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1. Introduction and motivations

Lattice QCD calculations of semileptonic form factors pdevvaluable tests of lattice heavy-
quark actions as well as critical input into the unitaritiamgle analysis [1]. In generaB- and
D-meson semileptonic decays aid in determining four CKM mattements; in particular, the
decayB — v allows a measurement Ofp|.

The semileptonic deca — milv is parameterized by two form factor, (%) and fo(g?):

mg —m2. H mg — m?
((pr)| ##[B(Pe)) = . (Ex) o+ pre— 25 a] —g
where g = mg + m2 — 2E;mg is the squared momentum of the outgoing lepton and neutrino.
Experimenters measure the differential decay rate, wisichlated tof . (g?) as follows:

+ fo(Ern) , (1.1)
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Because experiments can only determine the propiyel?| f, (g?)|?, lattice QCD calculations of
the form factor normalization are needed in order to extiteeiCKM matrix elemenVp|.

In principle, the procedure to determirid,,| is straightforward. In practice, however, ex-
periments measure the form factors most precisely apfgwhereas traditional lattice QCD can
only accurately calculate form factors at high(low E,). Thus the power of this method for de-
termining |Vy| is limited by the poor overlap ig? of the lattice and experimental data. Various
strategies to address this problem appear in the literailme most conservative approach accepts
the limitations of the available lattice techniques andyaadmpares lattice and experiment in the
¢? region in which lattice data exists [2]. While certainly ent, this does not necessarily allow for
the most precise possible determinatior\gf|. The most common approach is to use an Ansatz
to extrapolate lattice data to the lay? region where the experimental data is best. The standard
functional form used in the literature is the BK parametaiaon [3]:

fo (@) =f,(0)(1-?/mB.) " (1—aq?/md.) . (1.3)

This function has the merits that correctly incorporatesBh pole and fits the data well. Never-
theless, it is difficult to quantify the systematic errorghie g? extrapolation due to this particular
choice for how treat higher-order poles. A novel approaciv igenerate lattice data at lowet
using an alternative method such as Moving NRQCD [4]. Thisydver, requires further work as
well as the generation of additional lattice data.

Physical intuition suggests the correct shape oBhe ril v form factors, whatever itis, will be
smooth. This intuition can be made quantitative throughufeof analyticity, crossing-symmetry,
and unitarity [5, 6]. It is well established that these gahgroperties can be used to constrain the
shape of form factors. In this work we explore the potentidghese model-independent constraints
to aid in lattice QCD calculations of tHg@— v semileptonic form factors.

2. Unitarity and heavy quark constraints on form factors

Generically, all form factors are analytic functionsgdfexcept at physical poles and threshold
branch points. In the case of tBe— v form factors, f (¢?) is analytic below thé8rt production
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B—mv —-0.34<z<0.22
D—mv -0.17<z<0.16
D—Klv —-0.04<z<0.06
B—DIv -0.02<z<0.04

Table 1: Physical region in terms of the varialitdor various semileptonic decays given the chdigce-
0.65t_.

region except at the location of tB& pole. The fact that analytic functions can always be expiess
as convergent power series allows the form factors to béenrih a particularly useful manner.
Consider mapping the variabg onto a new variablez, in the following way:

P/t — _
S V1-?/t — /1 to/t+7 2.1)
V1-/t+/1-to/ty
wheret, = (mg+my)?,t_ = (mg—my)?, andty is a free parameter. Although this mapping appears

complicated, it actually has a simple interpretation imgofg?; this transformation mapg >t
(the production region) ontz| = 1 and mapsy < t, (which includes the semileptonic region)

ontoz= [—1,1]. In terms ofz, the form factors have a simple form:
P(t)o(t,to) f(t) = 3 ax(to)zlt, o), (2.2)
K=0

whereP(t) is a function that vanishes at subthreshad.(B*) poles andp(t,tp) is an “arbitrary”
analytic function whose choice only affects the particialues of the series coefficients ).
Given the choices fdP andg used in Ref. [6], unitarity constrains the size of the ser@fficients:

N

k;a% <1, (2.3)

where this constraint holds for any value of N.

