
Abstract— We describe a track segment recognition scheme 
called the Tiny Triplet Finder (TTF) that involves grouping of 
three hits satisfying a constraint such as forming of a straight 
line.  The TTF performs this O(n3) function in O(n) time, where n 
is number of hits in each detector plane.  The word “tiny” reflects 
the fact that the FPGA resource usage is small.  The number of 
logic elements needed for the TTF is O(Nlog(N)), where N is the 
number of bins in the coordinate considered, which for large N, is 
significantly smaller than O(N2) needed for typical 
implementations of similar functions.  The TTF is also suitable for 
software implementations as well as many other pattern 
recognition problems. 
 

Index Terms—Trigger, Pattern Recognition, Tiny Triplet 
Finder, TTF, FPGA Firmware 
 

I. INTRODUCTION 
RACK segment finding is an essential process in many 
trigger systems for high-energy physics experiments.  For 

example in the Fermilab BTeV[1] trigger system[2][3][4], we 
need to identify track segments from the coordinates of pixel 
detector hits from three adjacent detector planes forming a 
straight-line segment in the non-bend view.  For a given track 
segment, the following relationship holds: 

BCA uuu 2=+
Where uA, uB and uC are the hit coordinates on planes A, B and 
C in the non-bend view.  Such segments consisting of three 
hits are referred to as “triplets” [2] (See Fig. 1). 

In the BTeV detector, the interaction points are distributed 
along the beam axis in a wide range.  There are two free 
parameters for a track segment even in the non-bend 
projection.  A possible track segment is not formed until at 
least three hits are aligned.  

Therefore the triplet finding process in BTeV is different 
from another type of straight track segment finding in other 
high energy physics experiments when the interaction point is 
known.  There is only one free parameter for a track segment 
in the non-bend projection in this case.  A possible track 
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segment is formed after two hits and the known interaction 
point are aligned.  The process is significantly simpler than the 
BTeV triplet finding process. 

 
Straightforward software implementation of the triplet 

finding function would require O(n3) execution time, where n
is number of hits per plane, in order to examine all possible 
combinations of three hits using three layers of nested loop.  In 
hardware implementations, the execution time can be reduced 
to O(n), the time required to fetch the data.  This execution 
time reduction is accomplished by “unrolling” two layers of 
loops, which consumes significant amount of silicon resources 
in the device.  The number of logic elements needed for 
typical triplet finding implementations is O(N2) where N is the 
number of bins that each plane is divided into. 

In this article, we describe a new algorithm that performs 
the triplet finding function, which we refer to as the Tiny 
Triplet Finder (TTF) [5]. We also describe sample hardware 
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Fig. 1. Triplet finding:  The interaction points are distributed along the 
beam (Z) axis.  Equally spaced pixel detectors are placed in Z=constant 
planes.  The ZX is the non-bend view.  The dashed line represents a fake 
triplet. 
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implementations of the TTF using low cost FPGA devices.  
Logic element usage in TTF implementation is O(Nlog(N)) 
which is significantly smaller than O(N2) when N is large. 

After the triplets are found, the triplets in one part of the 
detector are matched with triplets found in other part of the 
detector.  The process of matching two data items require 
O(n2) execution time in software and it can be reduced to O(n)
in hardware by unrolling one layer of the loops, with logic 
element usage of O(N).  The “Hash Sorter” [6] or other 
schemes can be used for this type of applications. 

II. PRINCIPLE 
Consider three equally spaced detector planes in the non-

bend view as shown in Fig. 2.  We first divide the two outer 
detector planes, Plane_A and Plane_C, into N bins (N = 64 in 
this example), choosing a bin as unit of the coordinate in the 
non-bend view and rounding to an integer.  Since the detector 
plane usually contains far more pixels than 64 in the projection 
being considered, the binning is actually merging several 
pixels together.  For example, to merge 1024 pixels into 64 
bins, 16 pixels are merged together.  To convert the pixel 
number into the bin number in this case, simply shift the pixel 
number by 4 bits. 

