
Abstract—Standard least-squares curved track fitting process 
is tailored for FPGA implementation.  The coefficients in the 
fitting matrices are carefully chosen so that only shift and 
accumulation operations are used in the process.  The divisions 
and full multiplications are eliminated.  Comparison in an 
application example shows that the fitting errors of the low 
resource usage implementation are less than 4% bigger than the 
fitting errors of the exact least-squares algorithm.  The 
implementation is suitable for low-cost, low-power applications 
such as high energy physics detector trigger systems. 
 

Index Terms—Trigger, Track Fitting, FPGA Firmware, FPGA 
Computation 
 

I. INTRODUCTION 
N high-energy physics experiment detectors, track fitting is 
normally considered as a software task in the higher level 

trigger stage or analysis stage.  Although direct porting the 
fitting algorithm into today’s large size FPGA is not 
impossible, the cost and power consumption quickly become 
concerns without careful resource usage control.  In fact, many 
silicon area and power consuming operations like 
multiplications and divisions in many algorithms can be 
eliminated or replaced by low resource usage operations such 
as shifts, additions and subtractions.  A process deviating from 
the mathematically accurate one certainly produces less perfect 
results.  However, significant reduction in FPGA logic 
elements and power consumption overweighs small 
imperfectness. 

In this paper, we describe a curved track fitting functional 
block suitable for FPGA implementation.  The fitting is based 
on standard least-squares algorithm with modifications on the 
matrix coefficients to eliminate divisions and full 
multiplications.  The functional block is designed to match 
data fetching speed so that it can be used to process flowing 
data stream in trigger and DAQ systems. 

The FPGA track fitter was developed for the level 1 pixel 
trigger of the Fermilab BTeV experiment[1][2].  The pixel 
detector consists of measurement planes as shown in Fig. 1. 
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The hits on pixel planes are first grouped into track 
segments in the FPGA segment tracker using a triplet finding 
algorithm like Tiny Triplet Finder (TTF)[3].  Then the hits 
from a track are grouped together, followed by track fitting, 
i.e., calculation of the track parameters.  In the original 
baseline of BTeV trigger system, the track fitting is done in the 
trigger CPU farm partially because the hits from full detector 
are not switched together until reaching the CPU farm.  With 
our 2004 architecture [4], events are built parasitically in the 
early stages.  Therefore, hits from full detector are available in 
the FPGA segment tracker, which makes it possible to perform 
track fitting in FPGA. 

II. PRINCIPLE 

A. Computations for Track Fitting 
The track is projected to both the non-bend and bend views 

and its equations can be written approximately: 
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Either a track has odd or even number of hits, a center of the 
track is chosen with z=z0 as shown in Fig. 1.  The parameters 
x0 and y0 are offsets of the track and l and h are slopes at track 
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Fig. 1.  Tracks in multi-plane detector: (a) The configuration for tracks with 
odd number of hits.  (b) The configuration for tracks with even number of 
hits. 

FERMILAB-CONF-06-417-E



center.  The parameter η represents the curvature of the track 
that represents track momentum.  With a set of coordinate 
measurements xi and yi, the parameters of the tracks can be 
found with the following linear combinations. 
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The coefficients can be chosen nearly freely as long as the 
following constraints are met: 
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Depending on the choice of the coefficients in the linear 
combination, the errors of the fitting can be different and the 
coefficients derived from the least-squares fitting provide 
minimum errors for track reconstruction. 

B. Non-Division Integer-Only Operations for FPGA 
In general, the computations above need floating point 

multiplications and divisions.  To simplify the computation so 
that it can be done in FPGA with low resource usage, the 
advantage of invariance of Equations (2) through (7) under re-
scaling can be taken.  Each set of coefficients can be 
multiplied with a common factor so that the sums in the 
denominators in Equation (2) become 32, 512 or 4096.  The 
constraints for the coefficients can be summarized as 
following: 
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Then the linear combinations for calculating the track 
parameters can be rewritten: 

η4096][][4096

512][][51232][][32

512][][51232][][32

0

0

≈=

≈=≈=

≈=≈=

∑

∑∑

∑∑

i

ii

ii

iyieeta

hiyidhhyiyicyy

lixibllxixiaxx
(13) 

