss.html (see Figure 5)
should be used for any quantitative analysis. Nonlinear modeling

is definitely required if the six measurements on the smallest
scales (below the line) are used for model fitting. These error bars

do not include an overall calibration uncertainty of 3% (1σ)
related to redshift space distortions (see Appendix A3).

k [h/Mpc] Power Pg

0.012+0.005
−0.004 124884 ± 18775

0.015+0.003
−0.002 118814 ± 29400

0.018+0.004
−0.002 134291 ± 21638

0.021+0.004
−0.003 58644 ± 16647

0.024+0.004
−0.003 105253 ± 12736

0.028+0.005
−0.003 77699 ± 9666

0.032+0.005
−0.003 57870 ± 7264

0.037+0.006
−0.004 56516 ± 5466

0.043+0.008
−0.006 50125 ± 3991

0.049+0.008
−0.007 45076 ± 2956

0.057+0.009
−0.007 39339 ± 2214

0.065+0.010
−0.008 39609 ± 1679

0.075+0.011
−0.009 31566 ± 1284

0.087+0.012
−0.011 24837 ± 991

0.100+0.013
−0.012 21390 ± 778

0.115+0.013
−0.014 17507 ± 629

0.133+0.012
−0.015 15421 ± 516

0.153+0.012
−0.017 12399 ± 430

0.177+0.013
−0.018 11237 ± 382

0.203+0.015
−0.022 9345 ± 384
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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FIG. 5: The window functions corresponding to the LRG band
powers in Figure 4 are plotted, normalized to have unit peak height.
Each window function typically peaks at the scale k that the cor-
responding band power estimator was designed to probe.

luminosity-dependent, which would be expected to af-
fect the FAR sample but not the MID and NEAR sam-
ples (which are effectively volume limited with a z-
independent mix of galaxy luminosities [49]). Since the
galaxy clustering amplitude is the product of these two
factors, matter clustering and bias, it could therefore in
principle either increase or decrease across the redshift
range 0.155 < z < 0.474 of the LRG sample. We quan-
tify this empirically by measuring the power spectra of
the NEAR, MID and FAR LRG subsamples. The results
are plotted in Figure 6 and show no evidence for evolution
of the large-scale galaxy (k ∼< 0.1h/Mpc) power spectrum
in either shape or amplitude. To better quantify this, we
fit the WMAP-only best-fit ΛCDM model from Table 5
of [7] (solid line in Figure 6) to our power spectra, by scal-
ing its predicted z = 0 matter power spectrum by b2 for a
constant bias factor b, using only the 14 data points that
are essentially in the linear regime, leftward of the dotted
vertical line k = 0.09h/Mpc. For the NEAR, MID and
FAR subsamples, this gives best fit bias factors b ≈ 1.95,
1.91 and 2.02, respectively. The fits are all good, giving
χ2 ≈ 10.3, 11.2 and 15.9 for the three cases, in agree-
ment with the expectation χ2 = 13 ±

√
2 × 13 ≈ 13 ± 5

and consistent with the linear-theory prediction that the
large-scale LRG power spectrum should not change its
shape over time, merely (perhaps) its amplitude.

The overall amplitude of the LRG power spectrum is
constant within the errors over this redshift range, in
good agreement with the results of [41, 56] at the corre-
sponding mean redshifts. Relative to the NEAR sample,
the clustering amplitude is 2.4%± 3% lower in MID and
3.5% ± 3% higher in FAR. In other words, in what ap-
pears to be a numerical coincidence, the growth over time

FIG. 6: Same as Figure 4, but showing the NEAR (circles), MID
(squares) and FAR (triangles) LRG subsamples. On linear scales,
they are all well fit by the WMAP3 model with the same clustering
amplitude, and there is no sign of clustering evolution.

in the matter power spectrum is approximately canceled
by a drop in the bias factor to within our measurement
uncertainty. For a flat Ωm = 0.25 ΛCDM model, the
matter clustering grows by about 10% from the FAR
to NEAR sample mean redshifts, so this suggests that
the bias drops by a similar factor. For a galaxy popu-
lation evolving passively, under the influence of gravity
alone [78, 79], b would be expected to drop by about 5%
over this redshift range; a slight additional drop could
be caused by luminosity-dependent bias coupling to the
slight change in the luminosity function for the FAR sam-
ple, which is not volume limited.

This cancellation of LRG clustering evolution is a for-
tuitous coincidence that simplifies our analysis: we can
pool all our LRGs and measure a single power spectrum
for this single sample. It is not a particularly surprising
result: many authors have found that the galaxy cluster-
ing strength is essentially independent of redshift, even
to redshifts z > 3 [81], and even the effect that is partly
canceled (the expected 10% growth in matter clustering)
is small, because of the limited redshift range probed.

C. Redshift space distortions

As described in detail in [28], an intermediate step in
our PKL-method is measuring three separate power spec-
tra, Pgg(k), Pgv(k) and Pvv(k), which encode clustering
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FIG. 7: Same as Figure 4, but multiplied by k and plotted with
a linear vertical axis to more clearly illustrate departures from a
simple power law.

FIG. 8: Constraints on the redshift space distortion parameters
β and rgv . The contours show the 1, 2 and 3σ constraints from
the observed LRG clustering anisotropy, with the circular dot in-
dicating the best fit values. The diamond shows the completely
independent β-estimate inferred from our analysis of the WMAP3
and LRG power spectra (it puts no constraints on rgv, but has
been plotted at rgv = 1).

anisotropies due to redshift space distortions. Here “ve-
locity” refers to the negative of the peculiar velocity di-
vergence. Specifically, Pgg(k) and Pvv(k) are the power
spectra of the galaxy density and velocity fields, respec-
tively, whereas Pgv(k) is the cross-power between galaxies
and velocity, all defined in real space rather than redshift
space.

In linear perturbation theory, these three power spec-
tra are related by [82]

Pgv(k) = βrgvPgg(k), (2)

Pvv(k) = β2Pgg(k), (3)

where β ≡ f/b, b is the bias factor, rgv is the dimen-
sionless correlation coefficient between the galaxy and
matter density fields [79, 83, 84], and f ≈ Ω0.6

m is the
dimensionless linear growth rate for linear density fluc-
tuations. (When computing f below, we use the more
accurate approximation of [85].)

The LRG power spectrum P (k) tabulated and plotted
above is a minimum-variance estimator of Pgg(k) that
linearly combines the Pgg(k), Pgv(k) and Pvv(k) estima-
tors as described in [28] and Appendix A 3, effectively
marginalizing over the redshift space distortion param-
eters β and rgv. As shown in Appendix A3, this lin-
ear combination is roughly proportional to the angle-
averaged (monopole) redshift-space galaxy power spec-
trum, so for the purposes of the nonlinear modeling
in the next section, the reader may think of our mea-
sured P (k) as essentially a rescaled version of the red-
shift space power spectrum. However, unlike the redshift
space power spectrum measured with the FKP and FFT
methods (Appendix A1), our measured P (k) is unbiased
on large scales. This is because linear redshift distortions
are treated exactly, without resorting to the small-angle
approximation, and account is taken of the fact that the
anisotropic survey geometry can skew the relative abun-
dance of galaxy pairs around a single point as a function
of angle to the line of sight.

The information about anisotropic clustering that is
discarded in our estimation of P (k) allows us to mea-
sure β and perform a powerful consistency test. Figure 8
shows the joint constraints on β and rgv from fitting equa-
tions (2) and (3) to the 0.01h/Mpc ≤ k ≤ 0.09h/Mpc
LRG data, using the best fit WMAP3 model from Fig-
ure 4 for Pgg(k) and marginalizing over its amplitude.
The data are seen to favor rgv ≈ 1 in good agree-
ment with prior work [86, 87]. Assuming rgv = 1 (that
galaxy density linearly traces matter density on these
large scales) gives the measurement β = 0.309 ± 0.035
(1σ). This measurement is rather robust to changing the
FOG compression threshold by a notch (Section IVF2)
or slightly altering the maximum k-band included, both
of which affect the central value by of order 0.01. As a
cross-check, we can compute β = f(Ωm, ΩΛ)/b at the me-
dian survey redshift based on our multi-parameter anal-
ysis presented in Section IV, which for our vanilla class
of models gives β = 0.280 ± 0.014 (marked with a di-
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FIG. 9: Power spectrum modeling. The best-fit WMAP3 model
from Table 5 of [7] is shown with a linear bias b = 1.89 (dotted
curve), after applying the nonlinear bias correction with Q = 31
(the more wiggly solid curve), and after also applying the wiggle
suppression of [88] (the less wiggly solid curve), which has no effect
on very large scales and asymptotes to the “no wiggle” spectrum
of [89] (dashed curve) on very small scales. The data points are
the LRG measurements from Figure 7.

amond in Figure 8)1. That these two β-measurements
agree within 1σ is highly non-trivial, since the second β-
measurement makes no use whatsoever of redshift space
distortions, but rather extracts b from the ratio of LRG
power to CMB power, and determines Ωm from CMB
and LRG power spectrum shapes.

D. Nonlinear modeling

Above we saw that our k < 0.09h/Mpc measurements
of the LRG power spectrum were well fit by the linear
theory matter power spectrum predicted by WMAP3. In
contrast, Figures 4, 6 and 7 show clear departures from
the linear theory prediction on smaller scales. There are
several reasons for this that have been extensively studied
in the literature:

1. Nonlinear evolution alters the broad shape of the

1 Here β = f(Ωm,ΩΛ)/b is computed with Ωm, ΩΛ and b evaluated
at the median redshift z = 0.35, when b = 2.25 ± 0.08, taking
into account linear growth of matter clustering between then and
now.

matter power spectrum on small scales.

2. Nonlinear evolution washes out baryon wiggles on
small scales.

3. The power spectrum of the dark matter halos in
which the galaxies reside differs from that of the
underlying matter power spectrum in both ampli-
tude and shape, causing bias.

4. Multiple galaxies can share the same dark matter
halo, enhancing small-scale bias.

We fit these complications using a model involving the
three “nuisance parameters” (b, Qnl, k∗) as illustrated in
Figure 9. Following [29, 88], we model our measured
galaxy power spectrum as

Pg(k) = Pdewiggled(k)b2 1 + Qnlk
2

1 + 1.4k
, (4)

where the first factor on the right hand side accounts
for the non-linear suppression of baryon wiggles and the
last factor accounts for a combination of the non-linear
change of the global matter power spectrum shape and
scale-dependent bias of the galaxies relative to the dark
matter. For Pdewiggled(k) we adopt the prescription [88]

Pdewiggled(k) = W (k)P (k) + [1−W (k)]Pnowiggle(k), (5)

where W (k) ≡ e−(k/k∗)2/2 and Pnowiggle(k) denotes the
“no wiggle” power spectrum defined in [89] and illus-
trated in Figure 9. In other words, Pdewiggled(k) is simply
a weighted average of the linear power spectrum and the
wiggle-free version thereof. Since the k-dependent weight
W (k) transitions from 1 for k ≪ k∗ to 0 for k ≫ k∗, equa-
tion (5) retains wiggles on large scales and gradually fades
them out beginning around k = k∗. Inspired by [88],
we define the wiggle suppression scale k∗ ≡ 1/σ, where

σ ≡ σ
2/3
⊥ σ

1/3
‖ (As/0.6841)1/2 and σ⊥ and σ‖ are given by

equations (12) and (13) in [88] based on fits to cosmolog-
ical N-body simulations. The expression in parenthesis
is an amplitude scaling factor that equals unity for the
best fit WMAP3 normalization As = 0.6841 of [7]. Es-
sentially, σ is the characteristic peculiar-velocity-induced
displacement of galaxies that causes the wiggle suppres-
sion; [88] define it for a fixed power spectrum normal-
ization, and it scales linearly with fluctuation amplitude,

i.e., ∝ A
1/2
s . For the cosmological parameter range al-

lowed by WMAP3, we find that k∗ ∼ 0.1h/Mpc, with a
rather rather weak dependence on cosmological parame-
ters (mainly Ωm and As).

The simulations and analytic modeling described by
[29] suggest that the Qnl-prescription given by equa-
tion (4) accurately captures the scale-dependent bias of
galaxy populations on the scales that we are interested
in, though they examined samples less strongly biased
than the LRGs considered here. To verify the applica-
bility of this prescription for LRGs in combination with
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FIG. 10: The points in the bottom panel show the ratio of the real-
space power spectrum from 51 averaged n-body simulations (see
text) to the linear power spectrum dewiggled with k∗ = 0.1h/Mpc.
Here LRGs were operationally defined as halos with mass exceeding
8 × 1012M⊙, corresponding to at least ten simulation particles.
The solid curve shows the prediction from equation (4) with b =
2.02, Qnl = 27, seen to be an excellent fit for k ∼

< 0.4h/Mpc.
The top panel shows the ratio of the simulation result to this fit.
Although the simulation specifications and the LRG identification
prescription can clearly be improved, they constitute the first and
only that we tried, and were in no way adjusted to try to fit our
Qnl = 30 ± 4 measurement from Table 2. This agreement suggests
that our use of equations (4) and (5) to model nonlinearities is
reasonable and that our measured Qnl-value is plausible.

our dewiggling model, we reanalyze the 51 n-body sim-
ulations described in [90], each of which uses a 512h−1

Mpc box with 2563 particles and WMAP1 parameters.
Figure 10 compares these simulation results with our
nonlinear modeling prediction defined by equations (4)
and (5) for b = 2.02, Qnl = 27.0, showing excellent agree-
ment (at the 1% level) for k ∼< 0.4h/Mpc. Choosing
a k∗ very different from 0.1h/Mpc causes 5% wiggles
to appear in the residuals because of a over- or under-
suppression of the baryon oscillations. These simulations
are likely to be underresolved and the LRG halo prescrip-
tion used (one LRG for each halo above a threshold mass
of 8 × 1012M⊙) is clearly overly simplistic, so the true
value of Qnl that best describes LRGs could be somewhat
different. Nonetheless, this test provides encouraging ev-
idence that equation (4) is accurate in combination with
equation (5) and that our Q = 30± 4 measurement from
Table 2 is plausible. Further corroboration is provided by
the results in [41] using the Millennium Simulation [91].
Here LRG type galaxies were simulated and selected in

an arguably more realistic way, yet giving results nicely
consistent with Figure 10, with a best-fit value Qnl ≈ 24.
(We will see in Section IVF that FOG-compression can
readily account for these slight differences in Qnl-value.)
A caveat to both of these simulation tests is that they
were performed in real space, and our procedure for mea-
suring Pg(k) reconstructs the real space power spectrum
exactly only in the linear regime [28]. Thus, these re-
sults should be viewed as encouraging but preliminary,
and more work is needed to establish the validity of the
nonlinear modeling beyond k ∼> 0.1h/Mpc; for up-to-date
discussions and a variety of ideas for paths forward, see,
e.g., [92–95].