In general, there exist N2 possible track combinations, or 
“roads” in this configuration.  A “road” is defined here as a 
line segment passing through one of the N bins in each of 
Plane_A and Plane_C.  Directly implementing all possible 
combinations using either logic elements or content 
addressable memories (CAMs) would require a large amount 
of silicon resources. 

In the Tiny Triplet Finder, two register arrays, BitReg_A 
and BitReg_C, are used to record the hits in the detector 
planes.  When a hit coordinate from a detector plane is input, 
one of the 64 bits in the register array corresponding to its 
position is set.  After all hits in Plane_A and Plane_C are 
recorded, the algorithm cycles through each hit from Plane_B.  
In the special case when the hit is at the mid-point of Plane_B 
(see the top of Fig. 2), there are 64 possible track 
combinations or roads.  Each possibility is checked through 
bit-wise coincident logic between the bit patterns recorded in 
BitReg_A and BitReg_C.  If a pair of corresponding bits in 
BitReg_A and BitReg_C are both set, e.g., (0, 63), (1, 62) or 
(2, 61), etc., the bit-wise logic will output the pattern of the 
matching pair(s) corresponding to a possible track segment 
passing through the hits in Plane_A, Plane_C and Plane_B. 
The bit-wise coincident logic is primarily a bit-wise AND of 
the patterns in the two registers.  In a real implementation, a 
bit-wise OR with the neighboring bits in one pattern may first 
be performed to cover boundaries.  An example of the bit-wise 
coincident logic is shown in the bottom of Fig. 2. 

For hits that are not at the mid-point of Plane_B, the bit-
wise coincident logic is identical, except that the positions of 
the bit patterns representing the hits on Plane_A and Plane_C 
are shifted relative to each other by an amount determined 
from the coordinate of the hit on Plane_B (see the second and 

third configurations of Fig. 2).  The constraint for the triplet 
can be rewritten in the following form: 

BCA uuu 2+−=
It can be seen that the relative shift between the bit patterns 

is 2uB. In a practical implementation, the unit of the Plane_B 
hit coordinate is chosen so that 2uB is an integer from 0 to 2N-
1 (To merge 1024 pixels to 128 bins in our example, simply 
shift the pixel number by 3 bits.).  It can also be seen that the 
orders of the two bit patterns relative to each other should be 
reversed due to the negative sign between uA and uC.

Additionally, hits from different tracks as well as noise hits 
can also satisfy the coincident logic to produce fake tracks.  
The simplest way to deal with the fake tracks is to encode and 
output all of them and perform arbitration at a later stage.  The 
users may also use a priority encoder to choose a particular 
track depending on the physics requirement of the experiment. 

In the Tiny Triplet Finder, only N (64 in this example) 
combinations are implemented in the bit-wise coincident logic 
instead of N2 (64 X 64 = 4096) combinations.  Taking 
advantage of symmetry, all possible combinations can be 
achieved by shifting the bit patterns. 
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Fig. 2.  Principle of Tiny Triplet Finder:  Plane_A and Plane_C are divided 
into 64 bins, respectively.  For any hit in Plane_B, there are up to 64 
possible “roads” (left).  The correlation of the roads is implemented as bit-
wise coincident logic (bit-wise AND-OR) between two bit maps: BitReg_A 
and BitReg_B (right).  Note that the two bit maps have reversed bit order.  
The two bit maps are shifted relative to each other for different Plane_B hits.



In the time domain, the total execution time is taken up by 
the following processes: 

1. Setting the bit patterns BitReg_A and BitReg_C. 
2. Looping over hits in Plane_B, shifting the bit 

pattern in BitReg_A, performing the bit-wise 
coincident and decoding matching pair(s) found. 

The processes take approximately 2n clock cycles to 
execute making them essentially O(n), although small non-
linear contributions exist when more than one pair is found by 
the bit-wise coincident logic. 

Generally speaking, the probability of creating fake triplets 
that cause the non-linear contribution increases as n increases, 
and decreases as N increases.  When number of bins N is 
sufficiently large and number of hits n is small, the non-linear 
contribution should be small.  This is true for all triplet finding 
schemes and the results studied for other schemes remain valid 
here also. 

