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Abstract

We present a new method for studying high-pT dilepton events (e±e∓, μ±μ∓, e±μ∓) and simulta-

neously extracting the production cross sections of pp̄ → tt̄, pp̄ → W+W−, and pp̄ → Z0 → τ+τ−

at a center-of-mass energy of
√

s = 1.96TeV. We perform a likelihood fit to the dilepton data in a

parameter space defined by the missing transverse energy and the number of jets in the event. Our

results, which use 360 pb−1 of data recorded with the CDF II detector at the Fermilab Tevatron

Collider, are σ(tt̄) = 8.5+2.7
−2.2 pb, σ(W+W−) = 16.3+5.2

−4.4 pb, and σ(Z0 → τ+τ−) = 291+50
−46 pb.

PACS numbers: 14.70.-e, 13.85.Qk, 13.85.Ni
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There are relatively few standard model (SM) processes that contribute significantly to

a final-state containing a pair of highly energetic charged leptons. The processes that can

contribute to these “dilepton” events include top-quark pair (tt̄) production, W -boson pair

(W+W−) production, and Drell-Yan processes. The distinctiveness of this final-state offers

unique tests of the SM and an intriguing potential for revealing new physics. For instance,

in Run I (1992-1996) the Collider Detector at Fermilab (CDF) observed several tt̄ candidate

events in the dilepton decay mode [1] with unusual characteristics, and it was suggested

that the kinematics of these events could be better described by the cascade decays of heavy

supersymmetric quarks [2]. Furthermore, the top-quark’s extraordinarily large mass might

be an indication of a close connection with the mechanism of mass generation itself, as for

example, in the model of topcolor assisted technicolor [3], which predicts new resonances

decaying to tt̄. In addition, a fourth generation fermion family [4] could enhance the gluon-

gluon fusion Higgs production cross section by an order of magnitude, which, for a heavy

Higgs boson, would lead to an increase in the number of W boson pairs observed [5]. These

examples could all produce an excess of dilepton events in our data, which, depending on

the topology of the new physics, would affect the cross section measurements of the main

SM processes to different extents. This provides the motivation behind the present study of

highly energetic dilepton events.

The main SM processes with a high-pT [6] dilepton final-state can be identified based on

their distinct event characteristics. For example, tt̄ and W+W− production with decays in

the eμ dilepton channel, tt̄ → W+bW−b̄ → e±μ∓ νν̄ bb̄ and W+W− → e±μ∓ νν̄, and the

di-tau decays of Z0 bosons, Z0 → τ+τ− → e±μ∓ννν̄ν̄, can be distinguished from each other

by the number of jets, Nj , and the missing transverse energy [7], /ET , in the event. Both

tt̄ and W+W− events typically have large /ET from the final-state undetected neutrinos;

however, due to the two final state b-quarks, tt̄ has a greater number of jets than W+W−.

Conversely, Z0 → τ+τ− events have small /ET (due to the neutrinos being of lower energy

than in the tt̄ and W+W− processes, and typically traveling in opposite directions), and

most often no jets. For both W+W− and Z0 → τ+τ− events, jets can arise only through

higher-order processes that include initial-state gluon radiation.

In contrast to analyses dedicated to measuring a single SM process, the analysis presented

here adopts a more global strategy by considering all events with a high-pT electron and

muon, and making no further selection requirements. We then exploit the different /ET and

8



Nj characteristics to simultaneously extract the production cross sections of the three main

processes described. This is done by fitting the eμ data in a two-dimensional (2-D) /ET −Nj

parameter space to template distributions of tt̄, W+W−, and Z0 → τ+τ− events. Less

significant processes are also taken into account.

We also consider the ee and μμ final-states, in addition to eμ, but in these cases we

have the added complication of a large Drell-Yan (Z0/γ∗ → e+e− or μ+μ−) contribution,

necessitating a different treatment for these channels. This involves reducing the Drell-

Yan ee and μμ contributions by requiring events to have significant /ET in those channels.