In addition to this simulation-based theoretical evi-
dence that our nonlinear modeling method is accurate,
we have encouraging empirical evidence: Figure 9 shows
an excellent fit to our measurements. Fitting the best-
fit WMAP3 model from [32] to our first 20 data points
(which extend out to k = 0.2h/Mpc) by varying (b, Qnl)
gives χ2 = 19.2 for 20−2 = 18 degrees of freedom, where
the expected 1σ range is χ2 = 18±(2×18)1/2 = 18±6, so
the fit is excellent. Moreover, Figures 7 and 9 show that
that main outliers are on large and highly linear scales,
not on the smaller scales where our nonlinear modeling
has an effect.

The signature of baryons is clearly seen in the mea-
sured power spectrum. If we repeat this fit with baryons
replaced by dark matter, χ2 increases by 8.8, correspond-
ing to a baryon detection at 3.0σ (99.7% significance).
Much of this signature lies in the acoustic oscillations: if
we instead repeat the fit with k∗ = 0, corresponding to
fully removing the wiggles, χ2 increases by an amount
corresponding to a detection of wiggles at 2.3σ (98%
significance). The data are not yet sensitive enough to
distinguish between the wiggled and dewiggled spectra;
dewiggling reduces χ2 by merely 0.04.

In summary, the fact that LRGs tend to live in high-
mass dark matter halos is a double-edged sword: it helps
by giving high bias b ∼ 2 and luminous galaxies observ-
able at great distance, but it also gives a stronger non-
linear correction (higher Qnl) that becomes important
on larger scales than for typical galaxies. Although Fig-
ure 10 suggests that our nonlinear modeling is highly
accurate out to k = 0.4h/Mpc, we retain only measure-
ments with k ∼< 0.2h/Mpc for our cosmological parame-
ter analysis to be conservative, and plan further work
to test the validity of various nonlinear modeling ap-
proaches. In Section IVF2, we will see that our data with
0.09h/Mpc< k ∼< 0.2h/Mpc, where nonlinear effects are
clearly visible, allow us to constrain the nuisance param-
eter Qnl without significantly improving our constraints
on cosmological parameters. In other words, the cosmo-
logical constraints that we will report below are quite
insensitive to our nonlinear modeling and come mainly
from the linear power spectrum at k < 0.09h/Mpc. More
sophisticated treatments of galaxy bias in which Qnl is
effectively computed from theoretical models constrained
by small scale clustering may eventually obviate the need
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FIG. 11: Same as Figure 7, but showing the effect of discarding
special modes on the large-scale power. The circles with associated
error bars correspond to our measured power spectrum using all
4000 full-sample PKL modes. The other points show the effect
of removing the 332 purely angular modes (crosses), the 18 purely
radial modes (triangles), and all special modes combined (squares),
including seven associated with the motion of the local group as
described in [28]. Any systematic errors adding power to these
special modes would cause the black circles to lie systematically
above the other points. These special modes are seen to have less
impact at larger k because they are outnumbered: the number of
radial, angular, and generic modes below a given k-value scales as
k, k2 and k3, respectively.

to marginalize over this nuisance parameter, increasing
the leverage of our measurements for constraining the
linear power spectrum shape [93].

E. Robustness to systematic errors

Let us now consider potential systematic errors in the
LRG data that could affect our results. Examples of such
effects include radial modulations (due to mis-estimates
of the radial selection function) and angular modulations
(due to effects such as uncorrected dust extinction, vari-
able observing conditions, photometric calibration errors
and fiber collisions) of the density field. As long as such
effects are uncorrelated with the cosmic density field,
they will tend to add rather than subtract power.

1. Analysis of subsets of galaxies

To test for effects that would be expected to vary across
the sky (depending on, say, reddening, seasonally variable
photometric calibration errors, or observing conditions
such as seeing and sky brightness), we repeat our entire
analysis for the seven different angular subsets of the sky
shown in Figure 3 in search of inconsistencies. To search
for potential zero-point offsets and other systematic ef-
fects associated with the southern Galactic stripes, they
are defined as one of these seven angular subsets (see Fig-
ure 3). To test for effects that depend on redshift, we use
the measurements for our three redshift slices, plotted in
Figure 6.

To test the null hypothesis that all these subsamples
are consistent with having the same power spectrum, we
fit them all to our WMAP+LRG best-fit vanilla model
described in Section IV, including our nonlinear cor-
rection (this P (k) curve is quite similar to the best-fit
WMAP3 model plotted above in, e.g., Figure 4). We
include the 20 band-powers with k ∼< 0.2 in our fit, so
if the null hypothesis is correct, we expect a mean χ2

of 20 with a standard deviation of
√

2 × 20 ≈ 6.3. Our
seven angular subsamples give a mean 〈χ2〉 ≈ 22.6 and
a scatter 〈(χ2 − 20)2〉1/2 ≈ 6.9. Our three radial sub-
samples give 〈χ2〉 ≈ 18.6 and 〈(χ2 − 20)2〉1/2 ≈ 2.4. All
of the ten χ2-values are statistically consistent with the
null hypothesis at the 95% level. We also repeated the
cosmological parameter analysis reported below with the
southern stripes omitted, finding no significant change in
the measured parameter values. In other words, all our
angular and radial subsamples are consistent with hav-
ing the same power spectrum, so these tests reveal no
evidence for systematic errors causing radial or angular
power spectrum variations.

2. Analysis of subsets of modes

Because of their angular or radial nature, all poten-
tial systematic errors discussed above create excess power
mainly in the radial and angular modes. As mentioned
above, one of the advantages of the PKL method is that
it allows these modes to be excluded from the analysis,
in analogy to the way potentially contaminated pixels in
a CMB map can be excluded from a CMB power spec-
trum analysis. To quantify any such excess, we therefore
repeat our full-sample analysis with radial and/or angu-
lar modes deleted. The results of this test are shown in
Figure 11 and are very encouraging; the differences are
tiny. Any systematic errors adding power to these special
modes would cause the black circles to lie systematically
above the other points, but no such trend is seen, so there
is no indication of excess radial or angular power in the
data.

The slight shifts seen in the power on the largest scales
are expected, since a non-negligible fraction of the infor-
mation has been discarded on those scales. Figure 11
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shows that removing the special modes results in a no-
ticeable error bar increase on the largest scales and es-
sentially no change on smaller scales. This can be read-
ily understood geometrically. If we count the number of
modes that probe mainly scales k < k∗, then the num-
ber of purely radial, purely angular and arbitrary modes
will grow as k∗, k2

∗ and k3
∗, respectively. This means

that “special” modes (radial and angular) will make up
a larger fraction of the total pool on large scales (at
small k), and that the purely radial ones will be outnum-
bered by the purely angular ones. Conversely, the first
12 modes are all special ones: the monopole, the seven
modes related to local-group motion, one radial mode
and three angular modes. This means that almost all in-
formation on the very largest scales is lost when discard-
ing special modes. Figure 11 illustrates this with the left-
most point labeled “generic” both having large error bars
and being shifted to the right, where more information
remains — yet it is consistent, lying about 1.3σ above
an imaginary line between the two leftmost black points.
We also repeated the cosmological parameter analysis re-
ported below with the special modes omitted, finding no
significant change in the measured parameter values.

F. Other tests

We have found no evidence for systematic errors af-
flicting our power spectrum, suggesting that such effects,
if present, are substantially smaller than our statistical
errors. For additional bounds on potential systematic
errors in the SDSS LRG sample, see [43].

A direct comparison of our P (k)-measurement and
that of [43] is complicated because these are not mea-
surements of the same function. [43] measures the angle-
averaged redshift-space galaxy power spectrum, whereas
our PKL-method attempts to recover the real space
galaxy power spectrum, using finger-of-god (FOG) com-
pression and linear theory to remove redshift-space dis-
tortion effects [28]. The galaxy selection is also different,
with [43] mixing main sample galaxies in with the LRGs.
Both of these differences are expected to affect the non-
linear corrections. In addition, the quantity P (k) plotted
in [43] has correlated points with broader window func-
tions than our uncorrelated points, and the angular cov-
erage of the sample used in [43] is about 20% larger. To
make a direct but approximate comparison with [43], we
perform our own FKP analysis, both with and without
FOG-compression, and as described in Appendix A1, we
obtain good agreement with [43] on linear scales for the
case of no defogging.

We further investigate the robustness of our results to
systematic errors in Section IVF below, this time focus-
ing on their potential impact on cosmological parameters.

IV. COSMOLOGICAL PARAMETERS

Let us now explore the cosmological implications of
our measurements by combining them with those from
WMAP. As there has recently been extensive work on
constraining cosmological parameters by combining mul-
tiple cosmological data sets involving CMB, galaxy clus-
tering, Lyman α Forest, gravitational lensing, supernovae
Ia and other probes (see, in particular, [7, 39]), we will fo-
cus more narrowly on what can be learned from WMAP
and the LRGs alone. This is interesting for two reasons:

1. Less is more, in the sense that our results hinge
on fewer assumptions about data quality and mod-
eling. The WMAP and LRG power spectra suf-
fice to break all major degeneracies within a broad
class of models, yet they are also two remarkably
clean measurements, probing gravitational cluster-
ing only on very large scales where complicated
nonlinear physics is unlikely to cause problems.

2. Since the LRG power spectrum is likely to be in-
cluded (together with WMAP and other data sets)
in future parameter analyses by other groups, it is
important to elucidate what information it contains
about cosmological parameters. We will therefore
place particular emphasis on clarifying the links be-
tween cosmological parameters and observable fea-
tures of both the LRG and WMAP power spectra,
notably the LRG matter-radiation equality scale,
the LRG acoustic scale, the CMB acoustic scale,
unpolarized CMB peak height ratios and large-scale
CMB polarization.

We then compare our constraints with those from other
cosmological probes in Section VC. We also compare
our results with the analysis of [36] below, which had
the narrower focus of measuring the LRG acoustic scale;
the correlation function analysis in that paper comple-
ments our present analysis, since the acoustic oscillations
in P (k) correspond to a readily measured single localized
feature in real space [36, 96].

We work within the context of the arguably simplest
inflationary scenario that fits our data. This is a hot
Big Bang cosmology with primordial fluctuations that
are adiabatic (i.e., we do not include isocurvature modes)
and Gaussian, with negligible generation of fluctuations
by cosmic strings, textures or domain walls. We assume
the standard model of particle physics with three active
neutrino species, very slightly heated during the era of
electron/positron annihilation [97]. Within this frame-
work, we parameterize our cosmological model in terms
of 12 parameters that are nowadays rather standard, aug-
mented with the two nuisance parameters b and Qnl from
equation (4):

p ≡ (Ωtot, ΩΛ, ωb, ωc, ων , w, As, r, ns, nt, α, τ, b, Qnl).
(6)

Table 2 defines these 14 parameters and another
45 that can be derived from them; in essence,
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(Ωtot, ΩΛ, ωb, ωc, ων , w) define the cosmic matter bud-
get, (As, ns, α, r, nt) specify the seed fluctuations and
(τ, b, Qnl) are nuisance parameters. We will frequently
use the term “vanilla” to refer to the minimal model
space parametrized by (ΩΛ, ωb, ωc, As, ns, τ, b, Qnl), set-
ting ων = α = r = nt = 0, Ωtot = 1 and w = −1; this
is the smallest subset of our parameters that provides a
good fit to our data. Since current nt-constraints are too
weak to be interesting, we make the slow-roll assumption
nt = −r/8 throughout this paper rather than treat nt as
a free parameter.

All our parameter constraints were computed using the
now standard Monte Carlo Markov Chain (MCMC) ap-
proach [98–104] as implemented in [33] 2.

A. Basic results

Our constraints on individual cosmological parameters
are given in Tables 2 and 3 and illustrated in Figure 12,
both for WMAP alone and when including our SDSS
LRG information. Table 2 and Figure 12 take the Oc-
cam’s razor approach of marginalizing only over “vanilla”
parameters (ΩΛ, ωb, ωc, As, ns, τ, b, Qnl), whereas Table 3
shows how key results depend on assumptions about the
non-vanilla parameters (Ωtot, ων , w, r, α) introduced one
at a time. In other words, Table 2 and Figure 12 use the
vanilla assumptions by default; for example, models with
ων 6= 0 are used only for the constraints on ων and other
neutrino parameters (Ων , ξν , fν and Mν).

The parameter measurements and error bars quoted
in the tables correspond to the median and the cen-
tral 68% of the probability distributions, indicated by
three vertical lines in Figure 12. When a distribution
peaks near zero, we instead quote an upper limit at
the 95th percentile. Note that the tabulated median
values are near but not identical to those of the maxi-
mum likelihood model. Our best fit vanilla model has

2 To mitigate numerically deleterious degeneracies, the in-
dependent MCMC variables are chosen to be the param-
eters (Θs,ΩΛ, ωb, ωd, fν , w, Apeak, ns, α, r, nt, Aτ , b, Qnl) from
Table 2, where ωd ≡ ωc + ων , i.e., (Ωtot, ωc, ων , As, τ) are re-
placed by (Θs, ωd, fν , Apeak, e−2τ ) as in [33, 105]. When impos-
ing a flatness prior Ωtot = 1, we retained Θs as a free parameter
and dropped ΩΛ. The WMAP3 log-likelihoods are computed
with the software provided by the WMAP team or taken from
WMAP team chains on the LAMBDA archive (including all un-
polarized and polarized information) and fit by a multivariate
4th order polynomial [106] for more rapid MCMC-runs involving
galaxies. The SDSS likelihood uses the LRG sample alone and
is computed with the software available at http://space.mit.

edu/home/tegmark/sdss/ and described in Appendix A4, em-
ploying only the measurements with k ≤ 0.2h/Mpc unless oth-
erwise specified. Our WMAP3+SDSS chains have 3 × 106 steps
each and are thinned by a factor of 10. To be conservative, we
do not use our SDSS measurement of the redshift space distor-
tion parameter β, nor do we use any other information (“priors”)
whatsoever unless explicitly stated.

ΩΛ = 0.763, ωb = 0.0223, ωc = 0.105, As = 0.685,
ns = 0.954, τ = 0.0842, b = 1.90, Qnl = 31.0. As cus-
tomary, the 2σ contours in the numerous two-parameter
figures below are drawn where the likelihood has dropped
to 0.0455 of its maximum value, which corresponds to
∆χ2 ≈ 6.18 and 95.45% ≈ 95% enclosed probability for
a two-dimensional Gaussian distribution.

We will spend most of the remainder of this paper di-
gesting this information one step at a time, focusing on
what WMAP and SDSS do and don’t tell us about the
underlying physics, and on how robust the constraints
are to assumptions about physics and data sets. The
one-dimensional constraints in the tables and Figure 12
fail to reveal important information hidden in param-
eter correlations and degeneracies, so we will study the
joint constraints on key 2-parameter pairs. We will begin
with the vanilla 6-parameter space of models, then intro-
duce additional parameters (starting in Section IVB) to
quantify both how accurately we can measure them and
to what extent they weaken the constraints on the other
parameters.