The unit of measured coordinates x[i] and y[i] are chosen so 
that they are integers.  For example, the channel number in the 
silicon pixel detector can be used as the hit coordinates.  The 

coefficients in the linear combinations are also chosen to be 
integers and the results of the linear combinations: xx32, ll512, 
yy32, hh512 and eta4096 are also integers, representing the 
corresponding parameters scaled by factors of 32, 512 and 
4096, respectively.  Note that divisions are not needed 
anymore.  The only computations needed in Equation (13) are 
integer multiplications and accumulation. 

The unit in z direction is chosen so that the separation 
between two detector planes is 2.  In this unit, the possible 
values of (zi - z0) are also integers, which are even when the 
number of hits is odd with the middle plane being 0 and are 
odd when the number of hits is even with the two center 
detector planes being -1 and +1. 

C. Eliminating Full Multiplications 
To reduce computations further, the coefficients in the 

linear combinations are limited to the “weight-two” or “two-
bit” integers, e.g. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 
which are 2m+2n or 2m-2n with positive integers m and n. An 
example of choosing e[i] for tracks with odd numbers of hits is 
shown in Table I. 

 
The columns of ei in Table I represent coefficients derived 

from the least-squares fitting.  The e[i] coefficients are chosen 
in a spread sheet, guided by the ei coefficients.  Since the 
parameterization of the track in Equation (1) is chosen with 
symmetry around z0, the coefficients for the least-squares 
fitting are also symmetric.  Some symmetric properties are 
sufficient conditions for certain constraints in Equations (8) 
though (12).  For example, the symmetric property ei = e-i 
exists and it is a sufficient condition for the constraint Σei(zi-
z0)=0 making it satisfied automatically.  Appropriate 
symmetries are programmed in the spread sheet cells so that 
the constraints and scaling requirement are satisfied with 
minimum hand editing.  In our work, the coefficient selection 
is semi-automatic, partially for purpose of our own better 
understanding to the problem.  Clearly it is not too difficult to 
write a program that chooses the coefficients automatically. 

The relative errors contributed by the parameter η for both 

TABLE I
COEFFICIENTS FOR THE FPGA TRACK FITTER (CURVATURE, ODD HITS)

Half-length of the Track 
16 14 12 10 8 6 4 

z-z0 ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i]
-16 5.3 6
-14 3.3 2 7.5 8
-12 1.6 2 4.3 4 11.3 12
-10 0.1 0 1.6 2 5.6 5 17.9 18

-8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31
-6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
-4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
-2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
0 -3.2 -2 -4.6 -2 -7.2 -8 -11.9 -14 -22.2 -20 -48.8 -56 -146.3 -160
2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31

10 0.1 0 1.6 2 5.6 5 17.9 18
12 1.6 2 4.3 4 11.3 12
14 3.3 2 7.5 8
16 5.3 6

Error 2.91 3.02 3.05 3.15 3.22 3.26 3.41 3.43 3.65 3.65 3.93 3.99 4.28 4.29
Ratio 1.04 1.03 1.01 1.00 1.00 1.02 1.00



algorithms are calculated.  The error here is defined as 
transverse reconstruction RMS error after projecting the track 
by half-length (L/2) from first or last hit of the track, with unit 
of the RMS error for the y[i] measurements.  Assume the 
errors of y[i] measurements δyi are independent and they have 
a same RMS value δy, then the error of calculating parameter 
η can be estimated: 
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The assumption of independence of the measurement errors 
may be violated if most tracks are high momentum and parallel 
but it is a good approximation for typical detector 
configuration.  The transverse reconstruction RMS error δY
after projecting the track by half-length from first or last hit of 
the track, i.e., (z-z0) = 2(L/2), can be calculated: 
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Note that the “projecting” here should just be viewed as a 
rescaling process to bring the fitting error of a parameter to a 
convenient unit.  It is an estimate for a single parameter only.  
If, for example, the vertex measurement error is needed, the 
errors for all parameters should be considered simultaneously 
since they could be correlated.  The coefficients e[i] for tracks 
with even numbers of hits is shown in Table II. 

