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We present results of a search for anomalous production of events containing a charged lepton (`,
either e or µ) and a photon (γ), both with high transverse momentum, accompanied by additional
signatures, X, including missing transverse energy (6ET ) and additional leptons and photons. We use
the same kinematic selection criteria as in a previous CDF search, but with a substantially larger
data set, 305 pb−1, a pp̄ collision energy of 1.96 TeV, and the upgraded CDF II detector. We find 42
`γ 6ET events versus a standard model expectation of 37.3 ± 5.4 events. The level of excess observed
in Run I, 16 events with an expectation of 7.6 ± 0.7 events (corresponding to a 2.7σ effect), is not
supported by the new data. In the signature of ``γ+X we observe 31 events versus an expectation
of 23.0 ± 2.7 events. In this sample we find no events with an extra photon or 6ET and so find no
events like the one eeγγ 6ET event observed in Run I.

PACS numbers: 13.85.Rm, 12.60.Jv, 13.85.Qk, 14.80.Ly

In 1995 the CDF experiment, studying pp̄ collisions
at a center-of-mass energy of 1.8 TeV at the Fermilab

Tevatron, using 86 pb−1 of data, observed [1–3] an event
consistent with the production of two energetic photons,
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two energetic electrons, and large missing transverse en-
ergy 6ET [4]. This signature is predicted to be very rare
in the standard model (SM) of particle physics [5], with
the dominant contribution being from the production of
four gauge bosons: two W bosons and two photons. The
event raised theoretical interest, however, as the ``γγ
signature is expected in some models of physics “beyond
the standard model” such as gauge-mediated models of
supersymmetry [6] or the production of a pair of excited
electrons [7]. The detection of this event led to the de-
velopment of “signature-based” inclusive searches to cast
a wider net: in this case one search for two photons + X
(γγ+X) [1–3], and a second for one lepton + one photon
+ X (`γ + X) [8–10], where X can be another charged
lepton (e or µ), another γ, or 6ET , plus any number of
jets. If pairs of new particles were being created, these
inclusive signatures could be sensitive to possible other
decay modes, or the creation and decay of related new
particles.

Neither Run I search revealed convincing evidence for
new physics. However, in the `γ +X search, the results
were consistent with SM expectations in a number of
channels with “the possible exception of photon-lepton
events with large 6ET , for which the observed total was
16 events and the SM expectation was 7.6 ± 0.7 events,
corresponding in likelihood to a 2.7 sigma effect.” [9].
The Run I paper concluded: “However, an excess of
events with 0.7% likelihood (equivalent to 2.7 standard
deviations for a Gaussian distribution) in one subsample
among the five studied is an interesting result, but it is
not a compelling observation of new physics. We look
forward to more data in the upcoming run of the Fermi-
lab Tevatron.” [9]. In this Letter we report the results of
repeating the `γ+X search with the same kinematic se-
lection criteria in a substantially larger data set, 305±18
pb−1, a higher pp̄ collision energy, 1.96 TeV, and the CDF
II detector [11].

The CDF II detector is a cylindrically symmetric spec-
trometer designed to study pp̄ collisions at the Fermilab
Tevatron based on the same solenoidal magnet and cen-
tral calorimeters as the CDF I detector [12] from which
it was upgraded. Because the analysis described here is
intended to repeat the Run I search as closely as pos-
sible, we note especially the differences from the CDF
I detector relevant to the detection of leptons, photons,
and 6ET . The tracking systems used to measure the mo-
menta of charged particles have been replaced with a
central outer tracker (COT) with smaller drift cells [13],
and an enhanced system of silicon strip detectors [14].
The calorimeters in the regions [15] with pseudorapid-
ity |η| > 1 have been replaced with a more compact
scintillator-based design, retaining the projective geome-
try [16]. The central CMU, CMP, and CMX [17] muon
systems are unchanged in design, but the coverage of the
CMP and CMX muon systems has been extended by fill-
ing in gaps in ϕ [11]. The data presented here were taken

between March 2002 and August 2004.
Events with a high transverse momentum (pT) [4] lep-

ton or photon are selected by a three-level trigger [11]
that requires an event to have either a lepton with
pT > 18 GeV or a photon with ET > 25 GeV within
the central region, |η| <∼ 1.0. The trigger system selects
photon and electron candidates from clusters of energy
in the central electromagnetic calorimeter. Electrons are
further distinguished from photons by requiring the pres-
ence of a COT track pointing at the cluster. The muon
trigger requires a COT track that extrapolates to a recon-
structed track segment (“stub”) in the muon drift cham-
bers.