First, however, some of the parameters in Table 2 de-
serve comment. The additional parameters below the
double line in Table 2 are all determined by those above
the double line by simple functional relationships, and
fall into several groups.

Together with the usual suspects under the heading
“other popular parameters”, we have included alterna-
tive fluctuation amplitude parameters: to facilitate com-
parison with other work, we quote the seed fluctuation
amplitudes not only at the scale k = 0.05/Mpc employed
by CMBfast [113], CAMB [114] and CosmoMC [102] (de-
noted As and r), but also at the scale k = 0.002/Mpc
employed by the WMAP team in [7] (denoted A.002 and
r.002).

The “cosmic history parameters” specify when our uni-
verse became matter-dominated, recombined, reionized,
started accelerating (ä > 0), and produced us.

Those labeled “fundamental parameters” are intrinsic
properties of our universe that are independent of our
observing epoch tnow. (In contrast, most other parame-
ters would have different numerical values if we were to
measure them, say, 10 Gyr from now. For example, tnow

would be about 24 Gyr, zeq and ΩΛ would be larger, and
h, Ωm and ωm would all be smaller. Such parameters
are therefore not properties of our universe, but merely
alternative time variables.)

The Q-parameter (not to be confused with Qnl!) is
the primordial density fluctuation amplitude ∼ 10−5.
The curvature parameter κ is the curvature that the
Universe would have had at the Planck time if there
was no inflationary epoch, and its small numerical value
∼ 10−61 constitutes the flatness problem that infla-
tion solves. (ξ, ξb, ξc, ξν) are the fundamental parame-
ters corresponding to the cosmologically popular quar-
tet (Ωm, Ωb, Ωc, Ων), giving the densities per CMB pho-
ton. The current densities are ρi = ρhωi, where i =
m, b, c, ν and ρh denotes the constant reference density
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Table 2: Cosmological parameters measured from WMAP and SDSS LRG data with the Occam’s razor approach described in the text: the constraint on each quantity is
marginalized over all other parameters in the vanilla set (ωb, ωc, ΩΛ, As, ns, τ, b, Qnl). Error bars are 1σ.

Parameter Value Meaning Definition

Matter budget parameters:

Ωtot 1.003
+0.010
−0.009

Total density/critical density Ωtot = Ωm + ΩΛ = 1 − Ωk

ΩΛ 0.761
+0.017
−0.018

Dark energy density parameter ΩΛ ≈ h−2ρΛ(1.88 × 10−26kg/m3)

ωb 0.0222
+0.0007
−0.0007

Baryon density ωb = Ωbh2 ≈ ρb/(1.88 × 10−26kg/m3)

ωc 0.1050
+0.0041
−0.0040

Cold dark matter density ωc = Ωch2 ≈ ρc/(1.88 × 10−26kg/m3)

ων < 0.010 (95%) Massive neutrino density ων = Ωνh2 ≈ ρν /(1.88 × 10−26kg/m3)

w −0.941
+0.087
−0.101

Dark energy equation of state pΛ/ρΛ (approximated as constant)

Seed fluctuation parameters:

As 0.690
+0.045
−0.044

Scalar fluctuation amplitude Primordial scalar power at k = 0.05/Mpc

r < 0.30 (95%) Tensor-to-scalar ratio Tensor-to-scalar power ratio at k = 0.05/Mpc

ns 0.953
+0.016
−0.016

Scalar spectral index Primordial spectral index at k = 0.05/Mpc

nt + 1 0.9861
+0.0096
−0.0142

Tensor spectral index nt = −r/8 assumed

α −0.040
+0.027
−0.027

Running of spectral index α = dns/d ln k (approximated as constant)

Nuisance parameters:

τ 0.087
+0.028
−0.030

Reionization optical depth

b 1.896
+0.074
−0.069

Galaxy bias factor b = [Pgalaxy(k)/P (k)]1/2 on large scales, where P (k) refers to today.

Qnl 30.3
+4.4
−4.1

Nonlinear correction parameter [29] Pg(k) = Pdewiggled(k)b2(1 + Qnlk
2)/(1 + 1.7k)

Other popular parameters (determined by those above):

h 0.730
+0.019
−0.019

Hubble parameter h =
√

(ωb + ωc + ων)/(Ωtot − ΩΛ)

Ωm 0.239
+0.018
−0.017

Matter density/critical density Ωm = Ωtot − ΩΛ

Ωb 0.0416
+0.0019
−0.0018

Baryon density/critical density Ωb = ωb/h2

Ωc 0.197
+0.016
−0.015

CDM density/critical density Ωc = ωc/h2

Ων < 0.024 (95%) Neutrino density/critical density Ων = ων/h2

Ωk −0.0030
+0.0095
−0.0102

Spatial curvature Ωk = 1 − Ωtot

ωm 0.1272
+0.0044
−0.0043

Matter density ωm = ωb + ωc + ων = Ωmh2

fν < 0.090 (95%) Dark matter neutrino fraction fν = ρν /ρd

At < 0.21 (95%) Tensor fluctuation amplitude At = rAs

Mν < 0.94 (95%) eV Sum of neutrino masses Mν ≈ (94.4 eV) × ων [107]

A.002 0.801
+0.042
−0.043

WMAP3 normalization parameter As scaled to k = 0.002/Mpc: A.002 = 251−ns As if α = 0

r.002 < 0.33 (95%) Tensor-to-scalar ratio (WMAP3) Tensor-to-scalar power ratio at k = 0.002/Mpc

σ8 0.756
+0.035
−0.035

Density fluctuation amplitude σ8 = {4π
∫ ∞
0 [ 3

x3 (sin x − x cos x)]2P (k) k2dk
(2π)3

}1/2, x ≡ k × 8h−1Mpc

σ8Ω0.6
m 0.320

+0.024
−0.023

Velocity fluctuation amplitude

Cosmic history parameters:

zeq 3057
+105
−102

Matter-radiation Equality redshift zeq ≈ 24074ωm − 1

zrec 1090.25
+0.93
−0.91

Recombination redshift zrec(ωm, ωb) given by eq. (18) of [108]

zion 11.1
+2.2
−2.7

Reionization redshift (abrupt) zion ≈ 92(0.03hτ/ωb)2/3Ω
1/3
m (assuming abrupt reionization; [109])

zacc 0.855
+0.059
−0.059

Acceleration redshift zacc = [(−3w − 1)ΩΛ/Ωm]−1/3w − 1 if w < −1/3

teq 0.0634
+0.0045
−0.0041

Myr Matter-radiation Equality time teq ≈(9.778 Gyr)×h−1 ∫ ∞
zeq

[H0/H(z)(1 + z)]dz [107]

trec 0.3856
+0.0040
−0.0040

Myr Recombination time treq ≈(9.778 Gyr)×h−1 ∫ ∞
zrec

[H0/H(z)(1 + z)]dz [107]

tion 0.43
+0.20
−0.10

Gyr Reionization time tion ≈(9.778 Gyr)×h−1 ∫ ∞
zion

[H0/H(z)(1 + z)]dz [107]

tacc 6.74
+0.25
−0.24

Gyr Acceleration time tacc ≈(9.778 Gyr)×h−1 ∫ ∞
zacc

[H0/H(z)(1 + z)]dz [107]

tnow 13.76
+0.15
−0.15

Gyr Age of Universe now tnow ≈(9.778 Gyr)×h−1 ∫ ∞
0 [H0/H(z)(1 + z)]dz [107]

Fundamental parameters (independent of observing epoch):

Q 1.945
+0.051
−0.053

×10−5 Primordial fluctuation amplitude Q = δh ≈ A
1/2
.002

× 59.2384µK/TCMB

κ 1.3
+3.7
−4.3

×10−61 Dimensionless spatial curvature [110] κ = (h̄c/kBTCMBa)2k

ρΛ 1.48
+0.11
−0.11

×10−123ρPl Dark energy density ρΛ ≈ h2ΩΛ × (1.88 × 10−26kg/m3)

ρhalo 6.6
+1.2
−1.0

×10−123ρPl Halo formation density ρhalo = 18π2Q3ξ4

ξ 3.26
+0.11
−0.11

eV Matter mass per photon ξ = ρm/nγ

ξb 0.569
+0.018
−0.018

eV Baryon mass per photon ξb = ρb/nγ

ξc 2.69
+0.11
−0.10

eV CDM mass per photon ξc = ρc/nγ

ξν < 0.26 (95%) eV Neutrino mass per photon ξν = ρν/nγ

η 6.06
+0.20
−0.19

×10−10 Baryon/photon ratio η = nb/ng = ξb/mp

AΛ 2077
+135
−125

Expansion during matter domination (1 + zeq)(Ωm/ΩΛ)1/3 [111]

σ∗
gal 0.561

+0.024
−0.023

×10−3 Seed amplitude on galaxy scale Like σ8 but on galactic (M = 1012M⊙) scale early on

CMB phenomenology parameters:

Apeak 0.579
+0.013
−0.013

Amplitude on CMB peak scales Apeak = Ase−2τ

Apivot 0.595
+0.012
−0.011

Amplitude at pivot point Apeak scaled to k = 0.028/Mpc: Apivot = 0.56ns−1Apeak if α = 0

H1 4.88
+0.37
−0.34

1st CMB peak ratio H1(Ωtot, ΩΛ, ωb, ωm, w, ns, τ) given by [112]

H2 0.4543
+0.0051
−0.0051

2nd to 1st CMB peak ratio H2 = (0.925ω0.18
m 2.4ns−1)/[1 + (ωb/0.0164)

12ω0.52
m )]0.2 [112]

H3 0.4226
+0.0088
−0.0086

3rd to 1st CMB peak ratio H3 = 2.17[1 + (ωb/0.044)2]−1ω0.59
m 3.6ns−1/[1 + 1.63(1 − ωb/0.071)ωm]

dA(zrec) 14.30
+0.17
−0.17

Gpc Comoving angular diameter distance to CMB dA(zrec) = c
H0

sinh

[
Ω

1/2
k

∫ zrec
0 [H0/H(z)]dz

]
/Ω

1/2
k

[107]

rs(zrec) 0.1486
+0.0014
−0.0014

Gpc Comoving sound horizon scale rs(ωm, ωb) given by eq. (22) of [108]

rdamp 0.0672
+0.0009
−0.0008

Gpc Comoving acoustic damping scale rdamp(ωm, ωb) given by eq. (26) of [108]

Θs 0.5918
+0.0020
−0.0020

CMB acoustic angular scale fit (degrees) Θs(Ωtot, ΩΛ, w, ωb, ωm) given by [112]

ℓA 302.2
+1.0
−1.0

CMB acoustic angular scale ℓA = πdA(zrec)/rs(zrec)
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Table 3: How key cosmological parameter constraints depend on data used and on assumptions about other parameters. The columns
compare different theoretical priors indicated by numbers in italics. wc denotes dark energy that can cluster as in [7]. Rows labeled

“+SDSS” combine WMAP3 and SDSS LRG data.

