
Abstract— We describe a track segment recognition scheme
called the Tiny Triplet Finder (TTF) that involves grouping of
three hits satisfying a constraint such as forming of a straight
line. The TTF performs this O(n3) function in O(n) time, where n
is number of hits in each detector plane. The word “tiny” reflects
the fact that the FPGA resource usage is small. The number of
logic elements needed for the TTF is O(Nlog(N)), where N is the
number of bins in the coordinate considered, which for large N, is
significantly smaller than O(N2) needed for typical
implementations of similar functions. The TTF is also suitable for
software implementations as well as many other pattern
recognition problems.

Index Terms—Trigger, Pattern Recognition, Tiny Triplet
Finder, TTF, FPGA Firmware

I. INTRODUCTION
RACK segment finding is an essential process in many
trigger systems for high-energy physics experiments. For

example in the Fermilab BTeV[1] trigger system[2][3][4], we
need to identify track segments from the coordinates of pixel
detector hits from three adjacent detector planes forming a
straight-line segment in the non-bend view. For a given track
segment, the following relationship holds:

BCA uuu 2=+
Where uA, uB and uC are the hit coordinates on planes A, B and
C in the non-bend view. Such segments consisting of three
hits are referred to as “triplets” [2] (See Fig. 1).

In the BTeV detector, the interaction points are distributed
along the beam axis in a wide range. There are two free
parameters for a track segment even in the non-bend
projection. A possible track segment is not formed until at
least three hits are aligned.

Therefore the triplet finding process in BTeV is different
from another type of straight track segment finding in other
high energy physics experiments when the interaction point is
known. There is only one free parameter for a track segment
in the non-bend projection in this case. A possible track

Manuscript received June 2, 2005, revised March 13, 2006. This work

was supported in part Operated by Universities Research Association Inc.
under Contract No. DE-AC02-76CH03000 with the United States
Department of Energy.

J. Wu, M. Wang, E. Gottschalk and Z. Shi are with Fermi National
Accelerator Laboratory, Batavia, IL 60510 USA (phone: 630-840-8911; fax:
630-840-2950; e-mail: jywu168@ fnal.gov).

segment is formed after two hits and the known interaction
point are aligned. The process is significantly simpler than the
BTeV triplet finding process.

Straightforward software implementation of the triplet

finding function would require O(n3) execution time, where n
is number of hits per plane, in order to examine all possible
combinations of three hits using three layers of nested loop. In
hardware implementations, the execution time can be reduced
to O(n), the time required to fetch the data. This execution
time reduction is accomplished by “unrolling” two layers of
loops, which consumes significant amount of silicon resources
in the device. The number of logic elements needed for
typical triplet finding implementations is O(N2) where N is the
number of bins that each plane is divided into.

In this article, we describe a new algorithm that performs
the triplet finding function, which we refer to as the Tiny
Triplet Finder (TTF) [5]. We also describe sample hardware

The Application of Tiny Triplet Finder (TTF) in
BTeV Pixel Trigger

Jinyuan Wu, M. Wang, E. Gottschalk and Z. Shi

T
(a)

(b)
Fig. 1. Triplet finding: The interaction points are distributed along the
beam (Z) axis. Equally spaced pixel detectors are placed in Z=constant
planes. The ZX is the non-bend view. The dashed line represents a fake
triplet.

FERMILAB-PUB-06-063-E

implementations of the TTF using low cost FPGA devices.
Logic element usage in TTF implementation is O(Nlog(N))
which is significantly smaller than O(N2) when N is large.

After the triplets are found, the triplets in one part of the
detector are matched with triplets found in other part of the
detector. The process of matching two data items require
O(n2) execution time in software and it can be reduced to O(n)
in hardware by unrolling one layer of the loops, with logic
element usage of O(N). The “Hash Sorter” [6] or other
schemes can be used for this type of applications.

II. PRINCIPLE
Consider three equally spaced detector planes in the non-

bend view as shown in Fig. 2. We first divide the two outer
detector planes, Plane_A and Plane_C, into N bins (N = 64 in
this example), choosing a bin as unit of the coordinate in the
non-bend view and rounding to an integer. Since the detector
plane usually contains far more pixels than 64 in the projection
being considered, the binning is actually merging several
pixels together. For example, to merge 1024 pixels into 64
bins, 16 pixels are merged together. To convert the pixel
number into the bin number in this case, simply shift the pixel
number by 4 bits.