 
The relative errors contributed by the parameter η for both 

algorithms are also calculated in Table II. 
From Tables I and II, it can be seen that the errors increases 

for approximate algorithm with the two-bit integer-only 
coefficients comparing with the mathematically perfect least-
squares algorithm.  However, the imperfectness of coefficients 
for the FPGA fitting algorithm increases the track 
reconstruction errors only slightly (less than 4%).  

III. FPGA IMPLEMENTATION 
The block diagram of the FPGA performing the track fitting 

functions is shown in Fig. 2.  The hit coordinates x(i) and y(i) 
are clocked through the fitter, one clock cycles per number.  

 
For each parameter, an accumulator is used to calculate the 

linear combination.  The coordinate data is shifted through a 
logarithmic shifter by pre-defined numbers of bits that are 
stored in the constant memory.  The shifted version of the 
coordinate is added to or subtracted from the accumulator. 

Each coordinate is shifted and added/subtracted twice that is 
equivalent to multiplying the coordinate by a two-bit integer 
and accumulating for the linear combination.  The operation 
uses two clock cycles that matches the number of cycles 
needed to fetch a pair of coordinates x(i) and y(i). 

For a fitter processing 16-bit coordinates, 630 logic 
elements can be accounted for in the register, shifter & 
accumulator blocks for the 5 parameters.  The silicon resource 
usage of this portion is about 11% of a $30 Altera EP1C6 [5] 
device. 

IV. FITTING ERRORS AND DISCUSSIONS 
The coefficients of fitting matrix for the other two 

parameters of a curved track yy32 and hh512 are also 
calculated using similar procedures as shown in Table III-VI.  
The coefficients chosen are two-bit integers.  The relative 
fitting errors contributed by these two parameters are also 
calculated.  The relative errors contributed by the three 
parameters with different track lengths for both least-squares 
and approximate algorithms are plotted in Fig. 3. 

Fig. 2.  The FPGA track fitter. 

TABLE II 
COEFFICIENTS FOR THE FPGA TRACK FITTER (CURVATURE, EVEN HITS)

Half-length of the Track 
15 13 11 9 7 5 3 

z-z0 ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i]
-15 6.3 6
-13 3.8 4 9.1 9
-11 1.6 2 4.9 5 14.1 14

-9 -0.2 0 1.4 1 6.4 7 23.3 24
-7 -1.6 -2 -1.4 -1 0.3 0 7.8 8 42.7 40
-5 -2.7 -4 -3.5 -2 -4.3 -5 -3.9 -6 6.1 10 91.4 96
-3 -3.4 -2 -4.9 -6 -7.4 -9 -11.6 -14 -18.3 -14 -18.3 -32 256.0 256
-1 -3.8 -4 -5.6 -6 -9.0 -7 -15.5 -12 -30.5 -36 -73.1 -64 -256.0 -256
1 -3.8 -4 -5.6 -6 -9.0 -7 -15.5 -12 -30.5 -36 -73.1 -64 -256.0 -256
3 -3.4 -2 -4.9 -6 -7.4 -9 -11.6 -14 -18.3 -14 -18.3 -32 256.0 256
5 -2.7 -4 -3.5 -2 -4.3 -5 -3.9 -6 6.1 10 91.4 96
7 -1.6 -2 -1.4 -1 0.3 0 7.8 8 42.7 40
9 -0.2 0 1.4 1 6.4 7 23.3 24

11 1.6 2 4.9 5 14.1 14
13 3.8 4 9.1 9
15 6.3 6

Error 2.98 3.04 3.13 3.17 3.31 3.34 3.53 3.57 3.78 3.82 4.09 4.13 4.50 4.50
Ratio 1.02 1.01 1.01 1.01 1.01 1.01 1.00



The approximate algorithm used in FPGA increases the 
fitting errors for all parameters as expected from mathematic 
principle.  However, the differences are very small.  In other 
words, the fitting errors are relatively insensitive to the 
variations of the coefficients of the fitting matrix. 