Data Vanilla Vanilla+Ωtot Vanilla+r Vanilla+α Vanilla+ων Vanilla+w Vanilla+wc

Ωtot WMAP 1 1.054+0.064
−0.046 1 1 1 1 1

+SDSS 1 1.003+0.010
−0.009 1 1 1 1 1

ΩΛ WMAP 0.761+0.032
−0.037 0.60+0.14

−0.17 0.805+0.038
−0.042 0.708+0.051

−0.060 0.651+0.082
−0.086 0.704+0.071

−0.100 0.879+0.064
−0.168

+SDSS 0.761+0.017
−0.018 0.757+0.020

−0.021 0.771+0.018
−0.019 0.750+0.020

−0.022 0.731+0.024
−0.030 0.757+0.019

−0.020 0.762+0.020
−0.021

Ωm WMAP 0.239+0.037
−0.032 0.46+0.23

−0.19 0.195+0.042
−0.038 0.292+0.060

−0.051 0.349+0.086
−0.082 0.30+0.10

−0.07 0.12+0.17
−0.06

+SDSS 0.239+0.018
−0.017 0.246+0.028

−0.025 0.229+0.019
−0.018 0.250+0.022

−0.020 0.269+0.030
−0.024 0.243+0.020

−0.019 0.238+0.021
−0.020

ωm WMAP 0.1272+0.0082
−0.0080 0.1277+0.0082

−0.0079 0.1194+0.0096
−0.0092 0.135+0.010

−0.009 0.139+0.011
−0.011 0.1274+0.0083

−0.0082 0.1269+0.0082
−0.0080

+SDSS 0.1272+0.0044
−0.0043 0.1260+0.0066

−0.0064 0.1268+0.0043
−0.0042 0.1271+0.0045

−0.0044 0.1301+0.0048
−0.0044 0.1248+0.0063

−0.0059 0.1264+0.0075
−0.0079

ωb WMAP 0.0222+0.0007
−0.0007 0.0218+0.0008

−0.0008 0.0233+0.0011
−0.0010 0.0210+0.0010

−0.0010 0.0215+0.0009
−0.0009 0.0221+0.0007

−0.0007 0.0222+0.0008
−0.0007

+SDSS 0.0222+0.0007
−0.0007 0.0222+0.0007

−0.0007 0.0229+0.0009
−0.0008 0.0213+0.0010

−0.0010 0.0221+0.0008
−0.0008 0.0223+0.0007

−0.0007 0.0224+0.0008
−0.0007

ων WMAP 0 0 0 0 < 0.024 (95%) 0 0

+SDSS 0 0 0 0 < 0.010 (95%) 0 0

Mν WMAP 0 0 0 0 < 2.2 (95%) 0 0

+SDSS 0 0 0 0 < 0.94 (95%) 0 0

w WMAP −1 −1 −1 −1 −1 −0.82+0.23
−0.19 −1.69+0.88

−0.85

+SDSS −1 −1 −1 −1 −1 −0.941+0.087
−0.101 −1.00+0.17

−0.19

σ8 WMAP 0.758+0.050
−0.051 0.732+0.051

−0.046 0.706+0.064
−0.072 0.776+0.056

−0.053 0.597+0.085
−0.075 0.736+0.054

−0.052 0.747+0.066
−0.066

+SDSS 0.756+0.035
−0.035 0.747+0.046

−0.044 0.751+0.036
−0.036 0.739+0.036

−0.035 0.673+0.056
−0.061 0.733+0.048

−0.043 0.745+0.057
−0.056

r.002 WMAP 0 0 < 0.65 (95%) 0 0 0 0

+SDSS 0 0 < 0.33 (95%) 0 0 0 0

ns WMAP 0.954+0.017
−0.016 0.943+0.017

−0.016 0.982+0.032
−0.026 0.871+0.047

−0.046 0.928+0.022
−0.024 0.945+0.017

−0.016 0.947+0.019
−0.017

+SDSS 0.953+0.016
−0.016 0.952+0.017

−0.016 0.967+0.022
−0.020 0.895+0.041

−0.042 0.945+0.017
−0.017 0.950+0.016

−0.016 0.953+0.018
−0.017

α WMAP 0 0 0 −0.056+0.031
−0.031 0 0 0

+SDSS 0 0 0 −0.040+0.027
−0.027 0 0 0

h WMAP 0.730+0.033
−0.031 0.53+0.15

−0.10 0.782+0.058
−0.047 0.679+0.044

−0.040 0.630+0.065
−0.044 0.657+0.085

−0.086 1.03+0.46
−0.37

+SDSS 0.730+0.019
−0.019 0.716+0.047

−0.043 0.744+0.022
−0.021 0.713+0.022

−0.022 0.695+0.025
−0.028 0.716+0.031

−0.029 0.727+0.037
−0.034

tnow WMAP 13.75+0.16
−0.16 16.0+1.5

−1.8 13.53+0.21
−0.25 13.98+0.20

−0.20 14.31+0.24
−0.33 13.96+0.34

−0.28 13.44+0.49
−0.27

+SDSS 13.76+0.15
−0.15 13.93+0.59

−0.58 13.65+0.17
−0.18 13.90+0.19

−0.19 13.98+0.22
−0.20 13.80+0.18

−0.17 13.77+0.26
−0.24

τ WMAP 0.090+0.029
−0.029 0.083+0.029

−0.029 0.091+0.031
−0.032 0.101+0.031

−0.031 0.082+0.029
−0.030 0.087+0.030

−0.031 0.087+0.030
−0.030

+SDSS 0.087+0.028
−0.030 0.088+0.029

−0.031 0.085+0.029
−0.031 0.101+0.032

−0.032 0.087+0.028
−0.029 0.090+0.030

−0.031 0.089+0.030
−0.032

b WMAP

+SDSS 1.896+0.074
−0.069 1.911+0.092

−0.086 1.919+0.078
−0.072 1.853+0.081

−0.077 2.03+0.11
−0.10 1.897+0.076

−0.072 1.92+0.10
−0.08

Qnl WMAP

+SDSS 30.3+4.4
−4.1 30.0+4.6

−4.2 30.9+4.5
−4.1 34.7+6.1

−5.4 34.9+6.9
−5.3 31.0+4.7

−4.3 31.0+5.0
−4.4

∆χ2 WMAP 0.0 −2.0 0.0 −3.6 −1.0 −1.0 0.0

+SDSS 0.0 0.0 −0.5 −2.4 −0.5 −0.9 −0.3

3(H/h)2/8πG = 3(100 kms−1Mpc−1)
2
/8πG ≈ 1.87882×

10−26kg/m3, so the conversion between the conventional
and fundamental density parameters is ξi ≡ ρi/nγ ≈
25.646 eV × (Tcmb/2.726K)ωi in units where c = 1. The
parameter ξm is of the same order as the temperature
at matter-radiation equality temperature, kTeq ≈ 0.22ξ

[115]3.

The tiny value ∼ 10−123 of the vacuum density ρΛ in
Planck units where c = G = h̄ = 1 constitutes the well-
known cosmological constant problem, and the tiny yet

3 The matter-radiation equality temperature is given by

kTeq =
30ζ(3)

π4

[
1 +

7

8
Nν

(
4

11

)4/3
]−1

ξ ≈ 0.2195ξ, (7)

where ζ(3) ≈ 1.202, and the effective number of neutrino species
in the standard model is Nν ≈ 3.022 [97] when taking into ac-
count the effect of electron-positron annihilation on the relic neu-
trino energy density.
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FIG. 12: Constraints on key individual cosmological quantities using WMAP1 (yellow/light grey distributions), WMAP3 (narrower
orange/grey distributions) and including SDSS LRG information (red/dark grey distributions). If the orange/grey is completely hidden
behind the red/dark grey, the LRGs thus add no information. Each distribution shown has been marginalized over all other quantities
in the “vanilla” class of models parametrized by (ΩΛ, ωb, ωc, As, ns, τ, b, Qnl). The parameter measurements and error bars quoted in the
tables correspond to the median and the central 68% of the distributions, indicated by three vertical lines for the WMAP3+SDSS case
above. When the distribution peaks near zero (like for r), we instead quote an upper limit at the 95th percentile (single short vertical

line). The horizontal dashed lines indicate e−x2/2 for x = 1 and 2, respectively, so if the distribution were Gaussian, its intersections with
these lines would correspond to 1σ and 2σ limits, respectively.

similar value of the parameter combination Q3ξ4 explains
the origin of attempts to explain this value anthropically
[116–123]: Q3ξ4 is roughly the density of the universe
at the time when the first nonlinear dark matter halos

would form if ρΛ = 0 [115], so if ρΛ ≫ Q3ξ4, dark energy
freezes fluctuation growth before then and no nonlinear
structures ever form.

The parameters (AΛ, σ∗
gal) are useful for anthropic
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buffs, since they directly determine the density fluctua-
tion history on galaxy scales through equation (5) in [111]
(where σ∗

gal is denoted σM (0)). Roughly, fluctuations
grow from the initial level σ∗

gal by a factor AΛ. Marginal-

izing over the neutrino fraction gives AΛ = 2279+240
−182,

σ∗
gal = 0.538+0.024

−0.022 × 10−3.
The group labeled “CMB phenomenology parameters”

contains parameters that correspond rather closely to
the quantities most accurately measured by the CMB,
such as heights and locations of power spectrum peaks.
Many are seen to be measured at the percent level or
better. These parameters are useful for both numeri-
cal and intuition-building purposes [105, 106, 112, 124–
126]. Whereas CMB constraints suffer from severe de-
generacies involving physical parameters further up in
the table (involving, e.g., Ωtot and ΩΛ as discussed be-
low), these phenomenological parameters are all con-
strained with small and fairly uncorrelated measure-
ment errors. By transforming the multidimensional
WMAP3 log-likelihood function into the space spanned
by (H2, ωm, fν , ΩΛ, w, Θs, Apivot, H3, α, r, nt, Aτ , b, Qnl),
it becomes better approximated by our quartic polyno-
mial fit described in Footnote 2 and [106]: for example,
the rms error is a negligible ∆ lnL ≈ 0.03 for the vanilla
case. Roughly speaking, this transformation replaces the
curvature parameter Ωtot by the characteristic peak scale
Θs, the baryon fraction by the ratio H2 of the first two
peak heights, the spectral index ns by the ratio H3 of
the third to first peak heights, and the overall peak am-
plitude Apeak by the amplitude Apivot at the pivot scale
where it is uncorrelated with ns. Aside from this nu-
merical utility, these parameters also help demystify the
“black box” aspect of CMB parameter constraints, elu-
cidating their origin in terms of features in the data and
in the physics [112].

B. Vanilla parameters

Figure 12 compares the constraints on key parameters
from the 1-year WMAP data (“WMAP1”), the 3-year
WMAP data (“WMAP3”) and WMAP3 combined with
our SDSS LRG measurements (“WMAP+LRG”). We in-
clude the WMAP1 case because it constitutes a well-
tested baseline and illustrates both the dramatic progress
in the field and what the key new WMAP3 information
is, particularly from E-polarization.

1. What WMAP3 adds

The first thing to note is the dramatic improvement
from WMAP1 to WMAP3 emphasized in [7]. (Plotted
WMAP1 constraints are from [33].) As shown in [127],
this stems almost entirely from the new measurement of
the low-ℓ E power spectrum, which detects the reion-
ization signature at about 3σ and determines the corre-
sponding optical depth τ = 0.09 ± 0.03. This measure-

ment breaks the severe vanilla degeneracy in the WMAP1
data [32, 33] (see Figure 13) and causes the dramatic
tightening of the constraints on (ωb, ωc, ΩΛ, As, ns) seen
in the figures; essentially, with τ well constrained, the ra-
tio of large scale power to the acoustic peaks determines
ns, and the relative heights of the acoustic peaks then
determine ωb and ωc without residual uncertainty due
to ns. Indeed, [127] has shown that discarding all the
WMAP3 polarization data (both TE and EE) and re-
placing it with a Gaussian prior τ = 0.09± 0.03 recovers
parameter constraints essentially identical to those from
the full WMAP3 data set. In Section IVF1, we will re-
turn to the issue of what happens if this τ -measurement
is compromised by polarized foreground contamination.

The second important change from WMAP1 to
WMAP3 is that the central values of some parameters
have shifted noticeably [7]. Improved modeling of noise
correlations and polarized foregrounds have lowered the
low-ℓ TE power and thus eliminated the WMAP1 ev-
idence for τ ∼ 0.17. Since the fluctuation amplitude
scales as eτ times the CMB peak amplitude, this τ drop
of 0.08 would push σ8 down by about 8%. In addi-
tion, better measurements around the 3rd peak and a
change in analysis procedure (marginalizing over the SZ-
contribution) have lowered ωm by about 13%, causing
fluctuation growth to start later (zeq decreases) and end
earlier (zacc increases), reducing σ8 by another 8%. These
effects combine to lower σ8 by about 21% when also tak-
ing into account the slight lowering of ns.

2. What SDSS LRGs add

A key reason that non-CMB datasets such as the
2dFGRS and the SDSS improved WMAP1 constraints
so dramatically was that they helped break the vanilla
banana degeneracy seen in Figure 13, so the fact
that WMAP3 now mitigates this internally with its E-
polarization measurement of τ clearly reduces the value
added by other datasets. However, Table 3 shows that
our LRG measurements nonetheless give substantial im-
provements, cutting error bars on Ωm, ωm and h by about
a factor of two for vanilla models and by up to almost an
order of magnitude when curvature, tensors, neutrinos or
w are allowed.

The physics underlying these improvements is illus-
trated in Figure 14. The cosmological information in
the CMB splits naturally into two parts, one “vertical”
and one “horizontal”, corresponding to the vertical and
horizontal positions of the power spectrum peaks.
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FIG. 13: 95% constraints in the (Ωm, h) plane. For 6-parameter
“vanilla” models, the shaded red/grey region is ruled out by
WMAP1 and the shaded orange/grey region by WMAP3; the main
source of the dramatic improvement is the measurement of E-
polarization breaking the degeneracy involving τ . Adding SDSS
LRG information further constrains the parameters to the white
region marked “Allowed”. The horizontal hatched band is re-
quired by the HST key project [137]. The dotted line shows the fit
h = 0.72(Ωm/0.25)−0.32 , explaining the origin of the percent-level
constraint h(Ωm/0.25)0.32 = 0.719 ± 0.008 (1σ).

FIG. 14: Illustration of the physics underlying the previous figure.
Using only WMAP CMB peak height ratios constrains (ωm, ωb, ns)
independently of As, τ , curvature and late-time dark energy prop-
erties. This excludes all but the white band ωm ≡ h2Ωm =
0.127 ± 0.017 (2σ). If we assume Ωtot = 1 and vanilla dark en-
ergy, we can supplement this with independent “standard ruler”
information from either WMAP CMB (thin yellow/light grey el-
lipse) giving Ωm = 0.239 ± 0.034 (1σ), or SDSS galaxies (thicker
blue/grey ellipse) giving Ωm = 0.239±0.027 (1σ). These two rulers
are not only beautifully consistent, but also complementary, with
the joint constraints (small ellipse marked “allowed”) being tighter
than those from using either separately, giving Ωm = 0.238±0.017
(1σ). The plotted 2-dimensional constraints are all 2σ. The three
black curves correspond to constant “horizontal” observables: con-
stant angular scales for the acoustic peaks in the CMB power (dot-
ted, h ∼

∝ Ω−0.3
m ), for the acoustic peaks in the galaxy power (solid,

h ∼
∝ Ω0.37

m ) and for the turnover in the galaxy power spectrum

(dashed, h ∼
∝ Ω−0.93

m ). This illustrates why the galaxy acoustic
scale is even more helpful than that of the CMB for measuring Ωm:
although it is currently less accurately measured, its degeneracy di-
rection is more perpendicular to the CMB peak ratio measurement
of h2Ωm.
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By vertical information, we mean the relative heights
of the acoustic peaks, which depend only on the physical
matter densities (ωm, ωb, ων) and the scalar primordial
power spectrum shape (ns, α). They are independent of
curvature and dark energy, since ΩΛ(z) ≈ Ωk(z) ≈ 0 at
z ∼> 103. They are independent of h, since the physics at
those early times depended only on the expansion rate
as a function of temperature back then, which is simply
ξ1/2T 3/2 times a known numerical constant, where ξ is
given by ωm and the current CMB temperature (see Ta-
ble 3 in [115]). They are also conveniently independent
of τ and r, which change the power spectrum shape only
at ℓ ≪ 102.

By horizontal (a.k.a. “standard ruler”) information, we
mean the acoustic angular scale ℓA ≡ πdA(zrec)/rs(zrec)
defined in Table 2. The ℓ-values of CMB power spectrum
peaks and troughs are all equal to ℓA times constants de-
pending on (ωm, ωb), so changing ℓA by some factor by al-
tering (Ωk, ΩΛ, w) simply shifts the CMB peaks horizon-
tally by that factor and alters the late integrated Sachs
Wolfe effect at ℓ ≪ 102. Although this single number ℓA

is now measured to great precision (∼ 0.3%), it depends
on multiple parameters, and it is popular to break this
degeneracy with assumptions rather than measurements.
The sound horizon at recombination rs(zrec) in the de-
nominator depends only weakly on (ωm, ωb), which are
well constrained from the vertical information, and Ta-
ble 2 shows that it is now known to about 1%. In con-
trast, the comoving angular diameter distance to recom-
bination dA(zrec) depends sensitively on both the spa-
tial curvature Ωk and the cosmic expansion history H(z),
which in turn depends on the history of the dark energy
density:

H(z)

H0
=

[
X(z)ΩΛ + (1 + z)2Ωk + (1 + z)3Ωm + (1 + z)4Ωr)

]1/2
.

(8)
Here X(z) is defined as the dark energy density relative to
its present value [128], with vanilla dark energy (a cosmo-
logical constant) corresponding to X(z) = 1. The most
common (although physically unmotivated) parametriza-
tion of this function in the literature has been a simple
power law X(z) = (1+z)3(1+w), although it has also been
constrained with a variety of other parametric and non-
parametric approaches (see [129] and references therein).
The parameter Ωr refers to the radiation contribution
from photons and massless neutrinos, which is given by
h2Ωr ≈ 0.0000416(Tcmb/2.726K)4 and makes a negligible
contribution at low redshift.

Using the vertical WMAP information alone gives a
tight constraint on ωm ≡ h2Ωm, corresponding to the
white band in Figure 14, independent of assumptions
about curvature or dark energy.4 To this robust measure-

4 To obtain this ωm-constraint, we marginalized over ℓA by
marginalizing over either Ωk or w; Table 3 shows that these two
approaches give essentially identical answers.