In general, there exist N2 possible track combinations, or
“roads” in this configuration. A “road” is defined here as a
line segment passing through one of the N bins in each of
Plane_A and Plane_C. Directly implementing all possible
combinations using either logic elements or content
addressable memories (CAMs) would require a large amount
of silicon resources.

In the Tiny Triplet Finder, two register arrays, BitReg_A
and BitReg_C, are used to record the hits in the detector
planes. When a hit coordinate from a detector plane is input,
one of the 64 bits in the register array corresponding to its
position is set. After all hits in Plane_A and Plane_C are
recorded, the algorithm cycles through each hit from Plane_B.
In the special case when the hit is at the mid-point of Plane_B
(see the top of Fig. 2), there are 64 possible track
combinations or roads. Each possibility is checked through
bit-wise coincident logic between the bit patterns recorded in
BitReg_A and BitReg_C. If a pair of corresponding bits in
BitReg_A and BitReg_C are both set, e.g., (0, 63), (1, 62) or
(2, 61), etc., the bit-wise logic will output the pattern of the
matching pair(s) corresponding to a possible track segment
passing through the hits in Plane_A, Plane_C and Plane_B.
The bit-wise coincident logic is primarily a bit-wise AND of
the patterns in the two registers. In a real implementation, a
bit-wise OR with the neighboring bits in one pattern may first
be performed to cover boundaries. An example of the bit-wise
coincident logic is shown in the bottom of Fig. 2.

For hits that are not at the mid-point of Plane_B, the bit-
wise coincident logic is identical, except that the positions of
the bit patterns representing the hits on Plane_A and Plane_C
are shifted relative to each other by an amount determined
from the coordinate of the hit on Plane_B (see the second and

third configurations of Fig. 2). The constraint for the triplet
can be rewritten in the following form:

BCA uuu 2+−=
It can be seen that the relative shift between the bit patterns

is 2uB. In a practical implementation, the unit of the Plane_B
hit coordinate is chosen so that 2uB is an integer from 0 to 2N-
1 (To merge 1024 pixels to 128 bins in our example, simply
shift the pixel number by 3 bits.). It can also be seen that the
orders of the two bit patterns relative to each other should be
reversed due to the negative sign between uA and uC.

Additionally, hits from different tracks as well as noise hits
can also satisfy the coincident logic to produce fake tracks.
The simplest way to deal with the fake tracks is to encode and
output all of them and perform arbitration at a later stage. The
users may also use a priority encoder to choose a particular
track depending on the physics requirement of the experiment.

In the Tiny Triplet Finder, only N (64 in this example)
combinations are implemented in the bit-wise coincident logic
instead of N2 (64 X 64 = 4096) combinations. Taking
advantage of symmetry, all possible combinations can be
achieved by shifting the bit patterns.

Plane_A Plane_B Plane_C
0

63

0

63

0

63

BitReg_A
63

0

BitReg_C

0

63

0

63

0

63

63

0

0

63

0

63

0

63

63

0

0 00

4
8

3 C3
A4

P3=
C3&(A5+A4)5

A5

Shift =
63-8

Plane_A Plane_B Plane_C
0

63

0

63

0

63

BitReg_A
63

0

BitReg_C

0

63

0

63

0

63

63

0

0

63

0

63

0

63

63

0

0 00

4
8

3 C3
A4

P3=
C3&(A5+A4)5

A5

Shift =
63-8

Fig. 2. Principle of Tiny Triplet Finder: Plane_A and Plane_C are divided
into 64 bins, respectively. For any hit in Plane_B, there are up to 64
possible “roads” (left). The correlation of the roads is implemented as bit-
wise coincident logic (bit-wise AND-OR) between two bit maps: BitReg_A
and BitReg_B (right). Note that the two bit maps have reversed bit order.
The two bit maps are shifted relative to each other for different Plane_B hits.

In the time domain, the total execution time is taken up by
the following processes:

1. Setting the bit patterns BitReg_A and BitReg_C.
2. Looping over hits in Plane_B, shifting the bit

pattern in BitReg_A, performing the bit-wise
coincident and decoding matching pair(s) found.

The processes take approximately 2n clock cycles to
execute making them essentially O(n), although small non-
linear contributions exist when more than one pair is found by
the bit-wise coincident logic.