The free parameteg can be chosen to make the maximum valugzois small as possible in
the semileptonic region; we chooge= 0.65%_ as in Ref. [6]. FoB — mlv semileptonic decays
this maps the physical region onto:

O<t<t. — —-034<z<0.22

The corresponding-region for other decays is given in Table 1. The constramthe size of the
coefficients in the-expansion in combination with the small numerical valuejz/an the physical
region ensures that, using the series expansiar) one needs only a handful of parameters to
obtain the form factors to a high degree of accuracy.

3. Strategy to combinelattice QCD and experiment

As shown in Figure 1, after remapping frogs to z there is no visible curvature in the
BABAR B — niv experimental data [7]. This indicates that the curvaturéherdata is due to
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Figure1: Experimental data for thB — rlv form factorf, from the BABAR collaboration [7]. Figure (a)
shows the form factor versug while (b) showsPg times the form factor versus the new variahle

well-understood QCD effects.€., the functionsP and ¢ in Eq. (2.2)). Consequently the experi-
mental data should be well described by a normalization aope. The fact that, when expressed
in terms ofz, the form factor data is determined by only two parameteggasis the following ap-
proach for determiningV,p| from the decayB — il v:

1. Fit both experimental and lattice data in terms ofzlegpansion
2. Determine and compare the slopegin

3. Compare the normalizations to extridj|

4. Look for curvature

This approach has many positive features. It is practicehlbge it requires a limited number of fit
parameters. One can first quantify the agreement betwedstttise QCD results and experimental
data using the value of the slope before combining them teraéhe |\,»|. Because the series in
zis convergent, and because the sizes of the series coefficiem bounded by Eq. (2.3), thig
extrapolation approach is well-suited to the method of trairsed curve-fitting. One can constrain
each coefficient with a prior, perform a fit to the data with entgrms in the series than seems
necessary, and simply let the data determine as many paanastthey can. The “extra” param-
eters will absorb the effects of the higher-order terms kizae been omitted. Thus this method
is systematically improvable — as the data become moregerdicey will reduce the error bars on
the lower-order coefficients and begin to constrain additidiigher-order coefficients. It is this
quality that leads us to describe this methodnadel-independent.

4. Preliminary analysis of lattice QCD data

We now illustrate the method of extrapolating lattice QCBnidfactor data ing? using the
z-expansion, Eqg. (2.2). We use the same funct®sd @ and the same value tf = 0.6%_ asin
Ref. [6]. We use Bayesian priors to impose the unitarity trairgts on the size of the coefficients
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Figure 2: Figure (a) shows our preliminary lattice form factor datdtiplied by P plotted versug. These
same data are shown in all subsequent plots. Figure (b) sthag extrapolation of our data using a 3-
parameter-expansion (blue solid) and a 5-parametexpansion (red dashed). Also shown are the resulting
bootstrap errors in the extrapolated valug of0).

in the z-expansion and calculate bootstrap errors in the resuftingarameters. We emphasize
that the work shown in these proceedings is exploratory: ave lused data at only a single lattice
spacing,a = 0.12 fm, and for a single quark masan, g = 0.02 andams = 0.05. Furthermore,
we do not include any estimate of systematic errors. In griecwe should perform a chiral and
continuum extrapolation using the appropriate staggen@dlgerturbation theory expressions [8]
before extrapolating ig?, and we will add this in the upcoming paper.

Figure 2(a) shows our lattice QCD data multiplied by the fiores P and@ and plotted versus
the new variablee Like the experimental data, it appears to be linear. Weethes expect to be
able to fit the latticef, data well using only 2-3 parameters, and an attempt to fitae idcluding
more parameters should only lead to the higher-order paeambeing poorly-determined. This
is exactly what we observe. Figure 2(b) shows the resultotf b 3-parameter and 5-parameter
fit to f,(g?) and the resulting bootstrap errors on the extrapolatecevallif, (0). The resulting
coefficients are

ap = 0.026+0.003 a; = 0.020+0.068, a; = 0.152+0.41 (4.1)
for the 3-parameter fit and

ap = 0.026+0.003 a; = 0.020+ 0.068 ap = 0.14840.45,
az = —0.031+0.98, as =0.004+1

for the 5-parameter fit. The normalizatioag) and slope &;) are consistent between fits; the
curvature &) is consistent with zero, and the higher-order coeffici@nésnot constrained by the
data.