FIG. 15: 95% constraints in the (Ωm, ΩΛ) plane. The large shaded
regions are ruled out by WMAP1 (red/dark grey) and WMAP3 (or-
ange/grey) when spatial curvature is added to the 6 vanilla param-
eters, illustrating the well-known geometric degeneracy between
models that all give the same acoustic peak locations in the CMB
power spectrum. The yellow/light grey region is ruled out when
adding SDSS LRG information, breaking the degeneracy mainly
by measuring the acoustic peak locations in the galaxy power spec-
trum. Models on the diagonal dotted line are flat, those below are
open and those above are closed. Here the yellow banana has been
cut off from below by an h ∼

> 0.4 prior in the CosmoMC software.

ment, we can now add two independent pieces of infor-
mation if we are willing to make the vanilla assumptions
that curvature vanishes and dark energy is a cosmological
constant: If we add the WMAP horizontal information,
the allowed region shrinks to the thin ellipse hugging the
h ∼∝ Ω−0.3

m line of constant ℓA (dotted). If we instead
add the LRG information (which constrains hΩ0.93

m via
the P (k) turnover scale and hΩ−0.37

m via the acoustic os-
cillation scale5), the allowed region shrinks to the thick

5 The origin of these scalings can be understood as follows.
The matter-radiation equality horizon scale req ∝ ω−1

m . The

sound horizon scales as rs(zeq) ∝ ω−0.25
m with a weak depen-

dence on ωb that is negligible in this context [108]. For the
LRG mean redshift z = 0.35, the power law fit dA(z, Ωm) =
0.3253(Ωm/0.25)−0.065cH−1

0 ∝ h−1Ω−0.065
m is quite good within

our range of interest, accurate to within about 0.1% for 0.2 <
Ωm < 0.3. For z = 1100, the power law fit dA(z, Ωm) ≈

3.4374(Ωm/0.25)−0.4cH−1
0 ∝ h−1Ω−0.4

m retains 0.1% accuracy
for for 0.19 < Ωm < 0.35. The P (k) turnover angle ∝

req/dA(0.35) ∝ (h2Ωm)−1/h−1Ω−0.065
m is therefore constant

for h ∝ Ω−0.93
m , the P (k) acoustic angle ∝ rs/dA(0.35) ∝
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FIG. 16: 95% constraints in the (Ωtot, h) plane for 7-parameter
curved models. The shaded red/dark grey region was ruled out
by WMAP1 alone, and WMAP3 tightened these constraints (or-
ange/grey region), illustrating that CMB fluctuations alone do not
simultaneously show space to be flat and measure the Hubble pa-
rameter. The yellow/light grey region is ruled out when adding
SDSS LRG information. Here the yellow banana has been artifi-
cially cut off for h ∼

> 0.4 by a hardwired prior in the CosmoMC
software.

ellipse.
These two independent pieces of horizontal informa-

tion are seen to be not only beautifully consistent, but
also complementary: the joint constraints are signifi-
cantly tighter than those from using either separately.
When going beyond vanilla models below, the thin CMB-
only ellipse is of course no longer relevant, making the
LRG constraints even more valuable.

C. Spacetime geometry

To zeroth order (ignoring perturbations), the space-
time geometry is simply the Friedmann-Robertson-
Walker metric determined by the curvature Ωk and the
cosmic expansion history H(z). The vanilla assumptions
imply the special case of no curvature (Ωk = 0) and
constant dark energy (H(z) given by equation (8) with
X(z) = 1).

(h2Ωm)−0.25/h−1Ω−0.065
m is constant for h ∝ Ω0.37

m , and the
Cℓ acoustic angle ∝ rs/dA(zrec) ∝ (h2Ωm)−0.25/h−1Ω−0.4

m is
constant for h ∝ Ω−0.3

m .

FIG. 17: 95% constraints in the (Ωtot, tnow) plane for 7-parameter
curved models. The shaded red/dark grey region is ruled out
by WMAP1 alone, and WMAP3 tightened these constraints (or-
ange/grey region), illustrating that CMB fluctuations do not si-
multaneously show space to be flat and measure the age of the
Universe. The yellow/light grey region is ruled out when adding
SDSS LRG information. The age limit tnow > 12 Gyr shown is
the 95% lower limit from white dwarf ages by [132]; for a review of
recent age determinations, see [7].

Let us now spice up the vanilla model space by in-
cluding spatial curvature Ωk and a constant dark energy
equation of state w as free parameters, both to constrain
them and to quantify how other constraints get weakened
when dropping these vanilla assumptions.

1. LRGs as a standard ruler at z = 0.35

Before constraining specific spacetime geometry pa-
rameters, let us review the relevant physics to intuitively
understand what CMB and LRGs do and do not teach
us about geometry. As discussed in the previous sec-
tion, current CMB data accurately measure only a single
number that is sensitive to the spacetime geometry infor-
mation in Ωk and H(z). This number is the peak angular
scale ℓA, and it in turn depends on the four independent
parameters (Ωm, Ωk, w, h). (ΩΛ is of course not indepen-
dent, fixed by the identity ΩΛ = 1−Ωk −Ωm.) Since the
sound horizon size rs is now accurately known indepen-
dently of spacetime geometry from CMB peak ratios, the
CMB ℓA-measurement provides a precise determination
of the comoving angular diameter distance to the last
scattering surface, dA(zrec), thus allowing one function
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of (Ωm, Ωk, w, h) to be accurately measured.
As emphasized in [36, 128, 130, 131], measuring the

acoustic angular scale at low redshift in galaxy cluster-
ing similarly constrains a second independent combina-
tion of (Ωm, Ωk, w, h), and measuring dA(z) at multiple
redshifts with future redshift surveys and current and
future SN Ia data can break all degeneracies and allow
robust recovery of both Ωk and the dark energy history
X(z). For the galaxy approach, the point is that leav-
ing the early universe physics (ωb, ωm, ns, etc.) fixed,
changing the spacetime geometry merely scales the hori-
zontal axis of the angular power spectrum of galaxies at
a given redshift z as dA(z). More generally, as described
in detail in [36], the main effect of changing the space-
time geometry is to shift our measured three-dimensional
power spectrum horizontally by rescaling the k-axis. The
k-scale for angular modes dilates as the comoving an-
gular diameter distance dA(z) to the mean survey red-
shift z ≈ 0.35, whereas that for radial modes dilates as
d(dA)/dz = c/H(z) for the flat case. For small varia-
tions around our best fit model, the change in H(0.35)
is about half that of the angular diameter distance. To
model this, [36] treats the net dilation as the cube root
of the product of the radial dilation times the square of
the transverse dilation, defining the distance parameter

dV (z) ≡
[
dA(z)2

cz

H(z)

]1/3

. (9)

Using only the vertical WMAP peak height information
as a prior on (ωb, ωd, ns), our LRG power spectrum gives
the measurement dV (0.35) = 1.300 ± 0.088 Gpc, which
agrees well with the value measured in [36] using the LRG
correlation function. It is this geometric LRG informa-
tion that explains most of the degeneracy breaking seen
in the Figures 15, 16, 17 and 18 below.

As more LRG data become available and strengthen
the baryon bump detection from a few σ to > 5σ, this
measurement should become even more robust, not re-
quiring any ωm-prior from WMAP peak heights.

2. Spatial curvature

Although it has been argued that closed inflation mod-
els require particularly ugly fine-tuning [133], a number
of recent papers have considered nearly-flat models ei-
ther to explain the low CMB quadrupole [134], in string
theory landscape-inspired short inflation models, or for
anthropic reasons [110, 135, 136], so it is clearly interest-
ing and worthwhile to continue sharpening observational
tests of the flatness assumption. In the same spirit, mea-
suring the Hubble parameter h independently of theo-
retical assumptions about curvature and measurements
of galaxy distances at low redshift provides a powerful
consistency check on our whole framework.

Figures 15, 16 and 17 illustrate the well-known CMB
degeneracies between the curvature Ωk ≡ 1 − Ωtot and

dark energy ΩΛ, the Hubble parameter h, and the age of
the universe tnow; without further information or priors,
one cannot simultaneously demonstrate spatial flatness
and accurately measure ΩΛ, h or tnow, since the CMB
accurately constrains only the single combination ℓA. In-
deed, the WMAP3 degeneracy banana extends towards
even larger Ωtot than these figures indicate; the plotted
banana has been artificially truncated by a hardwired
lower limit on h in the CosmoMC software used to com-
pute this particular MCMC.

Including our LRG information is seen to reduce the
curvature uncertainty by about a factor of five, providing
a striking vindication of the standard inflationary pre-
diction Ωtot = 1. The physical reason for this LRG im-
provement is obvious from the thick ellipse in Figure 14:
WMAP vertical peak height information combined with
LRG standard ruler information on dV (0.35) measures
Ωm rather independently of curvature.

Yet even with WMAP+LRG information, the figures
show that a strong degeneracy persists between curvature
and h, and curvature and tnow, leaving the measurement
uncertainty on h comparable with that from the HST
key project [137]. If we add the additional assumption
that space is exactly flat, then uncertainties shrink by
factors around 4 and 10 for h and tnow, respectively, still
in beautiful agreement with other measurements.

In conclusion, within the class of almost flat models,
the WMAP-only constraints on h, tnow, ΩΛ and Ωtot re-
main weak, and including our LRG measurements pro-
vides a huge improvement in precision.

3. Dark energy

Although we now know its present density fairly accu-
rately, we still know precious little else about dark energy,
and much interest is focused on understanding its nature.
Assuming flat space1, Table 3 and Figure 18 show our
constraints on constant w for two cases: assuming that
dark energy is homogeneous (does not cluster) and that
it allows spatial perturbations (does cluster) as modeled
in [7]. We see that adding w as a free parameter does not
significantly improve χ2 for the best fit, and all data are
consistent with the vanilla case w = −1, with 1σ uncer-
tainties in w in the 10% - 30% range, depending on dark
energy clustering assumptions.

As described above, the physical basis of these con-
straints is similar to those for curvature, since (aside from
low-ℓ corrections from the late ISW effect and dark en-
ergy clustering), the only readily observable effect of the
dark energy density history X(z) is to alter dA(zrec) and
dA(0.35), and hence the CMB and LRG acoustic angular
scales. (The dark energy history also affects fluctuation
growth and hence the power spectrum amplitude, but
we do not measure this because our analysis marginal-
izes over the galaxy bias parameter b.)

It has been argued (see, e.g., [138]) that it is inappro-
priate to assume Ωk = 0 when constraining w, since there
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FIG. 18: 95% constraints in the (Ωm, w) plane. The shaded
red/grey region is ruled out by WMAP1 alone when the dark
energy equation of state w is added to the 6 vanilla parameters.
The shaded orange/grey region is ruled out by WMAP3. The yel-
low/light grey region is ruled out when adding SDSS LRG infor-
mation. The region not between the two black curves is ruled out
by WMAP3 when dark energy is assumed to cluster.

is currently no experimental evidence for spatial flatness
unless w = −1 is assumed. We agree with this critique,
and merely note that no interesting joint constraints can
currently be placed on as many as four spacetime geome-
try parameters (Ωm, Ωk, w, h) from WMAP and our LRG
measurements alone, since they accurately constrain only
the two combinations dA(zrec) and dV (0.35). Other data
such as SN Ia need to be included for this; [7] do this and
obtain w = −1.06+0.13

−0.08.
One can also argue, in the spirit of Occam’s razor, that

the fact that vanilla works so well can be taken as evi-
dence against both Ωk 6= 0 and w 6= −1, since it would
require a fluke coincidence for them to both have signifi-
cantly non-vanilla values that conspire to lie on the same
dV (0.35) and dA(zrec) degeneracy tracks as the vanilla
model.

D. Inflation

Inflation [139–143] remains the leading paradigm for
what happened in the early universe because it can solve
the flatness, horizon and monopole problems (see, e.g.,
[144]) and has, modulo minor caveats, successfully pre-
dicted that Ωtot ≈ 1, ns ≈ 1, |α| ≪ 1 and r ∼< 1 as well
as the facts that the seed fluctuations are mainly Gaus-

FIG. 19: 95% constraints in the (ns, r.002) plane for 7-parameter
tensor models (the vanilla parameters plus r). The large shaded
regions are ruled out by WMAP1 (red/dark grey) and WMAP3 (or-
ange/grey). The yellow/light grey region is ruled out when adding
SDSS LRG information, pushing the upper limit on r.002 down by
a factor of two to r.002 < 0.33 (95%). The solid black curve with-
out shading shows the 68% limit. The two dotted lines delimit the
three classes of inflation models known as small-field, large-field
and hybrid models. Some single-field inflation models make highly
specific predictions in this plane as indicated. From top to bottom,
the figure shows the predictions for V (φ) ∝ φ6 (line segment; ruled
out by CMB alone), V (φ) ∝ φ4 (star; a textbook inflation model;
on verge of exclusion) and V (φ) ∝ φ2 (line segment; the eternal
stochastic inflation model; still allowed). These predictions assume
that the number of e-foldings between horizon exit of the observed
fluctuations and the end of inflation is 64 for the φ4 model and
between 50 and 60 for the others as per [150].

sian and adiabatic. For the ekpyrotic universe alternative
[145], controversy remains about whether it can survive a
“bounce” and whether it predicts ns ≈ 1 [146] or ns ≈ 3
[147].

In the quest to measure the five parameters (Q, ns −
1, α, r, nt) characterizing inflationary seed fluctuations,
the first breakthrough was the 1992 COBE discovery that
Q ∼ 10−5 and that the other four quantities were con-
sistent with zero [149]. The second breakthrough is cur-
rently in progress, with WMAP3 suggesting 1 − ns > 0
at almost the 3σ level (1 − ns = 0.049+0.019

−0.015) [7]. This
central value is in good agreement with classic (single
slow-rolling scalar field) inflation models, which generi-
cally predict non-scale invariance in the ballpark 1−ns ∼
2/N ∼ 0.04, assuming that the number of e-foldings be-
tween the time horizon the observed fluctuations exit the
horizon and the end of inflation is 50 < N < 60 as per
[150]. This central value of ns agrees well with numerous
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measurements in the recent literature (e.g., [151]); it is
merely the error bars that have changed.

As illustrated in Figure 19 and discussed in [7], ns = 1
becomes allowed if the tensor fluctuation parameter r is
included (as it clearly should be when constraining in-
flation models), but the “vanilla lite” Harrison-Zeldovich
model (ns = 1, r = 0) remains ruled out. In contrast, the
arguably simplest of all inflation models, a single slow-
rolling scalar field with potential V (φ) ∝ φ2, remains vi-
able: it predicts (ns, r) = (1 − 2/N, 8/N) ≈ (0.96, 0.15).
The string-inspired “N-flation” model makes a similar
prediction [152, 153].

Our constraints on the inflation parameters
(Q, ns, α, r, nt) in Table 3 and Figure 19 are seen
to confirm those reported in [7] — the main addition of
our LRG analysis is simply to provide a clean way of
tightening the WMAP-only constraints on both Ωtot and
r (by factors of 5 and 2, respectively). Lyman α Forest
(LyαF) constraints provide valuable complementary
information on smaller scales, constraining the running
of the spectral index to vanish at the percent level
[39, 40].