Generally speaking, the probability of creating fake triplets
that cause the non-linear contribution increases as n increases,
and decreases as N increases. When number of bins N is
sufficiently large and number of hits n is small, the non-linear
contribution should be small. This is true for all triplet finding
schemes and the results studied for other schemes remain valid
here also.

Ignoring the small non-linear contributions, we see that the
TTF unrolls two layers of loops so that an O(n3) process can
now be executed in O(n) time.

The acceleration is accomplished through the use of the bit-
wise coincident logic that simultaneously finds all matching
hits on Plane_A and Plane_C for each hit on Plane_B in a
single operation, making the process time proportional to the
number of hits n on Plane_B.

III. FPGA IMPLEMENTATIONS OF THE TINY TRIPLET FINDER
The block diagram of the Tiny Triplet Finder implemented

in an FPGA device is shown in Fig. 3.

A. Bit Array Filling
As the hit data from Plane_A and Plane_C are fetched from

input FIFO’s, a bit corresponding to each hit is set in the
BitReg blocks. The resulting hit patterns are presented at the
output ports on buses AQ and CQ. As mentioned earlier, the
bit order of CQ is reversed. Meanwhile, the full hit data are
stored into memory buffers called “Hash Sorters” [6] for fast
retrieval later. For simplicity, one may think of the Hash
Sorters as memory areas that are each divided into 64 bins.
When a hit sets a bit in the BitReg register array, the full hit
data are written into the corresponding bin in the Hash Sorter.

B. Looping B Hits and Shifting Bit Pattern
After all hits from Plane_A and Plane_C have been written

into the Hash Sorters, the hits from Plane_B are fetched from
the input FIFO. The coordinate of each Plane_B hit is used to
determine the relative shift distance between the two bit
patterns AQ and CQ. The shifter shifts the bit pattern AQ by
this amount and presents the shifted pattern at port A2Q. The
full hit data from Plane_B are also stored for later retrieval in a
buffer which can either be a hash sorter or a regular output
FIFO.

The shifter is implemented in a two-stage pipeline to
increase operation frequency. Although the shifter requires a
relatively large number, i.e., O(Nlog(N)) of logic elements
compared to other blocks in this design, it is still much smaller
than typical implementations where O(N2) logic elements are
needed.

C. Bit-wise Coincident Logic
The bit pattern CQ and the shifted pattern of AQ, A2Q, are

Fig. 3. Block diagram of triplet finding processor: The Tiny Triplet Finder is shown in the dashed box.

sent to the “BitLogic” block in which the bit-wise coincident
logic is performed. The coincident logic is essentially a bit-
wise AND. The OR logic among the neighboring bits in A2Q
is included to cover the boundaries. See the bottom of Fig. 2
for an example.

Any non-zero bit in the resulting bit pattern P indicates a
found triplet. The location of this bit represents the coordinate
of the Plane_C hit belonging to the triplet. The coordinate of
the Plane_A hit can be derived from this location and the
distance of shift.

D. Priority Sequence Encoder
The locations of the non-zero bits are encoded in the

“Priority Sequence Encoder” block which can accommodate
situations with more than one triplet. Normally there is only
one non-zero bit in pattern P and the encoder outputs the
location of the bit. If there are two or more non-zero bits, the
encoder changes a signal (EN in Fig. 4) to halt earlier pipeline
stages, allowing the locations of all the non-zero bits to be
reported sequentially.

This block is also implemented as a pipeline. Although it
takes 6 clock cycles to encode the non-zero bit(s) in P, the
block accepts one P pattern during each clock cycle, as long as
the pipeline is not halted.

IV. TEST DESIGNS AND SILICON RESOURCE USAGE
We have test compiled the Tiny Triplet Finder with N=64

and N=128 bins in an Altera Cyclone device (EP1C4) [7].
Results of the full simulation of the Tiny Triplet Finder are

shown in Fig. 4. The simulation uses hit coordinates given in
Fig. 1(a) as an example. The coordinates for Plane_B are
multiplied by 2 to obtain the shift distance B. All four real
triplets in this example are found in addition to a fake triplet
which also satisfies the triplet condition KA + KC = KB. The

fake triplet is represented by the dashed line in Fig. 1(b) with
hits at X = 27, 15 and 3, which corresponds to KA = 27, KB =
30 and KC = 3 in Fig. 4.

