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This contribution presents preliminary results on the inclusive jet production in pp̄ collisions at
√

s = 1.96 TeV.
The measurements are carried out using the longitudinally invariant kT algorithm. The inclusive jet cross sections
are measured as a function of the jet transverse momentum in five jet rapidity regions for jets in the ranges
54 < pjet

T < 700 GeV/c and |yjet| < 2.1. The results are based on 1.0 fb−1 of data collected at CDF during the
Run II of the Tevatron. They are in good agreement with next-to-leading order perturbative QCD predictions
after including the non-perturbative corrections necessary to account for underlying event and hadronization
effects.

The measurement of the inclusive jet produc-
tion cross section at the Tevatron constitutes an
important test of perturbative QCD (pQCD) pre-
dictions. As a function of the jet transverse mo-
mentum, the cross section extends over more than
eight orders of magnitude. The high pjet

T tail
probes distances down to about 10−19 m and is
sensitive to new physics [1]. This measurement
can also be used to constrain the Parton Dis-
tribution Functions (PDFs) at high x and high
Q2. Run I measurements [2,3] raised a great
interest on an apparent excess at high trans-
verse energy. This excess was finally explained
within the Standard Model by increasing the
gluon PDF at high x as suggested by global PDF
analyzes [4]. Recent PDF sets, such as Cteq6 [5]
and Mrst2004 [6], include Run I jet data in their
global fits.

The preliminary results presented here use a
data sample collected at CDF [7] during Run II
which corresponds to an integrated luminosity of
1.0 fb−1, over 10 times more than for the Run I
measurements. In addition, the jet production
rate at high pjet

T has significantly increased thanks
to the increase of the Tevatron center of mass
energy, from 1.8 TeV in Run I to 1.96 TeV in
Run II. It has been multiply by a factor five
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around 600 GeV/c for instance. Therefore, the
pjet

T coverage has been considerably extended, by
about 150 GeV/c for central jets.

The measurements are here performed in five
different jet rapidity regions up to |yjet| = 2.1 2

using the kT algorithm [8,9] to reconstruct the
jets. The previous study, based on 385 pb−1 and
limited to jets within 0.1 < |yjet| < 0.7, was re-
cently published [10]. The extension of the mea-
surement to forward jets is essential to better con-
strain the PDFs while searching for eventual ef-
fects from new physics at higher Q2 in the central
region.

In Run II, new jet algorithms are explored as
the cone algorithm used in Run I is not infrared
safe and compromises meaningful comparisons
with pQCD calculations [11]. Inclusive jet cross
section calculations would be affected at next-to-
next-to-leading order. As already mentioned, the
longitudinally invariant kT algorithm [8,9] is used
in this study. It merges pairs of nearby protojets
in order of increasing relative transverse momen-
tum. Inspired by pQCD gluon emissions, it is
infrared and collinear safe to all orders in pQCD.
Unlike cone based algorithms, it does not include
any merging/splitting prescription used to deal
with overlapping cones and allows a well defined
comparison with the theory without introducing

2|yjet| < 0.1, 0.1 < |yjet| < 0.7, 0.7 < |yjet| < 1.1,
1.1 < |yjet| < 1.6, and 1.6 < |yjet| < 2.1.
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Figure 1. Parton-to-hadron correction factors as a function of pjet
T obtained in the different rapidity

regions for jets reconstructed using the kT algorithm with a D parameter of 0.7.

any arbitrary parameter. On the other hand, it
can be more sensitive than cone algorithms to
soft contributions such as the underlying event or
multiple pp̄ interactions per bunch crossing. The
kT algorithm has a parameter D that approxi-
mately controls the size of the jets. The measure-
ments are done using a D parameter of 0.7. To
make sure that soft contributions are well under-
stood, they are also carried out with D = 0.5 and
D = 1.0 in the rapidity range 0.1 < |yjet| < 0.7.