Since the WMAP3 announcement, there has been sub-
stantial discussion of how strong the evidence against
Harrison-Zeldovch (ns = 1, r = 0) really is [39, 127, 154–
160]. For example, the WMAP team marginalized over
the SZ-amplitude on small scales, which lowered the ns-
estimate by about 0.01, but did not model the CMB lens-
ing effect, which would raise the ns-estimate by a com-
parable amount [127]. It has also been argued that im-
proved modeling of point source contamination increases
the ns-estimate [158]. Inclusion of smaller-scale CMB
data and LyαF information clearly affects the signifi-
cance as well. The bottom line is therefore that even
modest improvements in measurement accuracy over the
next few years can significantly improve our confidence in
distinguishing between competing early-universe models
— even without detecting r > 0.

E. Neutrinos

It has long been known [161] that galaxy surveys are
sensitive probes of neutrino mass, since they can detect
the suppression of small-scale power caused by neutrinos
streaming out of dark matter overdensities. For detailed
discussion of post-WMAP3 astrophysical neutrino con-
straints, see [7, 39, 162–167].

Our neutrino mass constraints are shown in Figure 20
and in the Mν-panel of Figure 12, where we allow our
standard 6 vanilla parameters and fν to be free6. As-
suming three active neutrinos with standard freezeout

6 It has been claimed that the true limits on neutrino masses from
the WMAP1 (but not WMAP3) CMB maps are tighter than
represented in these figures [37, 163, 164].

FIG. 20: 95% constraints in the (ωd, fν) plane. The large shaded
regions are ruled out by WMAP1 (red/dark grey) and WMAP3
(orange/grey) when neutrino mass is added to the 6 vanilla param-
eters. The yellow/light grey region is ruled out when adding SDSS
LRG information. The five curves correspond to Mν , the sum of
the neutrino masses, equaling 1, 2, 3, 4 and 5 eV, respectively —
barring sterile neutrinos, no neutrino can have a mass exceeding
∼ Mν/3 ≈ 0.3 eV (95%).

abundance, we obtain a 95% upper limit Mν < 0.9 eV,
so combining this with the atmospheric and solar neu-
trino oscillation results [168, 169], which indicate small
mass differences between the neutrino types, implies that
none of the three masses can exceed Mν/3 ≈ 0.3 eV. In
other words, the heaviest neutrino (presumably in a hi-
erarchical model mostly a linear combination of νµ and
ντ ) would have a mass in the range 0.04 − 0.3 eV.

If one is willing to make stronger assumptions about
the ability to model smaller-scale physics, notably involv-
ing the LyαF, one can obtain the substantially sharper
upper bound Mν < 0.17 eV [39]. However, it should be
noted that [39] also find that these same assumptions
rule out the standard model with three active neutrino
species at 2.5σ, preferring more than three species.

F. Robustness to data details

Above, we explored in detail how our cosmologi-
cal parameter constraints depend on assumptions about
physics in the form of parameter priors (Ωk = 0, w = −1,
etc.). Let us now discuss how sensitive they are to details
related to data modeling.
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1. CMB modeling issues

With any data set, it is prudent to be extra cautious
regarding the most recent additions and the parts with
the lowest signal-to-noise ratio. In the WMAP case, this
suggests focusing on the T power spectrum around the
third peak and the large-scale E-polarization data, which
as discussed in Section IVB 1 were responsible for tight-
ening and lowering the constraints on ωm and τ , respec-
tively.

The large-scale E-polarization data appear to be the
most important area for further investigation, because
they are single-handedly responsible for most of the dra-
matic WMAP3 error bar reductions, yet constitute only
a 3σ detection after foregrounds an order of magnitude
larger have been subtracted from the observed polar-
ized CMB maps [2]. As discussed in [127] and Sec-
tion IVB1, all the WMAP3 polarization information is
effectively compressed into the probability distribution
for τ , since using the prior τ = 0.09 ± 0.03 instead of
the polarized data leaves the parameter constraints es-
sentially unchanged. This error bar ∆τ = 0.03 found
in [7] and Table 2 reflects only noise and sample vari-
ance and does not include foreground uncertainties. If
future foreground modeling increases this error bar sub-
stantially, it will reopen the vanilla banana degeneracy
described in [33]: Increasing τ and As in such a way
that Apeak ≡ Ase

−2τ stays constant, the peak heights re-
main unchanged and the only effect is to increase power
on the largest scales. The large-scale power relative to
the first peak can then be brought back down to the
observed value by increasing ns, after which the second
peak can be brought back down by increasing ωb. Since
quasar observations of the Gunn-Peterson effect allow τ
to drop by no more than about 1σ (0.03) [170, 171], the
main change possible from revised foreground modeling
is therefore that (τ, ΩΛ, ωd, ωb, As, ns, h) all increase to-
gether [33]. For a more detailed treatment of these issues,
see [172].

A separate issue is that, as discussed in Section IVD,
reasonable changes in the CMB data modeling can easily
increase ns by of order 0.01 [39, 127, 154–156, 158], weak-
ening the significance with which the Harrison-Zeldovich
model (ns = 1, r = 0) can be ruled out.

With the above-mentioned exceptions, parameter mea-
surements now appear rather robust to WMAP modeling
details. We computed parameter constraints using the
WMAP team chains available on the LAMBDA archive.
We created our own chains using the CosmoMC pack-
age [102] for the vanilla case (of length 310,817) as a
cross-check and for the case with curvature (of length
226,456) since this was unavailable on LAMBDA. The pa-
rameter constraints were in excellent agreement between
these two vanilla chains. For a fair comparison between
WMAP team and CosmoMC-based chains, the best-fit
χ2 values listed in Table 3 have been offset-calibrated so
that they all give the same value for our best fit vanilla
model.

FIG. 21: The key information that our LRG measurements add
to WMAP comes from the power spectrum shape. Parametrizing
this shape by Ωm and the baryon fraction Ωb/Ωm for vanilla mod-
els with ns = 1, h = 0.72, the 95% constraints above are seen to
be nicely consistent between the various radial subsamples. More-
over, the WMAP+LRG joint constraints from our full 6-parameter
analysis are seen to be essentially the intersection of the WMAP
and “ALL LRG” allowed regions, indicating that these two shape
parameters carry the bulk of the cosmologically useful LRG infor-
mation.

2. LRG modeling issues

Since we marginalize over the overall amplitude of
LRG clustering via the bias parameter b, the LRG power
spectrum adds cosmological information only through
its shape. Let us now explore how sensitive this shape
is to details of the data treatment. A popular way to
parametrize the power spectrum shape in the literature
has been in terms of the two parameters (Ωm, fb) shown
in Figure 21, where fb ≡ Ωb/Ωm is the baryon fraction.
Since we wish to use (Ωm, fb) merely to characterize this
shape here, not for constraining cosmology, we will ig-
nore all CMB data and restrict ourselves to vanilla mod-
els with ns = 1, h = 0.72 and As = 1, varying only the
four parameters (Ωm, fb, b, Qnl). Figure 21 suggest that
for vanilla models, the two parameters (Ωm, fb) do in
fact capture the bulk of this shape information, since the
WMAP+LRG joint constraints from our full 6-parameter
analysis are seen to be essentially the intersection of the
WMAP and “ALL LRG” allowed regions in the (Ωm, fb)-
plane.

a. Sensitivity to defogging Figure 21 shows good
consistency between the power spectrum shapes recov-
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FIG. 22: Effect of finger-of-god (FOG) compression. Raising the
FOG compression threshold δc means that fewer FOGs are iden-
tified and compressed, which suppresses small-scale power while
leaving the large scale power essentially unchanged.

ered from the three radial subsamples. Let us now ex-
plore in more detail issues related to our nonlinear mod-
eling. Our results were based on the measurement using
FOG compression with threshold δc = 200 defined in [28].
Applied to the LRG sample alone, the FOG compres-
sion algorithm (described in detail in [28]) finds about
20% of the LRGs in FOGs using this threshold; 77%
of these FOGs contain two LRGs, 16% contain three,
and 7% contain more than three. Thus not all LRGs
are brightest cluster galaxies that each reside in a sep-
arate dark matter halo. Figure 22 shows a substantial
dependence of P (k) on this δc identification threshold
for k ∼> 0.1h/Mpc. This is because FOGs smear out
galaxy clusters along the line of sight, thereby strongly
reducing the number of very close pairs, suppressing the
small-scale power. Figure 22 shows that on small scales,
the approximate scaling P (k) ∼∝ k−1.3 seen for our de-
fault FOG compression matches the well-known corre-
lation function scaling ξ(r) ∼∝ r−1.7, which also agrees
with the binding energy considerations of [173]. Fit-
ting linear power spectra to these P (k) curves would
clearly give parameter constraints strongly dependent on
δc, with less aggressive FOG-removal (a higher thresh-
old δc) masquerading as lower Ωm. Using our nonlin-
ear modeling, however, we find that δc has almost no
effect on the cosmological parameters, with the change
seen in Figure 22 being absorbed by a change in the
Qnl-parameter. For the three cases δc = (100, 200, 337),

FIG. 23: 1σ constraints on Ωm as a function of the largest k-band
included in the analysis. The yellow band shows the result when
marginalizing over the baryon density ωb, the thinner cyan/grey
band shows the result when fixing ωb at the best-fit WMAP3 value.

our above-mentioned 4-parameter fits give highly sta-
ble best-fit values Ωm = (0.244, 0.242, 0.243) and fb =
(0.168, 0.169, 0.168) together with the strongly varying
best-fit values Qnl = (27.0, 30.9, 34.2). If we fix the
baryon density at the best fit WMAP3 value and vary
only the three parameters (Ωm, b, Qnl), the correspond-
ing results are Ωm = (0.246, 0.243, 0.244) and Qnl =
(27.1, 31.0, 34.3). Note that the cosmological parameter
values do not show a rising or falling trend with δc. For
comparison, the 1σ uncertainty on Ωm from Table 2 is
∆Ωm ≈ 0.02, an order of magnitude larger than these
variations. In other words, the Qnl-parameter closely
emulates the effect of changing δc, so that marginalizing
over Qnl is tantamount to marginalizing over δc, making
our treatment rather robust to the modeling of nonlinear
redshift distortions.

b. Sensitivity to k-cutoff This is all very reassur-
ing, showing that our cosmological constraints are al-
most completely unaffected by major changes in the
k ∼> 0.1h/Mpc power spectrum. (The reason that we
nonetheless perform the Qnl-marginalization is if course
that we wish to immunize our results against any small
nonlinear corrections that extend to k ∼< 0.1h/Mpc.) To
further explore this insensitivity to nonlinearities, we re-
peat the above analysis for the default δc = 200 case,
including measurements for 0.01h/Mpc ≤ k ≤ kmax, and
vary the upper limit kmax. We apply a prior 0 ≤ Qnl ≤ 50
to prevent unphysical Qnl-values for small kmax-values
(where Qnl becomes essentially unconstrained). If no
nonlinear modeling is performed, then as emphasized
in [43], the recovered value of Ωm should increase with
kmax as nonlinear effects become important. In con-
trast, Figure 23 shows that with our nonlinear model-
ing, the recovered Ωm-value is strikingly insensitive to
kmax. For kmax ≪ 0.07h/Mpc, the constraints are weak
and fluctuate noticeably as each new band power is in-
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cluded, but for kmax beyond the first baryon bump at
k ∼ 0.07h/Mpc, both the central value and the measure-
ment uncertainty remain essentially constant all the way
out to kmax = 0.2h/Mpc.

The above results tells us that, to a decent approxima-
tion, our k ∼> 0.1/Mpc data are not contributing informa-
tion about cosmological parameters, merely information
about Qnl. Indeed, the error bar ∆Ωm is larger when
using k < 0.2h/Mpc data and marginalizing over Qnl

then when using merely k < 0.09h/Mpc data and fixing
Qnl. In other words, our cosmological constraints come
almost entirely from the LRG power spectrum shape at
k ∼< 0.1h/Mpc.

c. Comparison with other galaxy P (k)-measurements

Let us conclude this section by briefly comparing with
Ωm-values obtained from other recent galaxy clustering
analyses.

Our WMAP3+LRG measurement Ωm = 0.24 ± 0.02
has the same central as that from WMAP3 alone [7],
merely with a smaller error bar, and the most recent
2dFGRS team analysis also prefers Ωm ≈ 0.24 [37]. This
central value is 1.5σ below the result Ωm = 0.30 ± 0.04
reported from WMAP1 + SDSS main sample galaxies in
[33]; part of the shift comes from the lower third peak
in WMAP3 as discussed in Section IVB. Post-WMAP3
results are also consistent with ours. Analysis of an in-
dependent SDSS LRG sample with photometric redshifts
gave best-fit Ωm-values between 0.26 and 0.29 depending
on binning [41], while an independent analysis includ-
ing acoustic oscillations in SDSS LRGs and main sample
galaxies preferred Ωm ≈ 0.256 [148].

The galaxy power spectra measured from the above-
mentioned data sets are likely to be reanalysed as nonlin-
ear modeling methods improve. This makes it interesting
to compare their statistical constraining power. [41] do
so by comparing the error bar ∆Ωm from fitting two pa-
rameter (Ωm, b)-models to all k ≤ 0.2h/Mpc data, with
all other parameters, including Qnl or other nonlinear
modeling parameters, fixed at canonical best fit values.
This gives ∆Ωm ≈ 0.020 for 2dFGRS and ∆Ωm ≈ 0.012
for for the SDSS LRG sample with photometric redshifts
[41]. Applying the same procedure to our LRGs yields
∆Ωm = 0.007. This demonstrates both the statistical
power of our sample, and that our cosmological analysis
has been quite conservative in the sense of marginalizing
away much of the power spectrum information (marginal-
izing over Qnl doubles the error bar to ∆Ωm = 0.014).

3. Other issues

A fortunate side effect of improved cosmological preci-
sion is that priors now matter less. Monte Carlo Markov
Chain generators usually assume a uniform Bayesian
prior in the space of its “work parameters”. For ex-
ample, if two different papers parametrize the fluctua-
tion amplitude with As and lnAs, respectively, they im-
plicitly assign As-priors that are constant and ∝ 1/As,

respectively (the new prior picks up a factor from the
Jacobian of the parameter transformation). Such prior
differences could lead to substantial (∼ 1σ) discrepancies
on parameter constraints a few years ago, when some pa-
rameters were still only known to a factor of order unity.
In contrast, Table 2 shows that most parameters are now
measured with relative errors in the range 1% − 10%.
As long as these relative measurement errors are ≪ 1,
such priors become unimportant: Since the popular re-
parametrizations in the literature and in Table 2 involve
smooth functions that do not blow up except perhaps
where parameters vanish or take unphysical values, the
relative variation of their Jacobian across the allowed pa-
rameter range will be of the same order as the relative
variation of the parameters (≪ 1), i.e., approximately
constant. Chosing a uniform prior across the allowed re-
gion in one parameter space is thus essentially equivalent
to choosing a uniform prior across the allowed region of
anybody else’s favorite parameter space.