The outputs of the Priority Sequence Encoder, KA, KB, and
KC, are the bin numbers where the original hit data are stored
in the Hash Sorters (or FIFO for Plane_B hits). These
numbers are used as addresses to read out the hit data in the
corresponding bins to send to later stages for further
processing.

If there is more than one hit stored in a bin, the Hash Sorter
will output all the hits in the bin so that later stages can make
better choices. In this case, the pipeline in earlier stages will
be halted, allowing multiple hits to be read out.

Another interesting point shown in this example is that we
have found a triplet (KA=5, KB=8, KC=3) corresponding to
the input (A=4, B=8, C=3). One of the input coordinates is off
by 1 bin due to a boundary effect and/or a round-off error.
Our bit-wise coincident logic covers this kind of difference.
To trace back the original hits in the Plane_A at bin 4, the hash
sorter will check both bin KA and KA-1, i.e., both bin 5 and
bin 4 in this example.

The compilation results are shown in Table I for all
functional blocks shown within the dashed box in Fig. 3.
Clearly, the Tiny Triplet Finder can easily be accommodated
in currently available middle-sized FPGAs.

The resource usages for two other typical implementations
are also shown for comparison. The first implementation uses
Content Addressable Memories (CAM) which can be
implemented fairly efficiently with Altera Embedded System
Blocks (ESBs) [8]. For this case, the silicon usage for 64 X 64
=4096 roads has been calculated without considering boundary
effects and other supporting logic.

Fig. 4. Simulation results of the Tiny Triplet Finder: Signals CLK and SR are the 100MHz system clock and system reset. Signals A, WEA, AQ, C, WEC,
CQ, B, A2Q, KA, KB and KC are as shown in Fig. 3. The signals AQ, CQ and A2Q are 64-bit bit patterns in hexadecimal representation. WT (wait) and DV
(data valid) are input signals not discussed in this paper. The signals EN and P2Q to P5Q are internal ones in the Priority Sequence Encoder. As a
consequence of finding more than one possible triplet, signal EN becomes low to stop the pipeline inside and before the Priority Sequence Encoder for a clock
cycle to allow the extra triplet being output.

Another implementation uses the Hough transform scheme
[9]. The number shown includes only the 2-D histogram,
assuming each bin can be implemented with 4 logic cells.
Decoder and other supporting logic are not included.

Since these two other implementations do not fit in the
EP1C4 device, they were accommodated with a 7 times larger
EP2A40 APEX II device [8].

Furthermore, as the bin number increases from 64 to 128,
the logic cell usage of the Tiny Triplet Finder increases only
by about a factor of 2 while for the other two implementations
an increase by a factor of 4 is anticipated.

In Table I, we also listed the resource usage of a 64-bit TTF
implemented using distributed RAM devices available in the
FPGA devices from Xilinx [10]. The details are discussed in
the next section.

V. IMPLEMENTATION USING DISTRIBUTED RAMS

In this section, a more efficient implementation using
distributed RAMs is described.

In today’s main stream FPGA devices, lookup tables are
used to implement combinational logic. The lookup tables are
small RAMs, usually 16 locations by 1 bit in size. In some
device families like Xilinx Virtex-II [10], the users are allowed
to write and read the RAM which provides possibilities to
implement functions more compactly. As an example, the
implementation of the bit registers and shifters in the TTF
using distributed RAMs is described in this section.

In Fig. 5, the bit maps for a 64-bit TTF are shown. Two
register arrays corresponding to Plane_A (left) and Plane_C
(right) are formed using 64 distributed 16x1-bit RAMs for
each array.

While filling hits for Plane_A, each RAM is given a
rotational address, i.e., the address of a RAM differs from the
address of the next RAM by 1. For any hit in Plane_A, up to
16 RAMs, 7 above, 8 below the hit position (marked with an
arrow for each hit in Fig. 5), are enabled to be written. The bit
being filled in the RAM at the hit location is bit 7, while in the
RAMs above and below the hit location are bits 6-0 and bits 8-
15, respectively. The net effect is that each hit sets up to 16

bits in the array as shown in the left bit map. Although up to
16 bits are written for each hit, only one clock cycle, (not 16)
is needed for the writing process.

While reading the register array for Plane_A, all the RAMs
are given the same address (indicated with a vertical bar in
Fig. 5), so the hit pattern appears at the outputs of the array.
Changing the address shifts the hit pattern. In the register
array for Plane_A, relative shift from +7 units to -8 units can
be achieved. Again, the reading of the shifted pattern takes a
single clock cycle (not 7 or 8).