Ignoring the small non-linear contributions, we see that the 
TTF unrolls two layers of loops so that an O(n3) process can 
now be executed in O(n) time.   

The acceleration is accomplished through the use of the bit-
wise coincident logic that simultaneously finds all matching 
hits on Plane_A and Plane_C for each hit on Plane_B in a 
single operation, making the process time proportional to the 
number of hits n on Plane_B.   

III. FPGA IMPLEMENTATIONS OF THE TINY TRIPLET FINDER 
The block diagram of the Tiny Triplet Finder implemented 

in an FPGA device is shown in Fig. 3. 
 

A. Bit Array Filling 
As the hit data from Plane_A and Plane_C are fetched from 

input FIFO’s, a bit corresponding to each hit is set in the 
BitReg blocks.  The resulting hit patterns are presented at the 
output ports on buses AQ and CQ.  As mentioned earlier, the 
bit order of CQ is reversed.  Meanwhile, the full hit data are 
stored into memory buffers called “Hash Sorters” [6] for fast 
retrieval later.  For simplicity, one may think of the Hash 
Sorters as memory areas that are each divided into 64 bins.  
When a hit sets a bit in the BitReg register array, the full hit 
data are written into the corresponding bin in the Hash Sorter.  

B. Looping B Hits and Shifting Bit Pattern 
After all hits from Plane_A and Plane_C have been written 

into the Hash Sorters, the hits from Plane_B are fetched from 
the input FIFO.  The coordinate of each Plane_B hit is used to 
determine the relative shift distance between the two bit 
patterns AQ and CQ.  The shifter shifts the bit pattern AQ by 
this amount and presents the shifted pattern at port A2Q.  The 
full hit data from Plane_B are also stored for later retrieval in a 
buffer which can either be a hash sorter or a regular output 
FIFO.    

The shifter is implemented in a two-stage pipeline to 
increase operation frequency.  Although the shifter requires a 
relatively large number, i.e., O(Nlog(N)) of logic elements 
compared to other blocks in this design, it is still much smaller 
than typical implementations where O(N2) logic elements are 
needed. 

C. Bit-wise Coincident Logic 
The bit pattern CQ and the shifted pattern of AQ, A2Q, are 

Fig. 3.  Block diagram of triplet finding processor:  The Tiny Triplet Finder is shown in the dashed box. 



sent to the “BitLogic” block in which the bit-wise coincident 
logic is performed.  The coincident logic is essentially a bit-
wise AND.  The OR logic among the neighboring bits in A2Q 
is included to cover the boundaries.  See the bottom of Fig. 2 
for an example. 

Any non-zero bit in the resulting bit pattern P indicates a 
found triplet.  The location of this bit represents the coordinate 
of the Plane_C hit belonging to the triplet.  The coordinate of 
the Plane_A hit can be derived from this location and the 
distance of shift. 

D. Priority Sequence Encoder 
The locations of the non-zero bits are encoded in the 

“Priority Sequence Encoder” block which can accommodate 
situations with more than one triplet.  Normally there is only 
one non-zero bit in pattern P and the encoder outputs the 
location of the bit.  If there are two or more non-zero bits, the 
encoder changes a signal (EN in Fig. 4) to halt earlier pipeline 
stages, allowing the locations of all the non-zero bits to be 
reported sequentially. 

This block is also implemented as a pipeline.  Although it 
takes 6 clock cycles to encode the non-zero bit(s) in P, the 
block accepts one P pattern during each clock cycle, as long as 
the pipeline is not halted. 