Without this requirement the tt̄ and W+W− contributions to the ee and μμ events would be

overwhelmed, rendering these final-states unusable. Our tt̄ and W+W− results use all three

dilepton final-states. For extracting the Z0 → τ+τ− cross section we use only eμ events

as the removal of Drell-Yan ee and μμ events also significantly reduces the Z0 → τ+τ−

contribution in the ee and μμ channels.

Since this method makes minimal requirements on events after requiring two leptons, it

utilizes the full statistical power of the data for given lepton definitions. In the present anal-

ysis we have chosen to use very tight lepton identification requirements to demonstrate the

method, and establish a foundation for future measurements with more data. This gives us

greater control of the background processes, in particular those involving jets being misiden-

tified as, or containing, leptons. However, it also reduces the potential statistical gain from

the method. Even so, the results are comparable in precision to the analyses dedicated to

the individual cross section measurements, and that use looser dilepton definitions. Further-

more, by looking at all processes simultaneously in the same generic dilepton sample, this

method tests the SM consistency in a way an analysis dedicated to a single cross section

measurement does not. An additional benefit of minimizing the requirements on the event

after two high-pT leptons are selected is the possibility for sensitivity to new physics which

might fall into the /ET − Nj parameter space that we study.

The data sample was collected with the CDF II detector between 2002 and 2004, and

corresponds to an integrated luminosity of approximately 360 pb−1. The results presented

here complement the individual cross section measurements from CDF for each process [8–

10], which make additional requirements to reduce, and assume the SM cross sections for all

the processes in the dilepton sample other than the one being measured.

The CDF II detector has a general-purpose design [11]. The components relevant to

9



this analysis are briefly described here. A tracking system inside a 1.4 T superconduct-

ing solenoidal magnet is composed of silicon detectors for high-precision track measure-

ments, and an open-cell drift chamber surrounding the silicon system. Electromagnetic and

hadronic calorimeters surround the tracking system and solenoid and are used to measure

the energy of interacting particles. In this analysis information is used from both the central

(covering the pseudo-rapidity range |η| < 1.1) and end-plug detectors (of which we use the

range 1.2 < |η| < 2.0) to identify electron candidates. The missing transverse energy calcu-

lation uses calorimeter towers with |η| < 3.5. We identify jets using clusters of calorimeter

towers above an energy threshold of 3 GeV, with fixed cone radius ΔR =
√

Δφ2 + Δη2 = 0.4.

The jet transverse energy is corrected for the calorimeter response and multiple interac-

tions [12, 13]. We require that the corrected jets have ET > 15 GeV and |η| < 2.5. A set of

drift chambers located outside the central hadronic calorimeters are used to detect muons

in the region |η| < 0.6. Additional drift chambers and scintillation counters detect muons

in the region 0.6 < |η| < 1.0.

A three-level trigger system is used to select events. The triggers employed to collect

events for this analysis are [14] an inclusive central electron (|η| < 1.1) trigger requiring an

electron with ET > 18 GeV, and an inclusive central muon (|η| < 1.0) trigger requiring a

muon with pT > 18 GeV/c.

Events selected for the analysis contain two opposite sign leptons (electrons or muons)

consistent with originating from the same vertex, and with ET > 20 GeV for electrons and

pT > 20 GeV/c for muons. Muons from cosmic rays and electrons from photon conversions

are removed, as described in Ref. [14]. Both leptons are required to be isolated in the

calorimeter [15] and the tracking chamber [16], in order to reduce the probability that a jet

is misidentified as a lepton, or that a selected lepton comes from the semileptonic decay of

b or c hadrons.

We consider three classes of dilepton events: eμ, ee, and μμ. For the eμ channel we make

no further requirements on the event after the selection of two leptons as described above,

and simply count the number of jets, Nj , and measure the /ET in the event.

The ee and μμ channels have a large Drell-Yan contribution which we reduce significantly

by applying a requirement on the missing transverse energy significance defined by:

�Esig
T =

/ET√∑
ET
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where
∑

ET is the sum of transverse energies over all calorimeter towers, corrected to include

the pT of the muons. We require �Esig
T > 2.5 GeV1/2 for all ee and μμ events .