Unitarity, the heavy quark expansion, and semileptonic form factors

Ruth S. Van de Water

3.5 i i i i i i

3 e f+(q2) from constrained fit

- unconstrained 3 parameter fix»z-/d.o.f. =0.35
® f+(q2) from unconstrained fit

T
[|— 3 param. fit constrained such tha)=f,(0) —-led.o.f. =0.38 1

Lo i@

0 Ty (@) a

— "no" constraint: a < 10.0 led.o.f. =0.14

-~ unitarity constraint: a < 1.0 led.o.f. =0.35

- heavy quark constraint: a < 0.5x—24d.o.f. =0.56

N

=
T Sl T

f(@) and f(q?)
fq’) and £(d)

[Eny
T

o
o1

o
o N
T

Figure 3: Figure (a) shows the? extrapolation in which the kinematic constraint(0) = fo(0) is imposed
(blue solid) and in which it is not (red dashed). Both extlafions use a 3-parameteexpansion for the
form factors. Figure (b) shows the 3-parameter, kinemiicmnstrainedj® extrapolation for three different
bounds on the size of the coefficients in thexpansion. The blue solid curve comes from a loose bouged, th
red dashed curve comes from the unitarity bound, and the maget-dashed curve comes from the heavy
quark bound.

Because lattice simulations can calculate Bth- v form factors, theg? extrapolation of
f. in Fig. 2 only uses part of the available lattice data. Kingosaconstrain the two form factors
to be equal at zerg?, i.e. f,(0) = fo(0); thus one can in principle extrapolate bdth and fo
simultaneously while imposing the above kinematic comstit® improve the extrapolation error.
This procedure is shown in Fig. 3(a). As expected, combittieg . and fp data reduces the error
bars in the extrapolated value bf(0).

The unitarity bound on the size of the coefficients in#fexpansion, Eq. (2.3) comes from fact
that the decay rate to the exclusive charBieb i v must be less than the inclusiBemeson decay
rate. It is observed, however, that the coefficients areafigtmuch smaller than what is predicted
by the unitarity constraint alone. Becher and Hill explditiee size of the series coefficients using
heavy-quark power-counting arguments in Ref. [9]. Thetlzat, as the mass 8 meson increases,
its branching fraction to any particular exclusive charetreases, allowed them to calculate the
branching fraction for the semileptonic decBy— rlv as a power of\qcp/me. They used this
result derive an even tighter bound on the size of the coeffiisiof the form factoz-expansion:

N 3
A\
2 < <—> , 4.2
k;aK “ i (4.2)
where they estimate th@t/mg ~ 0.1. Using this estimate, one should need only 3-4 parameters
to describe the form factors of the processes given in Taldel®6 accuracy. Figure 3(b) shows

the 3-parameteg? extrapolation off, and fg using three different constraints on the numerical
size of the coefficients: a loose constraint, the unitaritystraint, and the heavy quark constraint
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(where we have allowed/mg to be larger than the estimate in Ref. [9]). The three fits allehan
acceptabley?/d.o.f. and are consistent within 95% confidence level eraps.b

One might notice that, in Fig. 3(b), the central valuefef0) drifts downward as the con-
straints on the coefficients are tightened. There is nothimmyinciple wrong with this trend since
tightening the constraints adds new physics informatioevextheless, this trend could also be due
to an unaccounted-for systematic error. A possible cuipnihomentum-dependent discretization
errors(] a®p2 in the lattice data, which, when included, should cause itteeaf the error bars to
increase from right to left in Fig. 3(b). These errors shdaddncorporatedbefore performing the
¢? extrapolation, and we are in the process of doing so.

5. Summary

Lattice QCD calculations of thB — v semileptonic form factors are important for deter-
mining the CKM matrix elemend,,|. They are hindered, however, by the inability to accurately
calculate form factors at low?. This is typically dealt with by using a model to restrict #teape
of f(g?) vs. ¢?, thereby introducing a source of systematic error thatffcdit to quantify. Ana-
Iyticity, unitarity, and heavy quark physics can be comHdibt@constrain the shape of semileptonic
form factors in a model-independent way using only a smathiper of fit parameters. We have
studied the effect of these constraints on ¢ieextrapolation using data from a single ensemble
and the results look promising. We will integrate continuand chiral extrapolations and other
systematic errors in the near future. Using this method, aveabtain théB — mlv semileptonic
form factors to improved accuracy using the lattice QCD daah we already have.
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