IV. TEST DESIGNS AND SILICON RESOURCE USAGE 
We have test compiled the Tiny Triplet Finder with N=64 

and N=128 bins in an Altera Cyclone device (EP1C4) [7]. 
Results of the full simulation of the Tiny Triplet Finder are 

shown in Fig. 4.  The simulation uses hit coordinates given in 
Fig. 1(a) as an example.  The coordinates for Plane_B are 
multiplied by 2 to obtain the shift distance B.  All four real 
triplets in this example are found in addition to a fake triplet 
which also satisfies the triplet condition KA + KC = KB. The 

fake triplet is represented by the dashed line in Fig. 1(b) with 
hits at X = 27, 15 and 3, which corresponds to KA = 27, KB = 
30 and KC = 3 in Fig. 4. 
 

The outputs of the Priority Sequence Encoder, KA, KB, and 
KC, are the bin numbers where the original hit data are stored 
in the Hash Sorters (or FIFO for Plane_B hits).  These 
numbers are used as addresses to read out the hit data in the 
corresponding bins to send to later stages for further 
processing. 

If there is more than one hit stored in a bin, the Hash Sorter 
will output all the hits in the bin so that later stages can make 
better choices.  In this case, the pipeline in earlier stages will 
be halted, allowing multiple hits to be read out. 

Another interesting point shown in this example is that we 
have found a triplet (KA=5, KB=8, KC=3) corresponding to 
the input (A=4, B=8, C=3).  One of the input coordinates is off 
by 1 bin due to a boundary effect and/or a round-off error.  
Our bit-wise coincident logic covers this kind of difference.  
To trace back the original hits in the Plane_A at bin 4, the hash 
sorter will check both bin KA and KA-1, i.e., both bin 5 and 
bin 4 in this example. 

The compilation results are shown in Table I for all 
functional blocks shown within the dashed box in Fig. 3.  
Clearly, the Tiny Triplet Finder can easily be accommodated 
in currently available middle-sized FPGAs. 

The resource usages for two other typical implementations 
are also shown for comparison.  The first implementation uses 
Content Addressable Memories (CAM) which can be 
implemented fairly efficiently with Altera Embedded System 
Blocks (ESBs) [8].  For this case, the silicon usage for 64 X 64 
=4096 roads has been calculated without considering boundary 
effects and other supporting logic. 

Fig. 4.  Simulation results of the Tiny Triplet Finder:  Signals CLK and SR are the 100MHz system clock and system reset.  Signals A, WEA, AQ, C, WEC, 
CQ, B, A2Q, KA, KB and KC are as shown in Fig. 3.  The signals AQ, CQ and A2Q are 64-bit bit patterns in hexadecimal representation.  WT (wait) and DV 
(data valid) are input signals not discussed in this paper.  The signals EN and P2Q to P5Q are internal ones in the Priority Sequence Encoder.  As a 
consequence of finding more than one possible triplet, signal EN becomes low to stop the pipeline inside and before the Priority Sequence Encoder for a clock 
cycle to allow the extra triplet being output. 



Another implementation uses the Hough transform scheme 
[9].  The number shown includes only the 2-D histogram, 
assuming each bin can be implemented with 4 logic cells.  
Decoder and other supporting logic are not included. 

Since these two other implementations do not fit in the 
EP1C4 device, they were accommodated with a 7 times larger 
EP2A40 APEX II device [8]. 

Furthermore, as the bin number increases from 64 to 128, 
the logic cell usage of the Tiny Triplet Finder increases only 
by about a factor of 2 while for the other two implementations 
an increase by a factor of 4 is anticipated. 

In Table I, we also listed the resource usage of a 64-bit TTF 
implemented using distributed RAM devices available in the 
FPGA devices from Xilinx [10].  The details are discussed in 
the next section. 

V. IMPLEMENTATION USING DISTRIBUTED RAMS

In this section, a more efficient implementation using 
distributed RAMs is described. 

In today’s main stream FPGA devices, lookup tables are 
used to implement combinational logic.  The lookup tables are 
small RAMs, usually 16 locations by 1 bit in size.  In some 
device families like Xilinx Virtex-II [10], the users are allowed 
to write and read the RAM which provides possibilities to 
implement functions more compactly.  As an example, the 
implementation of the bit registers and shifters in the TTF 
using distributed RAMs is described in this section. 