After the above dilepton and �Esig
T requirements, the dominant SM contributions which

we consider as our signal processes, are tt̄ → W+bW−b̄ → �+νb �−ν̄ b̄, W+W− → �+ν �−ν̄,

and Z0 → τ+τ− → �+ν�ν̄τ �−ν̄�ντ , where � indicates an electron or muon. These processes

are separated in our chosen /ET −Nj parameter space as previously explained. The predicted

distributions of these signal processes in the /ET − Nj parameter space for the eμ channel

are shown in Fig. 1, and were obtained from Monte Carlo simulations.

Contributions to the dilepton sample which we consider as background processes, include

Drell-Yan (ee, μμ), WZ, ZZ, W + γ, and W + jets. Note that Drell-Yan μμ events could

be reconstructed as an eμ final-state when a muon in the forward region radiates a photon

that is misidentified as an electron. The predicted combined background distributions in the

/ET −Nj parameter space is also shown in Fig. 1. We fit the data eμ, ee, and μμ distributions

to the expected signal shapes, letting each of their normalizations float in the fit. The eμ

data distribution is shown in Fig. 2, of which about 60% of the events are expected to be

from Z0 → τ+τ− and concentrated in the low- /ET , zero-jet region of the /ET −Nj parameter

space.

To determine the acceptance of our selection criteria for the tt̄, W+W−, and Z0 → τ+τ−

processes we use the pythia [17] Monte Carlo program, followed by a full simulation of the

CDF II detector which is based on the geant simulation program [18]. The acceptances

for each of these processes are shown in Table I. The Z0 → τ+τ− acceptances are defined

as the fraction of Z0/γ∗ → τ+τ− events generated in the di-tau mass range of 66 < Mττ <

116 GeV/c2 that pass our dilepton selection criteria. The contribution from γ∗ is only about

0.3%. For the ee and μμ channels the additional �Esig
T requirement removes 32% of tt̄ events

and 36% of W+W− events, while also removing about 99.8% of Drell-Yan events.

The systematic uncertainties on the tt̄, W+W−, and Z0 → τ+τ− acceptances, summa-

rized in Table II, result from uncertainties in the jet energy scale (JES) [13], the modeling

of the initial-state radiation (ISR) by pythia [and for the case of tt̄ also final-state radia-

tion (FSR)], the uncertainty on the parton distribution functions [19], the modeling of �Esig
T ,

and uncertainties in the lepton trigger and identification efficiencies. The �Esig
T systematic

uncertainty does not apply to the Z0 → τ+τ− cross section measurement, as we fit for this

only in the eμ channel. Moreover, the eμ channel acceptance does not suffer from a jet

11
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FIG. 1: The /ET − Nj distributions for tt̄, W+W−, Z0 → τ+τ− in the eμ channel. Also shown is

the combined background distribution for the eμ channel. All the distributions are normalized to

an arbitrary equal volume. The numbers of events expected in 360 pb−1 for each source are given

in Table III. The highest /ET and Nj bins include any overflow events.

energy scale uncertainty, as we include eμ events with all jet multiplicities, whereas for the

ee and μμ channels this systematic uncertainty enters through the �Esig
T requirement. A 6%

uncertainty on the integrated luminosity is applied to the expected number of events for all

processes [22].

The Drell-Yan and diboson (WZ, ZZ) backgrounds are determined using pythia Monte

Carlo, followed by the detector simulation. We normalize the total number of events for these
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FIG. 2: The /ET − Nj distribution for data in the eμ channel. The log scale is used to make the

low count bins more visible.