It can be seen from Fig. 3 that the relative error contributed 
by the curvature parameter is significantly higher than the 
errors contributed by the offset and slope parameters.  We will 
focus on the curvature parameter in our discussion. 

In general, fitting of longer tracks yields smaller errors due 
to two reasons: longer lever arms and more measurement 
points.  In order to compare these two effects, relative errors 
contributed by the curvature parameter calculated with several 
fitting schemes are plotted in Fig. 4. 

In addition to the least-squares algorithm and the FPGA 
approximation shown in Table I and II, two other “3-point” 
algorithms are also studied.  One of the 3-point schemes 
calculates eta4096 using hits of the first three detector planes 
at the beginning of a track.  In this case, the lever arm is a fix 
length, despite of extra length provided by additional planes.  
This scheme produces largest errors.  When the track is 
projected over long distances, the errors increase rapidly.  The 
calculation method of this scheme is the simplest.  However, 

TABLE VI 
COEFFICIENTS FOR THE FPGA TRACK FITTER (OFFSET, EVEN HITS)

Half-length of the Track 
15 13 11 9 7 5 3

z-z0 ci c[i] ci c[i] ci c[i] ci c[i] ci c[i] ci c[i] ci c[i] 
-15 -2.2 -2
-13 -0.5 -1 -2.4 -3
-11 0.9 1 -0.2 0 -2.6 -2
-9 2.1 2 1.6 3 0.3 0 -2.8 -3
-7 3.1 4 3.0 3 2.6 2 1.2 1 -3.0 -3
-5 3.8 4 4.1 4 4.3 3 4.2 5 3.0 3 -3.0 -3
-3 4.3 4 4.8 4 5.4 7 6.2 7 7.0 7 7.0 7 -2.0 -2
-1 4.5 4 5.1 5 6.0 6 7.2 6 9.0 9 12.0 12 18.0 18
1 4.5 4 5.1 5 6.0 6 7.2 6 9.0 9 12.0 12 18.0 18
3 4.3 4 4.8 4 5.4 7 6.2 7 7.0 7 7.0 7 -2.0 -2
5 3.8 4 4.1 4 4.3 3 4.2 5 3.0 3 -3.0 -3
7 3.1 4 3.0 3 2.6 2 1.2 1 -3.0 -3
9 2.1 2 1.6 3 0.3 0 -2.8 -3

11 0.9 1 -0.2 0 -2.6 -2
13 -0.5 -1 -2.4 -3
15 -2.2 -2

Error 0.38 0.38 0.40 0.41 0.44 0.45 0.48 0.48 0.54 0.54 0.63 0.63 0.80 0.80
Ratio 1.01 1.01 1.02 1.01 1.00 1.00 1.00

TABLE V
COEFFICIENTS FOR THE FPGA TRACK FITTER (OFFSET, ODD HITS)

Half-length of the Track 
16 14 12 10 8 6 4 

z-z0 ci c[i] ci c[i] ci c[i] ci c[i] ci c[i] ci c[i] ci c[i] 
-16 -2.1 -2
-14 -0.6 -1 -2.3 -2
-12 0.7 1 -0.4 0 -2.5 -3
-10 1.8 2 1.2 1 0.0 0 -2.7 -3
-8 2.7 3 2.5 1 2.0 3 0.7 1 -2.9 -3
-6 3.4 3 3.5 4 3.6 4 3.3 4 1.9 2 -3.0 -3
-4 3.9 3 4.3 4 4.7 5 5.1 4 5.4 6 4.6 5 -2.7 -3
-2 4.2 4 4.7 5 5.4 4 6.3 7 7.5 6 9.1 7 11.0 12
0 4.3 6 4.8 6 5.6 6 6.6 6 8.2 10 10.7 14 15.5 14
2 4.2 4 4.7 5 5.4 4 6.3 7 7.5 6 9.1 7 11.0 12
4 3.9 3 4.3 4 4.7 5 5.1 4 5.4 6 4.6 5 -2.7 -3
6 3.4 3 3.5 4 3.6 4 3.3 4 1.9 2 -3.0 -3
8 2.7 3 2.5 1 2.0 3 0.7 1 -2.9 -3

