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Abstract

Coupling of the transverse degrees of freedom modi�es analysis of
beam coherent motion. A general, simple and e¤ective rule to do that
is derived.

1 Introduction

When the two fractional tunes of a storage ring are equal, f�xg = f�yg, the
beam stays at a coupling resonance. This line in the tune space is of a special
attraction: staying there maximizes tune area free from the dangerous reso-
nances. That is why so many machines stayed, stay or plan to be there. Near
the coupling resonance, even a small skew quadrupole or solenoid may result
in a signi�cant change of the beam optics, making it strongly coupled. If so,
a conventional uncoupled 2D optical formalism cannot be used; instead, a 4D
analysis has to be applied. Thus, any beam issue underlain by the optics has
to be revisited, assuming that eigenmodes do not describe planar vertical and
horizontal motion any more. One of these issues is a problem of the beam
transverse coherent motion. This problem was considered in Refs. [1], [2], and
discussed in [3]. Here, we suggest our view of the problem, and come to a solu-
tion, which is general and simple at the same time. The leading idea is that the
classical mechanics is invariant over the canonical transformations. In a basis of
the eigenmodes, the beam motion gets to be uncoupled, and formally similar to
conventional x� y uncoupled case. There is though a single di¤erence between
the x � y space and the space of the normal modes. This di¤erence relates to
wake functions or impedances, which are given in the x � y space. Thus, to
solve the problem, the wakes and impedances have to be properly projected on
the eigenvectors.

2 Eigenmodes perturbations

For arbitrary coupling, the beam optics can be described in terms of 4D eigen-
vectors. Hereafter, a parametrization suggested in [4] is used, where the 4
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eigenvectors V1; V�1 � V�
1; V2; V�2 � V�

2 of a revolution matrix R are
presented as follows:

V1 =
�p

�1x ; � i(1�u)+�1xp
�1x

;
p
�1ye

i�1 ; � iu+�1yp
�1y

ei�1
�T

; (1)

V2 =
�p

�2xe
i�2 ; � iu+�2xp

�2x
ei�2 ;

p
�2y ; � i(1�u)+�2yp

�2y

�T
; (2)

where the superscript T stands for the transposed form, and R � V(0)
m =

exp(�i�m)V
(0)
m : Components of the 4D vectors are transverse coordinates and

angles, (x; �x; y; �y); in case of non-zero longitudinal magnetic �eld, the angles
are modi�ed according to a conventional rule for the canonical momenta [4].
Eigenvector parameters �1x; �2y; etc. are determined by the machine optics.
The symplecticity requires then a speci�c orthogonality

V+
m�U �Vn = �2i�mnsgn(m) ; (3)

with the superscript + meaning Hermite-conjugation, �mn is the Kronecker sym-
bol, sgn(m) is the sign function, and

U =

0BB@
0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

1CCA (4)

is the symplectic unit matrix. This formalism is in fact an extension of Ripken-
Mais presentation [5], and is closely related to the Edwards-Teng parametriza-
tion [6]. Any vector X in the 4D phase space can be expanded over the eigen-
vectors (1):

X =
X
n

CnVn ; (5)

Cn =
i

2
V+
n �U �X ; C�n = C

�
n ; (n > 0)

Now, an elementary act of two-particle interaction has to be considered in
terms of the eigenmodes. Following A. Chao�s notations, [7], the elementary
kick for angles of the following particle (��x;��y) is expressed as

��x = �e2xWx=(p0v0) ; (6)

��y = �e2yWy=(p0v0) :

Here e is the particle charge, p0 and v0 are a longitudinal velocity and momentum
in the laboratory frame, x and y are the o¤sets, andWx;y are the wake functions.
In terms of the 4D vector X = (x; �x; y; �y); this can be expressed as a pertur-
bation �X = W �X with the wake matrix elements W2;1 = �e2Wx=(p0v0),
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W4;3 = �e2Wy=(p0v0) , and zeros for all other matrix elements. In terms of
the complex amplitudes Cn (5), this kick is expressed as

�Cn =
i

2
V+
n �U��X =

i

2

X
m

V+
n �U �W �VmCm �

i

2

X
m

Gn;mCm : (7)

The kick matrix G is not diagonal generally; so, when the mode m is originally
excited, the wake drives other modes n 6= m as well. However, when the wake
is small enough, it can be treated as a small perturbation of the coherent eigen-
mode amplitudes. In this case, in the �rst order of the perturbation theory,
only diagonal elements of the perturbation are important, similar to the Quan-
tum Mechanics (see in more details [8]). The wake mixing can be considered
as small in this sense, when the tune separation of the two transverse modes is
much bigger than the wake-driven coherent tune shift:

j�1 � �2j � ��coh : (8)

In reality, this condition is typically satis�ed. If it is not, non-diagonal elements
of the kick matrix G have to be taken into account as well. The diagonal
elements are calculated as follows:

Gn � Gn;n = Gn;�n = �
e2

p0v0
(Wx�nx +Wy�ny) ; (n = 1; 2): (9)

This result already shows how the wake is projected on the eigenmodes. How-
ever, one more step may be useful for understanding. The complex amplitudes
Cn can be presented with explicitly written real and imaginary parts as

Cn =
qn
2
+ i
pn
2
; (n = 1; 2): (10)

It is straightforward to show that a linear phase space transformation from the
original variables (x; �x; y; �y) to the new variables (q1; p1; q2; p2) is canonical,
since they are related to each other by a symplectic matrix, composed from real
and imaginary parts of the eigenvectors V (see Ref. [4]). Thus, q1; q2 are new
canonical coordinates, and p1; p2 are the corresponding canonical momenta. It
follows then, that a single excited mode gets the wake-driven kick with

�qn = 0 ; (11)

�pn = Gnqn = �
e2

p0v0
(Wx�nx +Wy�ny)qn ; (n = 1; 2):

Equations (11) show how canonical momentum is perturbed by a small lo-
calized wake. Having that, the Vlasov equation with all its results in the phase
space (q1; p1) are exactly identical to the uncoupled case (x; �x), with the fol-
lowing substitution rules for the tune �x = �x=(2�) ; wake times beta-function
Wx�x; and, thus, impedance times beta-function Zx�x:
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�x ! �1 ; (12)

Wx�x ! Wx�1x +Wy�1y ;

Zx�x ! Zx�1x + Zy�1y :

Note that these rules work both for coasting or bunched beam, and do not de-
pend on a shape of the longitudinal potential well. Any solution of the Vlasov
equation for an uncoupled beam can be immediately re-written to the coupled
case with these simple rules. After that, the result looks formally similar, while
its practical consequences are generally di¤erent because of two reasons. First,
the incoherent betatron spectrum is changed by the coupling, �x ! �1; thus,
the Landau damping is changed. This point is missed in Refs. [1], [2], where de-
nominators of dispersion integrals are based on the uncoupled incoherent tunes.
And second, an amplitude of the coherent shift / Zx�1x+Zy�1y is a function of
coupling as well. The wake substitution rule (12) is valid both for conventional
driving (or dipole) wake, and for the detuning (quadrupole) wake (about the
two wakes see e. g. Ref. [9]).

3 Conclusion

A method to treat x � y coupling for analysis of beam transverse coherent
oscillations is presented. As soon as the coherent tune shift is small compared
with tune separation of the two eigenmodes, solution of the Vlasov equation
for the coupled case is immediately obtained from the corresponding uncoupled
solution with simple substitution rules.
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