We use the same kinematic event selection as in the
Run I analysis: inclusive `γ events are selected by re-
quiring a central photon candidate with Eγ

T > 25 GeV,
a central lepton candidate (e or µ) with E`

T > 25 GeV
passing the “tight” criteria listed below, and a point of
origin along the beam-line not more than 60 cm from the
center of the detector.

The identification of leptons and photons is essentially
the same as in the Run I search [8], with only minor tech-
nical differences, mostly due to changes in the construc-
tion of the tracking system and end-plug calorimeters.
A muon candidate passing the “tight” cuts has the fol-
lowing properties: a) a well-measured track in the COT;
b) energies deposited in the electromagnetic and hadron
compartments of the calorimeter consistent with expec-
tations; c) a muon “stub” track in the CMX detector
or in both the CMU and CMP detectors [11] consistent
with the extrapolated position of the COT track; and d)
COT timing measurements consistent with a track from
a pp̄ collision and not from a cosmic ray. An electron
candidate passing the “tight” selection has the following
properties: a) a high-quality track with pT of at least half
the shower energy, unless the ET > 100 GeV, in which
case the pT threshold is set to 25 GeV; b) a transverse
shower profile consistent with an electron shower shape
and that matches the extrapolated track position; c) a
lateral sharing of energy in the two calorimeter towers
containing the electron shower consistent with that ex-
pected; and d) minimal leakage into the hadron calorime-
ter [18].

Photon candidates are required to have no track with
pT > 1 GeV, and at most one track with pT < 1 GeV,
pointing at the calorimeter cluster; good profiles in both
transverse dimensions at shower maximum; and minimal
leakage into the hadron calorimeter [18].

To reduce background from photons or leptons from
the decays of hadrons produced in jets, both the photon
and the lepton in each event are required to be “isolated”.
The ET deposited in the calorimeter towers in a cone in
η − ϕ space [15] of radius R = 0.4 around the photon or
lepton position is summed, and the ET due to the photon
or lepton is subtracted. The remaining ET in the cone is
required to be less than 2.0 GeV+ 0.02× (ET − 20 GeV)
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FIG. 1: The distributions for events in the `γ 6ET sample
(points) in a) the ET of the photon; b) the ET of the lep-
ton; c) the missing transverse energy, 6ET ; and d) the trans-
verse mass of the `γ 6ET system. The histograms show the
expected SM contributions, including estimated backgrounds
from misidentified photons and leptons.

for a photon, or less than 10% of the ET for electrons
or pT for muons. In addition, for photons the sum of
the pT of all COT tracks in the cone must be less than
2.0 GeV + 0.005× ET.

Missing transverse energy 6ET is calculated from the
calorimeter tower energies in the region |η| < 3.6. Correc-
tions are then made to the 6ET for non-uniform calorime-
ter response [19] for jets with uncorrected ET > 15 GeV
and η < 2.0, and for muons with pT > 20 GeV.

A total of 574 events, 508 inclusive eγ and 66 inclusive
µγ candidates, pass the `γ selection criteria. Of the 508
inclusive eγ events, 397 have the electron and photon
within 30◦ of back-to-back in ϕ, 6ET < 25 GeV, and no
additional leptons or photons. These are dominated by
Z0 → e+e− decays in which one of the electrons radiates
a high-ET photon while traversing the material inside
the COT active volume, leading to the observation of an
electron and a photon approximately back-to-back in ϕ,
with an eγ invariant mass close to the Z0 mass.

We use W± and Z0 production as control samples
to ensure that the efficiencies for high-pT electrons and
muons, as well as for 6ET , are well understood. The
photon control sample is constructed from the events
in which one of the electrons radiates a high-ET pho-
ton, with an additional requirement that the eγ invariant
mass be within 10 GeV of the Z0 mass.

The first search we perform is in the `γ 6ET + X sub-
sample, defined by requiring that an event contain 6ET >
25 GeV in addition to the photon and “tight” lepton. Of
the 574 `γ events, 25 eγ 6ET events and 17 µγ 6ET events

pass the 6ET requirement. Figure 1 shows the observed
distributions summed over the eγ 6ET and µγ 6ET events
in a) the ET of the photon; b) the ET of the lepton; c)
the missing transverse energy, 6ET ; and d) the transverse
mass of the `γ 6ET system, where MT = [(E`

T + Eγ
T + 6ET)

2

- ( ~E`
T + ~Eγ

T + 6~ET )
2]1/2.