10 1.8 2 1.2 1 0.0 0 -2.7 -3
12 0.7 1 -0.4 0 -2.5 -3
14 -0.6 -1 -2.3 -2
16 -2.1 -2

Error 0.36 0.37 0.39 0.40 0.42 0.43 0.46 0.46 0.51 0.51 0.58 0.59 0.70 0.70
Ratio 1.02 1.02 1.02 1.01 1.02 1.03 1.00

TABLE IV 
COEFFICIENTS FOR THE FPGA TRACK FITTER (SLOPE, EVEN HITS)

Half-length of the Track 
15 13 11 9 7 5 3 

z-z0 di d[i] di d[i] di d[i] di d[i] di d[i] di d[i] di d[i] 
-15 -5.6 -6
-13 -4.9 -5 -7.3 -7
-11 -4.1 -4 -6.2 -6 -9.8 -10
-9 -3.4 -3 -5.1 -5 -8.1 -8 -14.0 -14
-7 -2.6 -3 -3.9 -4 -6.3 -6 -10.9 -10 -21.3 -20
-5 -1.9 -1 -2.8 -4 -4.5 -5 -7.8 -8 -15.2 -16 -36.6 -36
-3 -1.1 -1 -1.7 -2 -2.7 -2 -4.7 -6 -9.1 -12 -21.9 -24 -76.8 -80
-1 -0.4 -1 -0.6 0 -0.9 -1 -1.6 -2 -3.0 0 -7.3 -4 -25.6 -16
1 0.4 1 0.6 0 0.9 1 1.6 2 3.0 0 7.3 4 25.6 16
3 1.1 1 1.7 2 2.7 2 4.7 6 9.1 12 21.9 24 76.8 80
5 1.9 1 2.8 4 4.5 5 7.8 8 15.2 16 36.6 36
7 2.6 3 3.9 4 6.3 6 10.9 10 21.3 20
9 3.4 3 5.1 5 8.1 8 14.0 14

11 4.1 4 6.2 6 9.8 10
13 4.9 5 7.3 7
15 5.6 6

Error 0.81 0.82 0.86 0.87 0.92 0.92 0.99 0.99 1.08 1.09 1.20 1.20 1.34 1.35
Ratio 1.01 1.01 1.00 1.00 1.01 1.00 1.01

TABLE III 
COEFFICIENTS FOR THE FPGA TRACK FITTER (SLOPE, ODD HITS)

Half-length of the Track 
16 14 12 10 8 6 4

z-z0 di d[i] di d[i] di d[i] di d[i] di d[i] di d[i] di d[i] 
-16 -5.0 -5
-14 -4.4 -4 -6.4 -6
-12 -3.8 -4 -5.5 -6 -8.4 -8
-10 -3.1 -3 -4.6 -5 -7.0 -7 -11.6 -12
-8 -2.5 -3 -3.7 -3 -5.6 -6 -9.3 -9 -17.1 -16
-6 -1.9 -2 -2.7 -3 -4.2 -5 -7.0 -7 -12.8 -12 -27.4 -28
-4 -1.3 -1 -1.8 -2 -2.8 -2 -4.7 -5 -8.5 -12 -18.3 -18 -51.2 -56
-2 -0.6 -1 -0.9 0 -1.4 -2 -2.3 -1 -4.3 -4 -9.1 -8 -25.6 -16
0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
2 0.6 1 0.9 0 1.4 2 2.3 1 4.3 4 9.1 8 25.6 16
4 1.3 1 1.8 2 2.8 2 4.7 5 8.5 12 18.3 18 51.2 56
6 1.9 2 2.7 3 4.2 5 7.0 7 12.8 12 27.4 28
8 2.5 3 3.7 3 5.6 6 9.3 9 17.1 16

10 3.1 3 4.6 5 7.0 7 11.6 12
12 3.8 4 5.5 6 8.4 8
14 4.4 4 6.4 6
16 5.0 5

Error 0.79 0.80 0.84 0.84 0.89 0.89 0.95 0.96 1.03 1.05 1.13 1.13 1.26 1.29
Ratio 1.00 1.01 1.01 1.00 1.01 1.00 1.02
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Fig. 3.  Relative errors between the least square fit and the FPGA fit. 



the results from this scheme is only useful as a coarse estimate 
of track momentum, it causes large errors due to short lever 
arm when the tracks are to be projected in long distance. 