TABLE I: Summary of acceptances for tt̄, W+W−, and Z0 → τ+τ− events, where the quoted

errors include the systematic uncertainties from Table II. Values include SM branching fractions

to the dilepton final-state. The tt̄ events were simulated with a top quark mass of 178 GeV/c2.

eμ ee μμ

tt̄ (0.399 ± 0.029)% (0.144 ± 0.019)% (0.136 ± 0.015)%

W+W− (0.294 ± 0.018)% (0.111 ± 0.008)% (0.092 ± 0.006)%

Z → ττ (0.0458 ± 0.0032)% (0.0008 ± 0.0001)% (0.0005 ± 0.0001)%

processes to theoretical cross section predictions [23]. To estimate the W +γ background we

use a matrix element generator [24] and use pythia for the initial-state QCD radiation and

hadronization. The background from W + jets, where a jet or track is misidentified as an

electron or muon, is determined from the data. We first calculate the probability that a jet

with a large fraction of its energy deposited in the electromagnetic calorimeter is misidentified

as an electron, and the probability that a minimum ionizing track is misidentified as a muon.

These probabilities are termed fake rates. The fake rate for each lepton type is calculated

using an average of four inclusive jet samples (triggered with at least one jet with ET > 20,

50, 70, or 100 GeV respectively). We remove sources of real leptons from Z decays using an

13



TABLE II: Summary of systematic uncertainties on the acceptance for each “signal” process. See

text for further details.

Source tt̄(ee) tt̄(eμ) tt̄(μμ) W+W−(ee) W+W−(eμ) W+W−(μμ) Z0 → τ+τ− (eμ)

JES 5% - 6% 1% - 1% -

ISR 8% 4% 6% 5% 5% 5% 5%

FSR 7% 3% 5% - - - -

Other 6% 5% 5% 5% 4% 4% 5%

Total 13% 7% 11% 7% 6% 7% 7%

invariant mass cut, and from W decays using a Monte Carlo estimate of the contamination,

and parametrize the fake rates as a function of jet transverse energy for electrons, or track

transverse momentum for muons. The background is determined by weighting the jets from

a data sample of (W → �ν) + jets events by the fake rates. As a result of very low statistics

in the data for the calculation of the fake rates, and large uncertainties in other aspects

of the calculation, we assume a 100% total uncertainty on our final W + jets background

estimates.

A summary of all expected contributions for each dilepton channel is given in Table III,

together with observed numbers of events.

We extract the tt̄, W+W−, and Z0 → τ+τ− cross sections simultaneously for the eμ

channel by maximizing the binned likelihood function:

L(μtt̄, μWW , μττ ) =
Nbin∏

i

μni
i e−μi

ni!
× ∏

j

G(xj , σj) (1)

where the index i runs over all Nbin bins in the two-dimensional /ET − Nj parameter space,

and j runs over all variables xj , which are parameters in the likelihood function constrained

by a Gaussian of width σj , the estimated uncertainty on xj . These variables consist of the

expected number of events for the background processes (given in Table III), the acceptances

for the signal processes (given in Table I), and the integrated luminosity.

The parameters μtt̄, μWW , and μττ are the expected total numbers of tt̄, W+W−, and

Z0 → τ+τ− events, respectively. The expected distributions of these processes in the /ET−Nj

parameter space determine the probabilities ptt̄,i, pWW,i, and pττ,i that a tt̄, W+W−, or

Z0 → τ+τ− event, respectively, will appear in the i-th bin. Therefore, the total expected
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TABLE III: The numbers of SM predicted events, and the numbers observed, in 360 pb−1 of data.

For the eμ channel, where the only requirement is two high-pT leptons, the first three processes

are considered signals for which cross sections are measured. For the ee and μμ channels, where

an additional �Esig
T requirement is made, only the first two processes are regarded as signals. To

calculate the expected number of events from our signal processes we used the cross section central

values, σ(tt̄) = 6.1 pb, σ(W+W−) = 12.4 pb, and σ(Z0 → τ+τ−) = 251 pb. Uncertainties on the

theoretical cross sections are not included.