To cover the entire range of the shift, the register array for
Plane_C is also implemented similarly. The bit being filled in
the RAM at the hit location is bit 7. In the RAMs 8m (where
m = 1 to 7) bins above the hit location, the bits (7+m) are
filled, and similarly in the RAMs 8n bins below the hit
location, the bits (7-n) are filled. For each Plane_C hit, a
jumping patterns as show in the right bit map in Fig. 5 is
written.

In the reading phase, the RAMs of the register array for
Plane_C are all given the same address. The hit pattern
appears at the outputs of the array. If the address changes by
1, the hit pattern jumps upward or downward by 8.

Combining the two arrays allows all of the relative shifts
between them to be achieved. In fact, the addresses during
read for the two arrays are derived from the coordinate of the
Plane_B hit. Plane_B is divided into 128 bins and a hit on
Plane_B is represented by a 7-bit integer B(6:0). The reading
addresses RA(3:0) for Plane_A and RC(3:0) for Plane_C are
constructed as: RA(3:0)={B(6),B(2:0)} and RC(3:0)=B(6:3)-
B(6). Some examples are tabulated in Table II.

It can be seen that when B<=63, possible values for RA are
0 to 7, or left half of the Plane_A bit map, and when B>63,
possible values for RA are 8 to 15, or the right half. In other
words, B(6) is used as a “page selection bit” for RA. The

TABLE I
SILICON USAGE OF TRIPLET FINDER IMPLEMENTATIONS

Devices:
Price: (05/2005)

EP1C4
$32

EP2A40
$1560-$3300

Logic Cells
(4000)

Logic
Cells

(30,855)

Embedded
System Blocks

(160)
TTF (64 bits) 944 (23%) 944 (3%) -

TTF (128 bits) 1681 (42%) 1681 (5%) -
CAM using ESB

(64 bits)
Not fit 128 (80%)

Hough Trans.
(64 bits)

Not fit 16384
(53%)

Device:
Price: (05/2005)

xc2v1000
$213

Logic Cells (10240)
TTF (64 bits,

using RAM16x1)
456 (4%)

Fig. 5. Tiny Triplet Finder implemented with distributed RAMs: Each
row of the bit map represents a 16x1-bit RAM with addresses from 0 to 15
mapped from left to right. The position of each plane hit is marked with an
arrow. The vertical bar in each RAM map indicates how the bank of 64
RAMs is read out for a given read address.

reader may also note that given 4+4 address lines in two bit
maps, in order to generate relative shifts from +63 to -64, only
half of the Plane_A bit map would be needed. The reason why
redundant bits are booked and B(6) is used as a “page
selection bit” for RA(3:0) is for better plane edge coverage for
the bit-wise coincident logics. As shown in Fig. 2, when the
Plane_B hit is below the mid-point, or B<=63, the bin 0 edges
of Plane_A and C must be contained in the coincident logics.
When B>=63, the other edges, the bin 63 edges of the
Plane_A and C must be contained. It can be shown that
without redundant page in bit map for Plane_A, which is free
in this case, about 8 bits additional RAMs and bit-wise
coincident logics beyond 64 bits would be required to cover
the track roads being shifted out of the plane edges. The
otherwise unused bits in RAMs for Plane_A are used to
contain the logics within 64 bits (see Fig. 5 and the last column
of Table II).

It can be seen that the functions of the BitReg and the

Shifter blocks in Fig. 3 are integrated in the two RAM arrays.
By eliminating the Shifter block, the silicon resource usage is
further reduced as shown in Table I.

As mentioned earlier that the maximum possible range of
relative shift between the two patterns should be 256 given
4+4 address lines of the two arrays, so it is possible to build a
128-bit TTF without using a shifter. (Of course, as mentioned
above, about 16 bits additional RAMs and coincident logics
will be needed to cover the plane boundaries.) For bigger
TTF, a shifter will be needed, but the shifting functions
provided by the RAM arrays will reduce the size of the shifter
significantly. For example, for a 1024-bit TTF, the shift range
is 2048 that requires an 11-stage shifter, one stage for each bit
of the shift index. With RAM arrays, 8 bits in the shift index
can be eliminated leaving only 3 to be implemented in the
shifter.