A second search, for the ``γ + X signature, is con-
structed by requiring another electron or muon in addi-
tion to the “tight” lepton and the photon. The additional
muons are required to have pT > 20 GeV and to satisfy
at least one of two different sets of criteria: the same
as those above for “tight” muons but with fewer hits re-
quired on the track, or a more stringent cut on track qual-
ity but no requirement that there be a matching “stub”
in the muon systems. Additional central electrons are re-
quired to have ET > 20 GeV and to satisfy the same crite-
ria as tight central electrons but with a track requirement
of only pT > 10 GeV (rather than 0.5×ET), and no re-
quirement on a shower maximum measurement or lateral
energy sharing between calorimeter towers. Electrons in
the end-plug calorimeters (1.2 < |η| < 2.0) are required
to have ET > 15 GeV, minimal leakage into the hadron
calorimeter, a “track” containing at least 3 hits in the
silicon tracking system, and a shower transverse shape
consistent with that expected, with a centroid close to
the extrapolated position of the track [20].

The ``γ search criteria select 31 events (19 eeγ and 12
µµγ) of the 574 `γ events. No eµγ events are observed.
Figure 2 shows the observed distributions in a) the ET of
the photon; b) the ET of the leptons; c) the 2-body mass
of the dilepton system; and d) the 3-body mass m``γ .

We do not expect events with large 6ET in the ``γ sam-
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FIG. 2: The distributions for events in the ``γ sample (points)
in a) the ET of the photon; b) the ET of the leptons (two en-
tries per event); c) the 2-body mass of the dilepton system;
and d) the 3-body mass m``γ . The histograms show the ex-
pected SM contributions.
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ple, based on the SM backgrounds; the Run I eeγγ 6ET

event was of special interest in the context of supersym-
metry [6] due to the large value of 6ET (55 ± 7 GeV).
Figure 3 shows the distributions in 6ET for the µµγ and
eeγ subsamples of the ``γ sample. No events are observed
with 6ET > 25 GeV.

The dominant source of `γ events at the Tevatron is
electroweak diboson production, in which a W or Z0/γ∗

boson decays leptonically (`ν or ``) and a photon is ra-
diated from an initial-state quark, the W , or a charged
final-state lepton [21]. The number of such events is es-
timated using leading-order (LO) matrix element event
generators [22–24]. Initial state radiation is simulated by
the pythia shower Monte Carlo code [25] tuned so as to
reproduce the underlying event. The generated particles
are then passed through a full simulation of the detector,
and these events are then reconstructed with the same
reconstruction code used for the data.

The expected contributions from Wγ and Z0/γ∗+γ
production to the `γ 6ET and ``γ searches are given in Ta-
ble I. A correction for higher-order processes (K-factor)
that depends on both the dilepton mass and photon ET

has been applied [26]. In the `γ 6ET signature we expect
22.5 ± 2.8 events from Wγ and 5.7 ± 1.0 from Z0/γ∗+γ.
In the ``γ signature, we expect 20.3 ± 2.4 events from
Z0/γ∗+γ; the contribution from Wγ is negligible. The
uncertainties on the SM contributions include those from
parton distribution functions (7%), a comparison of dif-
ferent Monte Carlo generators (∼ 5%), and the luminos-
ity (6%).

High pT photons are copiously created from hadron
decays in jets initiated by a scattered quark or gluon.
In particular mesons such as the π0 or η decay to pho-
tons which may satisfy the photon selection criteria. The
numbers of lepton-plus-misidentified-jet events expected
in the `γ 6ET and ``γ samples are determined by measur-
ing the jet ET spectrum in ` 6ET+jet and ``+jet samples,
respectively, and then multiplying by the probability of
a jet being misidentified as a photon, P jet

γ (ET), which
is measured in data samples triggered on jets. The un-
certainty on the number of such events is calculated by
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FIG. 3: The distributions in missing transverse energy 6ET

observed in the inclusive search for a) µµγ events and b) eeγ
events. The histograms show the expected SM contributions.

TABLE I: A comparison of the numbers of events predicted by
the standard model(SM) and the observations for the `γ 6ET

and ``γ searches. The SM predictions for the two searches
are dominated by Wγ and Z0γ production, respectively [22–
24]. Other contributions come from the tri-boson processes
Wγγ and Z0γγ, leptonic τ decays, and misidentified leptons,
photons, or 6ET .