eμ ee μμ ��

tt̄ 10.0 ± 0.7 3.6 ± 0.5 3.4 ± 0.4 17.0 ± 1.6

W+W− 13.8 ± 0.8 5.2 ± 0.4 4.3 ± 0.3 23.3 ± 1.5

Z0 → τ+τ− 57.8 ± 4 1.1 ± 0.2 0.6 ± 0.1 59.5 ± 4.3

DY → ee 0 15.4 ± 3.2 0 15.4 ± 3.2

DY → μμ 9.3 ± 0.8 0 11.6 ± 2.4 20.8 ± 3.2

WZ 0.70 ± 0.06 1.26 ± 0.09 1.11 ± 0.08 3.07 ± 0.23

ZZ 0.07 ± 0.01 0.47 ± 0.03 0.42 ± 0.03 0.96 ± 0.07

Wγ 1.2 ± 0.5 1.8 ± 0.7 0 3.0 ± 1.2

W + jets 3.0 ± 3.0 2.1 ± 2.1 1.6 ± 1.6 6.8 ± 6.8

Total SM 96 ± 5 31 ± 4 23 ± 3 150 ± 12

Data 103 24 29 156

number of events in the i-th bin of the /ET − Nj parameter space is:

μi = (ptt̄,i × μtt̄) + (pWW,i × μWW ) + (pττ,i × μττ ) + nother (2)

where nother is the expected number of events in the i-th bin from all background processes,

and is fixed in the likelihood fit within its Gaussian constraint. The product over i in the

likelihood function is the product of Poisson probabilities for each bin, in which the expected

number of events is μi, and ni is the corresponding number of events observed in the data.

We use 10 GeV wide bins for /ET < 60 GeV, and 20 GeV bins for 60 < /ET < 120 GeV. Note

that in Figs. 1 and 2 we show the /ET − Nj shapes using a uniform 10 GeV binning in /ET .

For each of the signal processes, μk = σkεkL, where k = tt̄, W+W−, or Z0 → τ+τ−,
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and σk is the production cross section for the process k, which is a free parameter in the

likelihood fit. The acceptances, εk, and integrated luminosity of the data sample, L, are fixed

within a Gaussian constraint as mentioned above. By maximizing the likelihood function

we extract the production cross sections for tt̄, W+W−, and Z0 → τ+τ−.

We perform a similar likelihood fit to the full ee+ eμ+μμ data to extract tt̄ and W+W−

cross sections, in which we consider Z0 → τ+τ− as a fixed background included in the

nother term, since in the ee and μμ channels it has been significantly reduced by the �Esig
T

requirement. We perform the full fit using a likelihood function that is the product of the

individual likelihood functions for each channel. We also make the following assumptions

about correlations in the full fit: within a given channel (ee, eμ, or μμ) we assume the

signal acceptances are 100% correlated because they are driven by the lepton identification

efficiencies, and between channels we assume no correlations in the acceptances. The latter

is not actually true because, for example, the ee and eμ channels have correlations in the

lepton identification uncertainties due to overlap in lepton types, and the ee and μμ channels

share some JES systematic uncertainties. However, by varying these correlations between

0% and 100% we see a negligible effect on the extracted cross sections, so we use 0% for

simplicity.

For both the eμ-only and ee + eμ + μμ scenarios we perform two sets of fits. Our

main results are obtained by letting all the signal cross sections float, with the exception of

Z0 → τ+τ− in the ee and μμ channels, to simultaneously extract the signal cross sections

from the fit. These results are summarized in Table IV, with the systematic uncertainties

included in these results being discussed below. As a result of the good separation of our

signal processes in the /ET −Nj parameter space, we observe very little correlation between

these cross section measurements. In the eμ channel fit where all three cross sections float,

these correlations are about −0.06 between σ(tt̄) and σ(W+W−), −0.05 between σ(tt̄) and

σ(Z0 → τ+τ−), and, −0.19 between σ(W+W−) and σ(Z0 → τ+τ−). The tt̄ production

cross section measurement is relatively insensitive to the top mass used for the tt̄ acceptance

in generating the /ET − Nj template shape. We generated templates using a top mass of

178 GeV/c2 [25]. Using simulated experiments we observe a 1% variation in σ(tt̄) if the top

mass is varied between 165 GeV/c2 and 178 GeV/c2; therefore, we neglect any effects due to

the uncertainty on the top mass.