A disadvantage for the implementation discussed in this
section is longer reset time. Since the 16x1-bit RAM does not
support fast reset, 16 clock cycles are needed to clear the
RAM arrays to prepare for a new event, while the register-

based implementation takes only one clock cycle.

VI. CONCLUSION
We have described an FPGA implementation of the Tiny

Triplet Finder. Since the Tiny Triplet Finder algorithm uses
no special logic operations other than shift and bit-wise
AND/OR, it is also suitable for software implementation. In
most CPU or DSP processors, the TTF algorithm is expected
to allow execution time to be reduced from O(n3) to O(n).

Although we used the simplest configuration, i.e., straight
tracks in three equally spaced detector planes as an example in
this document, the TTF algorithm can be extended to
configurations with non-equally spaced planes and more than
three planes. We have discussions on these cases in Reference
[5]. In another document we are currently composing, several
applications with curved tracks are studied.

In addition to track segment finding, the TTF algorithm may
also be used in hit recognition problems in wire chambers,
time of flight counters, and GEM/MICROMEGAS detectors.
These applications will be discussed in separate documents.

REFERENCES
[1] Kulyavtsev et al., BTeV proposal, Fermilab, May 2000, available: {

http://www-btev.fnal.gov/DocDB/0000/000066/002/index.html}
[2] E.E. Gottschalk, BTeV detached vertex trigger, Nucl. Instrum. Meth. A

473 (2001) 167.
[3] M. Wang et al., “A Commodity Solution Based High Data Rate

Asynchronous Trigger System for Hadron Collider Experiments”,
Proceedings of the IEEE Real Time Conference 2005, Stockholm,
Sweden, June 2005, to be published.

[4] M. Votava et al., “BTeV Trigger/DAQ Innovations”, Proceedings of the
IEEE Real Time Conference 2005, Stockholm, Sweden, June 2005, to
be published.

[5] J. Wu, et al., “Tiny Triplet Finder (TTF) – A track segment recognition
scheme and its FPGA implementation developed in the BTeV level 1
trigger system”, Proceedings of the 10th workshop on electronics for
LHC and future experiments, p68, (2004) FERMILAB-CONF-04-270-E
available:
{http://www.slac.stanford.edu/spires/find/hep/www?r=fermilab-conf-
04-270-e}

[6] J. Wu, M. Wang, E. Gottschalk, G. Cancelo and V. Pavlicek [for BTeV
collaboration], “Hash sorter: Firmware implementation and an
application for the Fermilab BTeV level 1 trigger system,” FERMILAB-
CONF-03-357-E available:
{http://www.slac.stanford.edu/spires/find/hep/www?r=fermilab-conf-
03-357-e} Presented at IEEE 2003 Nuclear Science Symposium (NSS)
and Medical Imaging Conference (MIC), Portland, Oregon, 19-24 Oct
2003}

[7] Altera Corporation, “Cyclone FPGA Family Data Sheet”, (2003)
available via: {http://www.altera.com/}

[8] Altera Corporation, “APEX II Programmable Logic Device Family Data
Sheet”, (2002) available via: {http://www.altera.com/}

[9] R. Fruhwirth et al., “Data Analysis Techniques for High-Energy
Physics”, 2nd ed., Cambridge, 2000

[10] Xilinx Inc., “Virtex-II Platform FPGAs: Complete Data Sheet”, (2005)
available: { http://direct.xilinx.com/bvdocs/publications/ds031.pdf}

TABLE II
GENERATION OF READING ADDRESSES OF THE RAM BANKS

RA(3:0) =
{B(6), B(2:0)}

RC(3:0) =
B(6:3) – B(6)

B(6:0) RA A shift RC C shift

Total
Shift

Covered
Plane
Edges

0 0 +7 0 -56 +63
1 1 +6 0 -56 +62
7 7 +0 0 -56 +56
8 0 +7 1 -48 +55
9 1 +6 1 -48 +54

62 6 +1 7 0 +1

The bin
0 edges
of plane
A and C.

63 7 0 7 0 0 both
64 8 -1 7 0 -1
65 9 -2 7 0 -2
70 14 -7 7 0 -7
71 15 -8 7 0 -8
72 8 -1 8 +8 -9

126 14 -7 14 +56 -63
127 15 -8 14 +56 -64

The bin
63 edges
of plane
A and C.

In the A shift and C shift columns, the + sign represents an upward shift of
the corresponding hit pattern in Fig. 5. The total shift in the table = (A shift)
- (C shift).