 
The other 3-point scheme calculates the eta4096 using the 

first, the middle and the last hits of a track.  In this situation, 
advantage of the full length of the track is taken.  However, the 
information provided by the redundant measurements of the 
other points in the track is not used.  The relative errors when 
the track is projected over half-length are nearly a constant. 

The full-length 3-point scheme may appear to be simpler in 
computation than the FPGA fitting scheme, but actually it is 
not the case.  To calculate eta4096 using the 3-point scheme, a 
floating point multiplication is needed in order to bring results 
for different track lengths into a unified scale.  In the FPGA 
fitting scheme, the scale unification is achieved through 
choosing the two-bit coefficients. 

V. CONCLUSION 
A fitting algorithm suitable for FPGA implementation has 

been discussed.  With integer shifting and accumulating 
operations, the fitting errors in the approximate algorithm is 
only slightly larger than the errors of the least-squares fitting 
algorithm. 

Multipliers are now available in more and more FPGA 
devices today and it seems that eliminating multiplications is 
not as critical as several years ago.  Intrinsically, however, 
multiplication is a power and resource consuming operation.  
It is still a good practice to reserve multipliers to the processes 
in which multiplications absolutely can not be eliminated, or 
the substitution of the multiplications causes significant 
degrade of the quality of the results. 

Generally speaking, more computations yield better quality 
of the results.  From the 3-point schemes, to the FPGA fitter, 
to the least-squares algorithm, the fitting errors reduce as 
number of total operations increases.  However, after certain 
point, the quality of the results does not improve as rapidly as 
before.  It is common that large amount of computation brings 
only small improvement in the mathematically perfect 
algorithms.  So it is possible to find algorithms with reasonable 
amount of computations that produce sufficiently good results, 
as illustrated in this paper. 

APPENDIX 
In this section, we first define a matrix called algorithm 

matrix which represents a generic fitting algorithm.  Then we 
will show that the least-squares algorithm is a special case of 
the generic algorithms and compare their fitting errors. 

Consider fitting n measurement points with a set of m (m<n)
functions using various algorithms: 

)()()()( 221100 xvaxvaxvaxvay mm++++= L (A1) 
In fitting with parabola, e.g., the functions v0(x) v1(x), v2(x)

are chosen to be 1, x, x2. The parameters a0, a1 to am are to be 
evaluated through fitting the measurement data (x1, y1), (x2, y2)
to (xn, yn).  The x-coordinates here are known and can have 
any values.  We use an n-row by m-column matrix V = {vij} =
{vj(xi)} to denote the function values at the corresponding 
measurement points. 

Definition 1: The algorithm matrix g = {gji} is defined to be 
an m-row by n-column left inverse matrix of V:

mkjvgIgV jk

n

i
ikji ...1,0,

1
=== ∑

=

δ (A2) 

With an algorithm matrix g, the values calculated from the 
following linear combinations are called a set of fitting 
parameters under algorithm g:
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With constraints (A2), the parameters calculated in (A3) 
reduce to the “true” values if the fitting model (A1) is correct 
and there are no measurement errors.  In fact, if for a set of 
parameters A’ (the “true” values), the linear equation system 
Y=VA’ holds on all rows, then A = gY = gVA’ = IA’ = A’.

In general the left inverse g of n x m matrix V is not unique.  
For each parameter aj, there are n values of gji that satisfy 
(m+1) constraints which permits different values of gji to be 
chosen.  Each set of gji values corresponds to a particular 
fitting algorithm.  It can be shown that the least-squares fitting 
algorithm is a special case of the generic algorithms. 