In Fig. 5, the bit maps for a 64-bit TTF are shown.  Two 
register arrays corresponding to Plane_A (left) and Plane_C 
(right) are formed using 64 distributed 16x1-bit RAMs for 
each array. 

While filling hits for Plane_A, each RAM is given a 
rotational address, i.e., the address of a RAM differs from the 
address of the next RAM by 1.  For any hit in Plane_A, up to 
16 RAMs, 7 above, 8 below the hit position (marked with an 
arrow for each hit in Fig. 5), are enabled to be written.  The bit 
being filled in the RAM at the hit location is bit 7, while in the 
RAMs above and below the hit location are bits 6-0 and bits 8-
15, respectively. The net effect is that each hit sets up to 16 

bits in the array as shown in the left bit map.  Although up to 
16 bits are written for each hit, only one clock cycle, (not 16) 
is needed for the writing process. 

While reading the register array for Plane_A, all the RAMs 
are given the same address (indicated with a vertical bar in 
Fig. 5), so the hit pattern appears at the outputs of the array.  
Changing the address shifts the hit pattern.  In the register 
array for Plane_A, relative shift from +7 units to -8 units can 
be achieved.  Again, the reading of the shifted pattern takes a 
single clock cycle (not 7 or 8). 

To cover the entire range of the shift, the register array for 
Plane_C is also implemented similarly.  The bit being filled in 
the RAM at the hit location is bit 7.  In the RAMs 8m (where 
m = 1 to 7) bins above the hit location, the bits (7+m) are 
filled, and similarly in the RAMs 8n bins below the hit 
location, the bits (7-n) are filled.  For each Plane_C hit, a 
jumping patterns as show in the right bit map in Fig. 5 is 
written. 

In the reading phase, the RAMs of the register array for 
Plane_C are all given the same address.  The hit pattern 
appears at the outputs of the array.  If the address changes by 
1, the hit pattern jumps upward or downward by 8. 

Combining the two arrays allows all of the relative shifts 
between them to be achieved.  In fact, the addresses during 
read for the two arrays are derived from the coordinate of the 
Plane_B hit.  Plane_B is divided into 128 bins and a hit on 
Plane_B is represented by a 7-bit integer B(6:0). The reading 
addresses RA(3:0) for Plane_A and RC(3:0) for Plane_C are 
constructed as: RA(3:0)={B(6),B(2:0)} and RC(3:0)=B(6:3)-
B(6).  Some examples are tabulated in Table II. 

It can be seen that when B<=63, possible values for RA are 
0 to 7, or left half of the Plane_A bit map, and when B>63, 
possible values for RA are 8 to 15, or the right half.  In other 
words, B(6) is used as a “page selection bit” for RA.  The 

TABLE I
SILICON USAGE OF TRIPLET FINDER IMPLEMENTATIONS 

Devices: 
Price: (05/2005) 

EP1C4 
$32 

EP2A40 
$1560-$3300 

Logic Cells 
(4000) 

Logic 
Cells 

(30,855) 

Embedded 
System Blocks 

(160) 
TTF (64 bits) 944 (23%) 944 (3%) - 

TTF (128 bits) 1681 (42%) 1681 (5%) - 
CAM using ESB 

(64 bits) 
Not fit  128 (80%) 

Hough Trans. 
(64 bits) 

Not fit 16384 
(53%) 

 

Device: 
Price: (05/2005) 

xc2v1000 
$213 

Logic Cells (10240) 
TTF (64 bits, 

using RAM16x1) 
456 (4%) 

Fig. 5.  Tiny Triplet Finder implemented with distributed RAMs:  Each 
row of the bit map represents a 16x1-bit RAM with addresses from 0 to 15
mapped from left to right.  The position of each plane hit is marked with an 
arrow.  The vertical bar in each RAM map indicates how the bank of 64 
RAMs is read out for a given read address. 