Lepton+Photon+6E
T

Events

SM Source eγ 6ET µγ 6ET (e+ µ)γ 6ET

W±γ 13.70±1.89 8.84±1.35 22.54±2.80
Z0/γ∗ + γ 1.16±0.40 4.49±0.64 5.65±1.03
W±γγ, Z0/γ∗+γγ 0.14±0.02 0.18±0.02 0.32±0.03
W±γ, Z0/γ∗+γ→τγ 0.71±0.18 0.26±0.08 0.97±0.22
W±+Jet faking γ 2.8±2.8 1.6±1.6 4.4±4.4
Z0/γ∗→e+e−, e→γ 2.45±0.33 - 2.45±0.33
Jets faking `+ 6ET 0.7±0.7 0.3±0.3 1.0±0.8
Total SM

Prediction 21.7±3.4 15.7±2.2 37.3±5.4

Observed

in Data 25 17 42

Multi-Lepton+Photon Events

SM Source eeγ µµγ llγ
Z0/γ∗ + γ 12.50±1.53 7.81±0.88 20.31±2.40
Z0/γ∗ + γγ 0.24±0.03 0.12±0.02 0.36±0.04
Z0/γ∗+Jet faking γ 0.3±0.3 0.2±0.2 0.5±0.5
Z0/γ∗→e+e−, e→γ 0.23±0.09 - 0.23±0.09
Jets faking `+ 6ET 0.6±0.6 1.0±1.0 1.6±1.2
Total SM

Prediction 13.9±1.7 9.1±1.4 23.0±2.7

Observed

in Data 19 12 31

using the measured jet spectrum and the upper and lower
bounds on the ET-dependent misidentification rate. The
misidentification rate is P jet

γ = (6.5 ± 3.3) × 10−4 for
Eγ

T = 25 GeV, and (4.0 ± 4.0)× 10−4 for Eγ
T = 50 GeV

[21]. The predicted number of events with jets misiden-
tified as photons is 4.4 ± 4.4 for the `γ 6ET signature and
0.5 ± 0.5 for ``γ.

The probability that an electron undergoes hard
bremsstrahlung and is misidentified as a photon, P e

γ , is
measured from the control subsample of back-to-back eγ
events consistent with originating from Z0 → e+e− pro-
duction. The number of misidentified eγ events divided
by twice the number of ee events gives P e

γ = (1.7 ± 0.1)%.
Applying this misidentification rate to electrons in the in-
clusive lepton samples, we find 2.5 ± 0.3 and 0.2 ± 0.1
events pass the selection criteria for the `γ 6ET and ``γ
searches, respectively.

We have estimated the background due to events with
jets misidentified as `γ 6ET or ``γ signatures by studying
the total pT of tracks in a cone in η − ϕ space of radius
R = 0.4 around the lepton track. We estimate there
are 1.0 ± 0.8 and 1.6 ± 1.2 events in the `γ 6ET and ``γ
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signatures, respectively.

We have used both madgraph [22] and comphep[24]
to simulate the triboson channels Wγγ and Zγγ. The
expected contributions are small, 0.32 ± 0.03 and 0.36 ±
0.04 events in the `γ 6ET and ``γ signatures, respectively.

Muon backgrounds from hadrons either decaying in-
flight or penetrating the iron before the muon chambers,
and from the decay of bottom and charm quarks, are
found to be negligible.

The predicted and observed totals for both the `γ 6ET

and ``γ searches are shown in Table I. We observe 42
`γ 6ET events, versus the expectation of 37.3 ± 5.4 events.
In the ``γ channel, we observe 31 events, versus an ex-
pectation of 23.0 ± 2.7 events. There is no significant
excess in either signature. The predicted and observed
kinematic distributions are compared in Figure 1 for the
`γ 6ET signature, and Figures 2 and 3 for the ``γ search.

In conclusion, we have repeated the search for inclusive
lepton + photon production with the same kinematic re-
quirements as the Run I search, but with a significantly
larger data sample and a higher collision energy. We find
that the numbers of events in the `γ 6ET and ``γ subsam-
ples of the `γ + X sample agree with the SM predic-
tions. We observe no ``γ events with anomalous large
6ET or with multiple photons and so find no events like
the eeγγ 6ET event of Run I.
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