V. CONCLUSIONS

We have measured the large-scale real-space power
spectrum P (k) using luminous red galaxies in the Sloan
Digital Sky Survey (SDSS) with narrow well-behaved
window functions and uncorrelated minimum-variance
errors. The results are publicly available in an easy-
to-use form at http://space.mit.edu/home/tegmark/
sdss.html.

This is an ideal sample for measuring the large-scale
power spectrum, since its effective volume exceeds that of
the SDSS main galaxy sample by a factor of six and that
of the 2dFGRS by an order of magnitude. Our results
are robust to omitting purely angular and purely radial
density fluctuations and are consistent between differ-
ent parts of the sky. They provide a striking model-
independent confirmation of the predicted large-scale
ΛCDM power spectrum. The baryon signature is clearly
detected (at 3σ), and the acoustic oscillation scale pro-
vides a robust measurement of the distance to z = 0.35
independent of curvature and dark energy assumptions.

Although our measured power spectrum provides inde-
pendent cross-checks on Ωm and the baryon fraction, in
good agreement with WMAP, its main utility for cosmo-
logical parameter estimation lies in complementing CMB
measurements by breaking their degeneracies; for exam-
ple, Table 3 shows that it cuts error bars on Ωm, ωm

and h by about a factor of two for vanilla models (ones
with a cosmological constant and negligible curvature,
tensor modes, neutrinos and running spectral index) and
by up to almost an order of magnitude when curvature,
tensors, neutrinos or w are allowed. We find that all
these constraints are essentially independent of scales
k > 0.1h/Mpc and associated nonlinear complications.

Since the profusion of tables and figures in Section IV
can be daunting to digest, let us briefly summarize them
and discuss both where we currently stand regarding cos-
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mological parameters and some outstanding issues.

A. The success of vanilla

The first obvious conclusion is that “vanilla rules OK”.
We have seen several surprising claims about cosmologi-
cal parameters come and go recently, such as a running
spectral index, very early reionization and cosmologically
detected neutrino mass — yet the last two rows of Table 3
show that there is no strong evidence in the data for any
non-vanilla behavior: none of the non-vanilla parameters
reduces χ2 significantly relative to the vanilla case. The
WMAP team made the same comparison for the CMB-
only case and came to the same conclusion [7]. Adding a
generic new parameter would be expected to reduce χ2 by
about unity by fitting random scatter. Although WMAP
alone very slightly favor spatial curvature, this preference
disappears when SDSS is included. The only non-vanilla
behavior that is marginally favored is running spectral
index α < 0, although only at 1.6σ. This persistent suc-
cess of the vanilla model may evoke disturbing parallels
with the enduring success of the standard model of par-
ticle physics, which has frustrated widespread hopes for
surprises. However, the recent evidence for ns < 1 rep-
resents a departure from the ns = 1 “vanilla lite” model
that had been an excellent fit ever since COBE [149], and
as we discuss below, there are good reasons to expect fur-
ther qualitative progress soon.

B. Which assumptions matter?

When quoting parameter constraints, it is important to
know how sensitive they are to assumptions about both
data sets and priors. The most important data assump-
tions discussed in Section IVF are probably those about
polarized CMB foreground modeling for constraining τ
and those about nonlinear galaxy clustering modeling for
constraining the power spectrum shape. The effect of pri-
ors on other parameters is seen by comparing the seven
columns of Table 3, and the effect of including SDSS is
seen by comparing odd and even rows.

WMAP alone has robustly nailed certain parameters
so well that that neither adding SDSS information nor
changing priors have any significant effect. Clearly in this
camp are the baryon density ωb (constrained by WMAP
even-odd peak ratios) and the reionization optical depth
τ (constrained by WMAP low-ℓ E-polarization); indeed,
Table 1 in [39] shows that adding LyαF and other CMB
and LSS data does not help here either. The spectral in-
dex ns is also in this nailed-by-WMAP category as long
as we assume that α is negligible; generic slow-roll infla-
tion models predict |α| ∼< 10−3, well below the limits of
detectability with current data sets.

For many other parameters, e.g., Ωm, h and tnow, the
WMAP-only constraints are extremely sensitive to pri-
ors, with the inclusion of SDSS information tightening

them by factors 2 - 10. The prior assumptions of the
vanilla model (Ωk = r = fν = α = 0, w = −1) matter a
lot with WMAP alone, and when one of them is dropped,
the best fit values of Ωm and h are typically very different,
with much larger errors. These assumptions no longer
matter much when SDSS is included, greatly simplify-
ing the caveat list that the cautious cosmologist needs to
keep in mind. This is quite different from the recent past,
when the joint constraints from older WMAP and SDSS
data were sensitive to prior assumptions such as spatial
flatness [33]; a major reason for this change is clearly
the SDSS measurement of the baryon acoustic scale. In-
deed, one of the most interesting results of our analysis
is the strengthened evidence for a flat universe, with the
constraint on Ωtot tightening from 1.054+0.064

−0.046 (WMAP3

only) to 1.003+0.010
−0.009 (WMAP3+SDSS).

In other words, large-scale cosmic clustering data now
robustly constrain all the vanilla parameters, even when
any one of (fν , Ωk, r, fν , w) are included as in Table 3.
If w is varied jointly with Ωk (as it arguably should
be [138]), one expects dramatically weakened constraints
on the two (since two standard rulers cannot determine
the three parameters (w, Ωk, Ωm)), but rather unaffected
degradation for the rest.

C. Other data

Our cosmological parameter analysis has been very
conservative, using the bare minimum number of data
sets (two) needed to break all major degeneracies, and
using measurements which mainly probe the large-scale
linear regime. It is therefore interesting to compare our
results with the complementary approach of [39] of push-
ing the envelope by using essentially all available data
(including LyαF, supernovae Ia and smaller-scale CMB
experiments), which gives tighter constraints at the cost
of more caveats. Comparing with the error bars in Ta-
ble 1 of [39] shows that the additional data give merely
modest improvements for (ωb, ωd, ns, r, h), a halving of
the error bars on Ωtot (still consistent with flatness),
and great gains for α and Mν. These last two param-
eters are strongly constrained by the small-scale LyαF
information, with [39] reporting α = −0.015± 0.012 and
Mν/3 < 0.06 eV (95%), a factor of six below our con-
straint and bumping right up against the atmospheric
lower bound ∼ 0.04 eV. On the other hand, the same
analysis also rules out the standard model with three ac-
tive neutrino species at 2.5σ [39]; one can always worry
about pushing the envelope too far by underestimating
modeling uncertainties and systematics. [39] also high-
light interesting tension at the 2σ-level between the LyαF
and WMAP3 data regarding the fluctuation amplitude
σ8, and weak gravitational lensing may emerge as the de-
cisive arbiter here, by directly pinning down the matter
fluctuation amplitude independently of bias [174, 175].
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FIG. 24: 95% constraints in the (Ωm, Qnl) plane for vanilla mod-
els. The shaded regions are ruled out by WMAP1 (red/dark grey),
WMAP3 (orange/grey) and when adding SDSS LRG information.

D. Future challenges

The impressive improvement of cosmological measure-
ments is likely to continue in coming years. For example,
the SDSS should allow substantially better cosmologi-
cal constraints from LRGs for several reasons. When
the SDSS-II legacy survey is complete, the sky area cov-
ered should be about 50% larger than the DR4 sample
we have analyzed here, providing not only smaller er-
ror bars, but also narrower window functions as the gaps
in Figure 3 are filled in. Global photometric calibration
will be improved [176]. Various approaches may allow di-
rect measurements of the bias parameter b, e.g., galaxy
lensing [178], higher-order correlations [177], halo lumi-
nosity modeling [179] and reionization physics [180]. A
bias measurement substantially more accurate than our
11% constraint from redshift space distortions would be
a powerful degeneracy breaker. Figure 24 shows that our
other galaxy nuisance parameter, Qnl, is somewhat de-
generate with Ωm, so improved nonlinear modeling that
reliably predicts the slight departure from linear theory
in the quasilinear regime from smaller scale data would
substantially tighten our cosmological parameter con-
straints. More generally, any improved modeling that
allows inclusion of higher k will help.

As a result of such data progress in many areas, pa-
rameter constraints will clearly keep improving. How
good is good enough? The baryon density ωb is a pa-
rameter over which it is tempting to declare victory and
move on: The constraints on it from cosmic clustering
are in good agreement, and are now substantially tighter
than those from the most accurate competing technique
against which it can be cross-checked (namely Big Bang
nucleosynthesis), and further error bar reduction appears
unlikely to lead to qualitatively new insights. In con-
trast, there are a number of parameters where cosmic

clustering constraints are only now beginning to bump
up against theory and other measurements, so that fur-
ther sensitivity gains give great discovery potential. We
have (ns, r, α, Ωk) to test inflation, Mν to cosmologically
detect neutrino mass, w and more generally X(z) to con-
strain dark energy, and σ8 to resolve tension between
different cosmological probes.

Cosmology has now evolved from Alan Sandage’s
“search for two numbers” (h, Ωm) to Alan Alexander
Milne’s “Now we are six” (h, Ωb, Ωc, σ8, ns, τ). Each time
a non-trivial value was measured for a new parameter,
nature gave up a valuable clue. For example, Ωc > 0
revealed the existence of dark matter, ΩΛ > 0 revealed
the existence of dark energy and the recent evidence for
ns < 1 may sharpen into a powerful constraint on infla-
tion. Milestones clearly within reach during the next few
years include a measurement of ns < 1 at high signifi-
cance and Mν > 0 from cosmology to help uncover the
neutrino mass hierarchy. If we are lucky and r ∼ 0.1 (as
suggested by classic inflation and models such as [152]),
an r > 0 detection will push the frontier of our ignorance
back to 10−35s and the GUT scale. Then there is always
the possibility of a wild surprise such as Ωtot 6= 1, large
|α|, X(z) 6= 1, demonstrable non-Gaussianity, isocurva-
ture contributions, or something totally unexpected. Our
results have helped demonstrate that challenges related
to survey geometry, bias and potential systematic errors
can be overcome, giving galaxy clustering a valuable role
to play in this ongoing quest for greater precision mea-
surements of the properties of our universe.
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APPENDIX A: POWER SPECTRUM

ESTIMATION DETAILS

1. Relation between methods for measuring the

power spectrum and correlation function

In this section, we clarify the relationship between dif-
ferent popular techniques for quantifying galaxy cluster-
ing with pair-based statistics, including correlation func-
tion estimation with the “DD-2DR+RR” method [52, 53]
and power spectrum estimation with the FKP [19], FFT
[26, 29, 30, 38, 43] and PKL [23, 24, 27, 28, 34, 58] meth-
ods.

Suppose we have Nd data points giving the comoving
redshift space position vectors ri of galaxies numbered
i = 1, Nd, and Nr random points si from a mock catalog
which has the same selection function n̄(r) as the real
data. The number densities of data points and random
points are then sums of Dirac δ-functions:

nd(r) =

Nd∑

i=1

δ(r − ri), (A1)

nr(r) =

Nr∑

i=1

δ(r − si). (A2)

By definition of the selection function n̄(r), the quantity

δ̂(r) ≡ nd(r) − αnr(r)

n̄(r)
, (A3)

where α ≡ Nd/Nr, is then an unbiased estimator of the
underlying density fluctuation field δ(r) in the sense that

〈δ̂〉 = δ, where the averaging is over Poisson fluctua-
tions as customary. Except for the PKL method, all
techniques we will discuss take the same general form,
weighting galaxy pairs in a form that depends only on
the position of each galaxy and on the distance between
the two, so we will now describe them all with a uni-
fied notation. (For an even more general pair-weighting

formalism that also incorporates the PKL method, see
[181].) As long as one uses Nr ≫ Nd random points,
they will contribute negligible Poisson noise; their role
is in effect to evaluate certain cumbersome integrals by
Monte Carlo integration.

Let us define the quantity

ξ̂[f ] ≡
∫ ∫

w(r)δ̂(r)w(r′)δ̂(r′)f(|r − r′|)d3rd3r′. (A4)

Here w(r) and f(d) are the above-mentioned weight func-
tions that depend on position and distance, respectively.
As we will see, the “DD-2DR+RR”, FKP and FFT meth-
ods simply correspond to different choices of w and f .
Substituting equations (A1)-(A3) into equation (A4), we
find that

ξ̂[f ] = ξ̂dd[f ] − 2ξ̂dr[f ] + ξ̂rr[f ], (A5)

where we have defined

ξ̂dd[f ] ≡
Nd∑

i=1

Nd∑

j=1

w(ri)w(rj)

n̄(ri)n̄(rj)
f(|ri − rj |), (A6)

ξ̂dr[f ] ≡ α

Nd∑

i=1

Nr∑

j=1

w(ri)w(sj)

n̄(ri)n̄(sj)
f(|ri − sj |), (A7)

ξ̂rr[f ] ≡ α2
Nr∑

i=1

Nr∑

j=1

w(si)w(sj)

n̄(si)n̄(sj)
f(|si − sj |), (A8)

As a first example, let us consider the FKP method
[19]. This corresponds to [181]

f(d) = j0(kd), (A9)

w(r) ∝ n̄(r)

1 + n̄(r)P (k)
, (A10)

and turns ξ̂ into the FKP estimator of the window-
convolved power spectrum P (k). Here j0(x) ≡ sin(x)/x,
w is normalized so that

∫
w(r)2d3r = 1 and P is an a pri-

ori guess as to what the galaxy power spectrum is. For
details, see [181] around equations (25) and (56). The

main point is that Fourier transforming δ̂ and averaging

|δ̂(k)|2 over a spherical shell in k-space gives the factor∫
e−ik·|r−r

′|dΩk/4π = j0(k|r − r′|) = f . We apply this
method to our LRG data and compare the results with
those of [43] in Figure 25, finding good agreement.

The FFT method [26, 29, 30, 38, 43] is identical to
the FKP method except for two simplifications: P in
equation (A10) is taken to be a k-independent constant
and the density field is binned onto a three-dimensional
grid to replace the time-consuming double sums above
with a fast Fourier transform.

The “DD-2DR+RR” method [52, 53] estimates the
correlation function ξ(r) by the Landy-Szalay estimator

ξ̂LS =
ξ̂dd − 2ξ̂dr + ξ̂rr

ξ̂rr

, (A11)
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FIG. 25: Comparison of power spectrum estimation techniques.
Our FKP measurement without defogging is seen to agree quite
well with the measurement of [43] considering that the latter in-
cludes also main sample galaxies with different β and small-scale
clustering properties. These curves cannot be directly compared
with the PKL measurements or theoretical models, because they
are not corrected for the effects of redshift distortions, window func-
tions and the integral constraint; the qualitative agreement that is
nonetheless seen is as good as one could expect given these caveats.

which is often written informally as (DD − 2DR +
RR)/RR. Here two common weighting choices in the lit-
erature are w(r) = n̄(r) [52] and w(r) = n̄(r)/[1+ n̄(r)J ]
[53], where J ≡

∫ r

0 ξ(r′)d3r′ tends to be of the same order
of magnitude as P (k). To measure the binned correla-
tion function using equations (A6)-(A8), one thus sets
f(d) = 1 when d is inside the bin and f(d) = 0 other-
wise.