Fits to the data are also performed by fixing all but one of the signal processes to their
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SM expected values. We consider the results extracted from these fits as cross-checks,

as they use the added constraint of assuming SM production for all processes other than

the one being measured, in a similar fashion to the more standard counting experiment

results. Significant differences between these cross-checks and our main results could be

an indication that the SM assumptions being used are incorrect. We summarize the results

from these fits in Table V. When fixed in a particular fit, we use the following SM theoretical

predictions: σ(tt̄) = 6.1±0.9 pb [26], σ(W+W−) = 12.4±0.8 pb [27], and σ(Z0 → τ+τ−) =

251.3 ± 5.0 pb [28].

The uncertainties on the measured cross sections include a component coming from the

fit (including statistical, acceptance systematic, and integrated luminosity) and a second one

due to changes in the /ET −Nj distributions caused by the systematic sources mentioned in

Table II. The fit program used was minuit [29], which minimizes − ln(L), and determines

the fit errors from the −2 ln(L) values. To evaluate systematic changes in the shape of

/ET − Nj distributions, we use simulated experiments with one of the signal or background

distributions from a Monte Carlo simulation with a particular systematic effect applied. The

shape systematic uncertainties are summarized in Table VI.

TABLE IV: Cross section measurements from a global fit of 360 pb−1 of high-pT dilepton data. The

first uncertainty is the error returned by the likelihood fit, which includes statistical, acceptance

systematic, and luminosity uncertainties. The magnitudes of the latter two uncertainties are given

in Table II and in the text. The second is the systematic uncertainty in the template shapes.

Process eμ ee + μμ + eμ

σ(tt̄) 9.3+3.1
−2.6

+0.7
−0.2 pb 8.5+2.6

−2.2
+0.7
−0.3 pb

σ(W+W−) 11.4+5.2
−4.3

+0.5
−0.1 pb 16.3+5.1

−4.4
+0.8
−0.2 pb

σ(Z0 → τ+τ−) 291+50
−46

+6
−3 pb -

In summary, we present a new method to study globally the production of events with

final-states including two high-pT leptons. We measure simultaneously the production cross

sections for tt̄, W+W−, and Z0 → τ+τ− and obtain the following results: σ(tt̄) = 8.5+2.7
−2.2

pb, σ(W+W−) = 16.3+5.2
−4.4 pb, and σ(Z0 → τ+τ−) = 291+50

−46 pb. They are in good agreement

with SM theoretical predictions. In addition to the potential this analysis technique has for

precision cross section measurements in the dilepton channel with more data, it could also
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TABLE V: Cross section measurements from a fit to the data with all but one signal process fixed

to its SM value. See text for further details. The uncertainties have the same meaning as in

Table IV.

Process eμ ee + μμ + eμ

σ(tt̄) (W+W−, Z0 → τ+τ− fixed) 9.3+3.1
−2.6

+0.7
−0.2 pb 8.4+2.5

−2.1
+0.7
−0.3 pb

σ(W+W−) (tt̄, Z0 → τ+τ− fixed) 12.3+5.3
−4.4

+0.5
−0.1 pb 16.1+5.0

−4.3
+0.8
−0.2 pb

σ(Z → ττ) (tt̄, W+W− fixed) 293+49
−45

+6
−3 pb -

TABLE VI: Summary of the shape systematic uncertainties for the eμ and full(ee + eμ + μμ) fit.

Source tt̄(eμ) W+W−(eμ) Z0 → τ+τ−(eμ) tt̄ (full) W+W− (full)

JES +6
−1%

+4
−1%

+2
−1%

+7
−2%

+5
−1%

ISR +4
−2% ±1% ±1% +5

−2% ±1%

FSR ±1% — — ±1% —

Total +7
−2%

+4
−1%

+2
−1%

+8
−3%

+5
−1%

be promising for model independent searches for new physics.
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