reader may also note that given 4+4 address lines in two bit 
maps, in order to generate relative shifts from +63 to -64, only 
half of the Plane_A bit map would be needed.  The reason why 
redundant bits are booked and B(6) is used as a “page 
selection bit” for RA(3:0) is for better plane edge coverage for 
the bit-wise coincident logics.  As shown in Fig. 2, when the 
Plane_B hit is below the mid-point, or B<=63, the bin 0 edges 
of Plane_A and C must be contained in the coincident logics.  
When B>=63, the other edges, the bin 63 edges of the 
Plane_A and C must be contained.  It can be shown that 
without redundant page in bit map for Plane_A, which is free 
in this case, about 8 bits additional RAMs and bit-wise 
coincident logics beyond 64 bits would be required to cover 
the track roads being shifted out of the plane edges.  The 
otherwise unused bits in RAMs for Plane_A are used to 
contain the logics within 64 bits (see Fig. 5 and the last column 
of Table II). 

 
It can be seen that the functions of the BitReg and the 

Shifter blocks in Fig. 3 are integrated in the two RAM arrays.  
By eliminating the Shifter block, the silicon resource usage is 
further reduced as shown in Table I. 

As mentioned earlier that the maximum possible range of 
relative shift between the two patterns should be 256 given 
4+4 address lines of the two arrays, so it is possible to build a 
128-bit TTF without using a shifter.  (Of course, as mentioned 
above, about 16 bits additional RAMs and coincident logics 
will be needed to cover the plane boundaries.)  For bigger 
TTF, a shifter will be needed, but the shifting functions 
provided by the RAM arrays will reduce the size of the shifter 
significantly.  For example, for a 1024-bit TTF, the shift range 
is 2048 that requires an 11-stage shifter, one stage for each bit 
of the shift index.  With RAM arrays, 8 bits in the shift index 
can be eliminated leaving only 3 to be implemented in the 
shifter. 

A disadvantage for the implementation discussed in this 
section is longer reset time.  Since the 16x1-bit RAM does not 
support fast reset, 16 clock cycles are needed to clear the 
RAM arrays to prepare for a new event, while the register-

based implementation takes only one clock cycle. 

VI. CONCLUSION 
We have described an FPGA implementation of the Tiny 

Triplet Finder.  Since the Tiny Triplet Finder algorithm uses 
no special logic operations other than shift and bit-wise 
AND/OR, it is also suitable for software implementation.  In 
most CPU or DSP processors, the TTF algorithm is expected 
to allow execution time to be reduced from O(n3) to O(n).

Although we used the simplest configuration, i.e., straight 
tracks in three equally spaced detector planes as an example in 
this document, the TTF algorithm can be extended to 
configurations with non-equally spaced planes and more than 
three planes.  We have discussions on these cases in Reference 
[5].  In another document we are currently composing, several 
applications with curved tracks are studied. 

In addition to track segment finding, the TTF algorithm may 
also be used in hit recognition problems in wire chambers, 
time of flight counters, and GEM/MICROMEGAS detectors.  
These applications will be discussed in separate documents. 
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TABLE II 
GENERATION OF READING ADDRESSES OF THE RAM BANKS 

RA(3:0) = 
{B(6), B(2:0)} 

RC(3:0) = 
B(6:3) – B(6) 

B(6:0) RA A shift RC C shift 

Total 
Shift 

Covered 
Plane 
Edges 

0 0 +7 0 -56 +63 
1 1 +6 0 -56 +62 
7 7 +0 0 -56 +56 
8 0 +7 1 -48 +55 
9 1 +6 1 -48 +54 

62 6 +1 7 0 +1 

The bin 
0 edges 
of plane 
A and C. 

63 7 0 7 0 0 both 
64 8 -1 7 0 -1 
65 9 -2 7 0 -2 
70 14 -7 7 0 -7 
71 15 -8 7 0 -8 
72 8 -1 8 +8 -9 

126 14 -7 14 +56 -63 
127 15 -8 14 +56 -64 

The bin 
63 edges 
of plane 
A and C. 

In the A shift and C shift columns, the + sign represents an upward shift of 
the corresponding hit pattern in Fig. 5.  The total shift in the table = (A shift) 
- (C shift). 