These close relationships between the FKP, FFT and
“DD-2DR+RR” methods lead to interesting conclusions
regarding all three methods.

First, it can be interesting for some applications to re-
place J by P when measuring the correlation function,
using w(r) = n̄(r)/[1+ n̄(r)P ], as was done for the analy-
sis of the QDOT survey in [19] and for the LRG analysis
in [36]. For instance, one could use a constant P evalu-
ated at the baryon wiggle scale if the goal is to measure
the baryon bump in the correlation function.

Second, there is an interesting equivalence between the
methods. For reasons that will become clear below, let us

refer to the numerator of equation (A11), ξ̂dd−2ξ̂dr + ξ̂rr,
as the “convolved” correlation function estimator and full
expression ξ̂LS as the “deconvolved” estimator. The in-
formation content in the convolved and decovolved es-

timators is clearly the same, since dividing by ξ̂rr in
equation (A11) is a reversible operation. Moreover, it is
straightforward to show that the FKP estimator of P (k)
is simply the 3D Fourier transform of the convolved cor-
relation function estimator as long as the same weight-
ing function w(r) is used for both. [182] also comment
on this. (Note that this is a quite different statement
from the well-known fact that P (k) is the 3D Fourier
transform of the correlation function ξ(r).) This im-
plies that the measured FKP power spectrum and the
measured correlation function contain exactly the same
information. In particular, it means that cosmological
constraints from one are no better than cosmological con-
straints from the other, since they should be identical
as long as window functions, covariance matrices, etc.,
are handled correctly. (An analogous correspondence for
purely angular data is discussed in [183].) In contrast,
the information content in the PKL measurement of the
power spectrum is not identical; it uses a more general
pair weighting than equation (A4) and by construction
contains more cosmological information; a more detailed
discussion of this point is given in Appendix A.3 in [184].

Third, this Fourier equivalence between the convolved
correlation function estimator and the FKP power spec-
trum estimator sheds light on the fact that the decon-

volved correlation function estimator ξ̂LS is unbiased

(〈ξ̂〉LS(d) = ξ(d), the true correlation function), whereas
the expectation value of the FKP estimator is merely the
true power spectrum convolved with a so-called window

function. This difference stems from the division by ξ̂rr

in equation (A11): Multiplication by ξ̂rr in real space cor-

responds to convolution with the Fourier transform of ξ̂rr

(the window function) in Fourier space. The reason that
one cannot deconvolve this windowing in Fourier space

is that one cannot Fourier transform ξ̂LS , as it is com-
pletely unknown for large d-values that exceed all pair
separations in the survey.

Fourth, this equivalence implies that gridding errors in
the 3D FFT method (which become important at large k
[30]) can be completely eliminated by simply computing
the correlation function with w(r) = n̄(r)/[1 + n̄(r)P ]
by summation over pairs and then transforming the con-
volved correlation function with the kernel j0(kr).

Figure 25 compares the LRG power spectra measured
with the different techniques discussed above. A direct
comparison between our PKL P (k)-measurement and
that of [43] is complicated both by window function ef-
fects and by the fact that the latter was performed in red-
shift space without FOG compression, with SDSS MAIN
galaxies mixed in with the LRG sample. To facilitate
comparison, we performed our own FKP analysis using
the direct summation method as described above, with
constant P = 30000(h−1Mpc)3 and α ≈ 0.06. This is
seen to agree with the measurement of [43] to within a
few percent for 0.04h/Mpc < k < 0.2h/Mpc for the case
of no defogging, with the remaining differences presum-
ably due mainly to the inclusion of main-sample galaxies,
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particularly on small scales where nonlinear behavior be-
comes important. Figure 25 also shows that our defogged
FKP measurements agree qualitatively between the PKL
and FKP techniques, and that the FKP power spectrum
continues to track our nonlinear WMAP model beauti-
fully all the way out to k = 1h/Mpc even though Qnl was
only fit to the k < 0.2h/Mpc PKL data.

An important caveat must be borne in mind when in-
terpreting Figure 25: The PKL points are constructed in
such a way as to allow direct visual comparison with a
model power spectrum [28], but the FKP and [43] curves
are not, and should not be expected to fall right on top
the PKL points or the best-fit cosmological model be-
cause they are not corrected for the effects of redshift
distortions, window functions and the integral constraint.
Redshift distortions should boost the FKP LRG curves
slightly above the true real space power spectrum (see
Section A3), and should boost the curve from Figure 25
slightly more because the main sample galaxies have a
higher β than the LRGs. The FKP window functions are
broader than their PKL counterparts, and the steeper the
power spectrum is, the more power leaks in from larger
scales, causing the plotted measurements to lie above
the true power spectrum. Finally, the integral constraint
suppresses the plotted FKP power on the largest scales.
In conclusion, the agreement seen in Figure 25 is as good
as one could expect given these many caveats.

2. Numerical acceleration of the PKL method

In this section, we describe a numerical improvement
over the PKL power spectrum estimation method de-
scribed in [28] that enables us to increase the number of
modes from 4000 to 42,000.

The cosmological information content in a galaxy red-
shift survey, quantified by the Fisher information matrix
[46, 47, 57], scales approximately as the effective volume
Veff defined in equation (1), with error bars on cosmo-
logical parameters optimally measured from the survey

scaling as V
−1/2
eff . However, actually extracting all this in-

formation in a numerically feasible way is far from trivial,
contributing to the extensive literature on power spec-
trum estimation methods.

Our PKL method expands the galaxy density field in N
functions (“PKL modes”) that probe successively smaller
scales, and the number of modes needed to retain all in-
formation down to some length scale λ = 2π/k is clearly
of order Veff/λ3. In [28], N = 4000 modes were used,
and it was empirically determined that this retained es-
sentially all information for k ∼< 0.1h/Mpc with a gradual
tapering off towards smaller scales. This was a convenient
coincidence, since using N ≫ 4000 becomes numerically
painful: because of the many N × N matrix operations
involved in the analysis, the disk usage is about 80 GB
times (N/4000)2 and the CPU time required on a current
workstation is about 20 days times (N/4000)3.

The effective volume of our LRG sample is about

ten times larger than that of the above-mentioned main
galaxy analysis because the sky area covered has in-
creased and because the sample is significantly deeper.
To extract all the k ∼< 0.1h/Mpc information, we would
therefore like to use about ten times more modes, but
without the analysis taking 103 times longer (∼ 50 years).

We therefore combine the method of [33] with a divide-
and-conquer approach, performing a separate 2000-mode
analysis on each of the 21 sub-volumes described in Sec-
tion II (3 radial × 7 angular subsets) and combining the
results with minimum-variance weighting (which, follow-
ing the notation of [28], corresponds to simply summing
both the F-matrices and the q-vectors). Although this
combined analysis with its 21×2000 = 42,000 modes be-
comes lossless in the information theory sense on scales
substantially smaller than each of the 21 sub-volumes,
it destroys most of the information on scales compara-
ble to these volumes, because the mean density in each
volume is projected out (effectively marginalized over)
[28]. It also becomes suboptimal on these largest scales
because it neglects correlations between different sub-
volumes when optimizing the pair weighting. We there-
fore complement the combined analysis with a 4000-mode
global analysis of the entire volume, which is optimal on
the largest scales.

Both of these analyses produce uncorrelated band
power estimators, and we use the first 8 (with k <
0.04h/Mpc) from the global analysis and the remain-
ing ones from the combined analysis. This splice point
was chosen because the Fisher matrices show that the
global analysis contains the most information (gives the
smallest power spectrum error bars) for smaller k, and
the combined analysis contains the most information for
larger k. For the radial subsamples, the corresponding
splice points are after bands 11 (NEAR), 10 (MID) and
8 (FAR). We confirm that, as the above scaling argu-
ments suggest, the two analyses give essentially identical
results in the intermediate k-range where they both re-
tain virtually all the information. For example, the two
analyses agree for band number 9 to about 0.7% in power,
a difference which is completely negligible compared to
the statistical error bars.

3. Redshift space distortion details

As described in detail in [28], our PKL method

produces three estimators (P̂gg(k), P̂gv(k), P̂vv(k)) of
the galaxy-galaxy, galaxy-velocity and velocity-velocity
power spectra (Pgg(k), Pgv(k), Pvv(k)). These estimators
are uncorrelated, both with each other and between dif-
ferent k-bands, but not unbiased: the expectation value

of P̂gg(k), say, includes contributions from all three power
spectra. As explained in [28], we therefore construct our

final power spectrum estimator P̂g as a linear combina-

tion of P̂gg(k), P̂gv(k) and P̂vv(k) that makes it an an
unbiased estimator of the real-space galaxy power spec-
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trum Pgg(k). This linear combination corresponds to
the process of marginalizing over the relative amplitudes
of Pgv(k) and Pvv(k), which according to equations (2)
and (3) are βrgv and β2, respectively, so it can also be
thought of as a marginalization over β and rgv.

Two ways of forming this linear combination were ex-
plored in [28], referred to as the modeling method and the
disentanglement method, respectively. The former corre-
sponds to marginalizing over β and rgv globally, treating
them as scale-independent constants, whereas the lat-
ter corresponds to treating them as arbitrary functions
of k and marginalizing over them separately for each k-
band. We used the former approach for the “official”
P (k)-measurement in [28] that was used for cosmologi-
cal parameter estimation, and we make the same choice
in the present paper, using only k < 0.09h/Mpc data to
find the best-fitting values (β, rgv) ≈ (0.3, 1). The latter
approach is more conservative, at the price of producing
much larger error bars.

To facilitate the interpretation of our thus-measured

power spectrum P̂g(k), it is helpful to re-express it in
terms of multipoles of the redshift space power spec-
trum. In the small-angle (distant observer) approxima-
tion where all galaxy pairs subtend a small angle relative
to the line of sight, (Pgg, Pgv, Pvv) reduce to simple linear
combinations of the monopole, quadrupole and hexade-
capole power spectra in redshift space [185, 186]:
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Inverting equation (A12) gives
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Equation (A12) tells us that, in the small angle approxi-
mation, the disentanglement method would correspond

to measuring 〈P̂g(k)〉 = P s
0(k) − 1

2P s
2 (k) + 3

8P s
4(k) =

Pgg(k). The corresponding weights for the modeling
method are found by minimizing the variance among
the class of all unbiased estimators, and thus depend on
the detailed survey geometry, the shot noise level, etc.

Empirically, we find 〈P̂g(k)〉 ≈ 0.8P s
0(k) − 0.07P s

2(k) +
0.006P s

4(k), with the weights roughly independent of k.
This can be intuitively understood from the fact that
the estimators of P s

2 and P s
4 are much noisier than that

for P s
0 , and thus get assigned low statistical weight.

If P s
2 and P s

4 were so noisy that they were discarded
altogether, only the estimator of P s

0 would be used.
The relation P s

0 (k) =
(
1 + 2

3rgvβ + 1
5β2

)
Pgg(k) follow-

ing from equation (A13) would then give the simple es-

timator P̂g(k) = P̂ s
0(k)/

(
1 + 2

3rgvβ + 1
5β2

)
≈ 0.8P̂ s

0(k)
for β = 0.3, rgv = 1, i.e., weights close to those we find

empirically. Our measured uncertainty in this normaliza-
tion factor

(
1 + 2

3rgvβ + 1
5β2

)
is about 3% (see Figure 8),

in good agreement with the exact numerical calculation
described in [28], and this translates into an overall 3%
calibration uncertainty of our measured power spectrum
which is perfectly correlated between all k-bands.

The fact that the quantity measured by our power

spectrum estimator P̂g(k) is so similar to the rescaled
redshift space monopole spectrum is convenient, since it
implies that nonlinear simulations of the redshift space
power spectrum (as discussed in Section III D) should ap-
ply rather well to our results. However, it is important to

keep in mind that our measurement P̂g(k) is a more accu-
rate estimator of Pgg(k) than the rescaled redshift space
power spectrum would be, for several reasons. First, it
never resorts to the small-angle approximation. Second,
full account is taken of the fact that anisotropic survey
geometry can skew the relative abundance of galaxy pairs
around a single point that are aligned along or perpen-
dicularly to the line-of-sight. These two caveats mat-
ter because P s

2(k) and P s
4(k) are undefined except in the

small angle limit, which could cause the correction fac-
tor

(
1 + 2

3rgvβ + 1
5β2

)
to be inaccurate on large scales.

Finally, our estimator P̂g(k) by construction has smaller
error bars than a standard FKP estimator of the redshift
space power spectrum, and one expects this advantage to
be most important on the largest scales, comparable to
and exceeding the thickness of the slices seen in Figure 3.

4. How spacetime geometry affects the power

spectrum measurement

We performed our power spectrum analysis in comov-
ing three-dimensional space, with the conversion of red-
shifts into comoving distances performed for a fiducial
flat ΛCDM model with Ωm = 0.25. As described in
Section IVC 1, the conversion between redshift and co-
moving distance (measured in h−1Mpc) depends on the
cosmological parameters (Ωm, Ωtot, w), so if a different
fiducial model had been used for the conversion, then the
inferred three-dimensional galaxy distribution in comov-
ing coordinates would be radially dilated. As discussed
in [36] and Section IVC 1, this would approximately di-
late the dimensionless power spectrum k3P (k) by scaling
the k-axis by a factor

a ≡ dV (z)

dfiducial
V (z)

, (A14)

where dV (z) is given by equation (9) and z = 0.35 is the
median survey redshift. For the parameter range allowed
by WMAP3 and our LRG data,

a ≈
(

Ωm

0.25

)−0.087

(−wΩtot)
0.19. (A15)

This means that the typical correction is very small: the
rms scatter in the scaling factor a is 0.7% for vanilla
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models, 1% for curved models and 3% for w-models. For
example, increasing the fiducial Ωm-value by 25%, from
0.24 to 0.30, alters the scaling factor by 2% and, since
the power spectrum turnover scale ∝ Ωm, ignoring this
correction could potentially bias the measured Ωm-value
from 0.240 to 0.245.

To be conservative, we nonetheless correct for this
scaling effect in our likelihood software. Reanalyzing
the galaxy data with the fiducial model replaced by
the one to be tested would shift the measured P (k)
curve up to the left on a log-log plot if a > 1, with
k 7→ k/a and P 7→ Pa3. We therefore apply the op-
posite scaling (k 7→ ka and P 7→ P/a3) to the the-

oretically predicted power spectrum P (k) before com-
puting its χ2 against our measurement power spectrum
from Table 1. We repeated our entire power spectrum
analysis for Ωm = 0.30 and confirmed that this scaling
is accurate. Our likelihood software, which is available
at http://space.mit.edu/home/tegmark/sdss/, eval-
uates a exactly instead of using equation (A15).

In summary, the correction discussed in this section
is quite small, especially since marginalizing over bias
erases the effect of the a3 amplitude shift, but we include
it anyway to ensure that there is no bias on cosmological
parameter estimates.
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