We skip detailed deriving process of least-squares fitting 
and directly write done the final result: 
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We use G to represent the algorithm matrix of the least-
squares fitting.  Comparing with (A3), it can be seen that: 
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Clearly matrix G satisfies the left inverse constraints given 
in (A2): 

IVVVVGV TT == −1)( (A6) 
The least-squares algorithm is chosen as a reference.  All the 

other generic fitting algorithms are viewed as a deviation from 
the least-squares algorithm: 

jijiji gGggGg ∆+=∆+= (A7) 

It can be seen from (A7) and (A2) that the row space of ∆g
is orthogonal to the column space of V:
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Fig. 4.  Relative errors of several track fitting schemes. 



The equation (A8) is true for the difference of any two 
algorithms but we will use ∆g to denote only the difference 
between an arbitrary algorithm and the least-squares algorithm. 

Theorem 1: The row space of difference matrix ∆g of two 
algorithms is orthogonal to the row space of the algorithm 
matrix G of the least-squares fitting: 

0=∆ TgG  (A9) 
Combining (A5) and (A8) gives (A9).  In fact, (A5) 

describes that the row space of G is in the column space of V
and according to (A8) the row space of ∆g is orthogonal to any 
vectors in the column space of V including row vectors of G.

In order to visualize Theorem 1 in a picture, consider a 
linear fitting with three data points: (x1, y1), (x2, y2) and (x3, y3).  
The two columns in matrix V can be shown as two vectors in 
the R3 space: v0 = (x1

0, x2
0, x3

0)T = (1,1,1)T and v1 = (x1
1, x2

1,
x3

1)T as shown in Fig. 5. 

 
The row vector g1 of algorithm matrix g must satisfy the 

constraints g1v0=0 which is the equation of plane PA that is 
perpendicular to v0 and passes the origin.  The constraint 
g1v1=1 is the equation of plane PD that is perpendicular to v1

and passes point v1/(v1
Tv1)2. The vector g1 can only take 

values in the intersection of PA and PD.  Similarly, g0 can only 
take values in the intersection of PB and PC. 

The least-squares algorithm corresponds to the choice of G0

and G1 which are co-planar with v0 and v1 and have shortest 
lengths.  For any other algorithms, the algorithm vector g0 and 
g1 have longer lengths.  The differences (g0-G0) and (g1-G1)
are orthogonal to G0 and G1.

Now consider fitting error for each of the parameters a0, a1

to am. If the y-measurements are independents and they have a 
same standard deviation δy, the variations of the parameters 
can be written: 
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The square-sum in (A10) is actually the length of the row 
vector of the matrix g. It contains contributions from the least-
squares algorithm and the additions from the deviation: 
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The middle sum term in (A11) vanishes because from (A9), 

the row spaces of ∆g and G are orthogonal.  The variations of 
the fitting parameters due to measurement errors are simply 
composed with two parts: 
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The equation (A12) reflects a fact that the variation of the 
parameters is a minimum when the least-squares fitting 
algorithm is used.  Around this point, the fitting errors are 
relatively insensitive to the change of gji values allowing the 
user to choose different gji values to reduce total computations 
without increasing fitting errors significantly.  If, for example, 
all gji values differ from Gji values by 10%, the error of each 
parameter increases by only about 0.5% from the minimum 
value. 

The relative fitting errors of the curvature parameter η, (i.e., 
a2) with 17 measurement points for various algorithm 
deviations are shown in Fig. 6.  This is the case given in the 
columns with half length of the track =16 in Table I. 

 
The algorithm deviations are normalized by dividing the 

algorithm length of the least-squares fitting, i.e., the horizontal 
axis in Fig. 6 is square root of Σ∆g2i

2/ ΣG2i
2. The fitting errors 

are also normalized with the least-squares fitting result given 
in the first column of Table I.  The 17 independent 
measurement points construct a R17 space.  The 3 constraints 
that g2i must satisfy restrict the algorithm vector on a 14-
dimensional hyper-plane.  The parameters g2i (i.e., the e[i] 
values in second column of Table I) are chosen randomly 
deviating from the least-squares fitting algorithm.  The relative 
fitting errors behave as suggested in (A12). 
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Fig. 6.  Relative parameter fitting errors vs. the algorithm deviation 
 