Regardless of the jet algorithm used, proper
comparisons with the theory require corrections
for non-perturbative contributions. Those contri-
butions come from the underlying event and the
hadronization processes and become more and
more important as pjet

T decreases: they could
explain the marginal agreement obtained in the
DØ Run I study of the inclusive jet cross section
using the kT algorithm [12]. The correspond-
ing parton-to-hadron correction is derived with

Pythia 6.203 [13] as the ratio of the predicted
inclusive jet cross sections at the hadron level 3

on one hand, and at the parton level 4 turning
off the interactions between proton and antipro-
ton remnants, on the other hand. A special set of
parameters, tuned on Run I CDF data to repro-
duce the underlying event activity and denoted as
Pythia-Tune A [14], is used. Tune A has been
shown to properly describe the jet shapes mea-
sured in Run II [15]. The parton-to-hadron level
correction is also evaluated with Herwig 6.4 [16].
The difference between the two Monte Carlos is
considered as the systematic uncertainty on the
correction.

Figure 1 shows the parton-to-hadron correc-
tions derived in the different rapidity regions.
This correction is only significant at low pjet

T

3The hadron level is defined using all final-state particles
with lifetime above 10−11 s.
4The parton level is defined using the partons after final
state radiations, i.e. just before hadronization.
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Figure 2. Inclusive jet cross sections as a function
of pjet

T measured in five rapidity regions using the
kT algorithm with a D parameter of 0.7 (filled
squares) and their comparisons to NLO predic-
tions (open circles).

where it reaches 19% with a relative uncertainty
of ±12% for instance in the rapidity region 0.1 <
|yjet| < 0.7.

Figure 2 shows the measured inclusive jet
cross sections in the five rapidity regions and
their comparisons to next-to-leading order (NLO)
pQCD predictions which were calculated with Je-

trad [17] using Cteq6.1m PDFs [5] and set-
ting the renormalization and factorization scales
to max(pjet

T )/2. Those predictions are corrected
to the hadron level as previously discussed to ac-
count for underlying event and hadronization ef-
fects.

Figure 3 shows the ratios Data/Theory in the
five different rapidity regions. The experimental
uncertainties are dominated by the uncertainty
on the absolute jet energy scale which is known at
a level of ±2% at low pjet

T to ±3% at high pjet
T [18].

An additional ±5.8% normalization uncertainty

associated with the luminosity measurement is
not included on the plots. The main uncertainty
on the pQCD prediction comes from the PDFs,
especially from the limited knowledge of the gluon
PDF at high x. The theoretical predictions are
in good agreement with the measured cross sec-
tions over the whole transverse momentum and
rapidity range. Specifically, no significant devi-
ation from pQCD is observed at high pjet

T . Fig-
ure 3 also shows that Mrst2004 predictions are
well within theoretical and experimental uncer-
tainties. The uncertainty on the measured cross
section in the most forward region at high pjet

T ,
compare to that on the theoretical prediction, in-
dicates that the preliminary results reported in
this contribution will help to better constrain the
gluon PDF at high x.

In the rapidity region 0.1 < |yjet| < 0.7, simi-
lar good agreements between data and theory are
observed using a D parameter of 0.5 and of 1.0.
This shows that soft contributions are well under
control as their importance depends a lot on the
size of the jets. At low pjet

T , the non-perturbative
correction is for instance 9% for D = 0.5 and 37%
for D = 1.0. Even though the correction itself
rapidly increases with D, the corresponding rela-
tive uncertainty depends a lot less on the choice
of the D parameter: at low pjet

T , it only increases
from ±10% for D = 0.5 to ±17% for D = 1.0.

In conclusion, NLO pQCD predictions are in
good agreement with the measured inclusive jet
cross sections which extend over more than eight
orders of magnitude. The presented study include
a careful treatment of non-perturbative effects
such as the Underlying Event which are found to
be well under control. Those measurements may
be used in future PDF global fits to better con-
strain the gluon PDF at high x, in this respect
forward jets appears to be essential.
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Figure 3. Ratios Data/Theory as a function of pjet
T in the different rapidity regions for jets reconstructed

using the kT algorithm with a D parameter of 0.7.
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