
CHEF: A FRAMEWORK FOR ACCELERATOR
OPTICS AND SIMULATION ∗

J.-F. Ostiguy and L. Michelotti
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Abstract

We describe CHEF, an application based on an extensive
hierarchy ofC++ class libraries. The objectives are (1) pro-
vide a convenient, effective application to perform standard
beam optics calculations and (2) seamlessly support devel-
opment of both linear and nonlinear simulations, for ap-
plications ranging from a simple beamline to an integrated
system involving multiple machines. Sample applications
are discussed.

INTRODUCTION

In the late 1980s, one of us (LM), initiated the develop-
ment of a suite of libraries dedicated to accelerator simula-
tion with an eye on non-linear dynamics [1]. The libraries
would take advantage of Automatic Differentiation (AD), a
then emerging technique (e.g. [2]). High order derivatives
are the backbone of perturbation analysis in nonlinear dy-
namics and AD can compute such derivatives to machine
precision, something that standard finite difference tech-
niques generally simply cannot deliver.
C++ had just arrived on the scene and was selected as

the implementation language because (1) by design, user-
defined types can have nearly the same status as native
types and (2) it provides comprehensive support for op-
erator overloading. An additional practical consideration
was that as, a superset ofC, C++ was well-positioned for
commercial success and long term viability. This certainly
turned out to be a correct assumption.

The vision was to create a framework allowing one to
construct applications treating both scalar and high or-
der computations on the same footing. In principle, all
code describing propagation of a particle through accel-
erator elements can be made to also implicitly keep track
of derivatives with respect to the phase space coordinates
through a simple formal type substitution. For example, a
Particle that would normally hold its phase space state in
sixdoubles needs only to be redeclared as aJetParticle
holding its state into sixJet objects. In this context, aJet
refers to a type which, in addition to its state coordinate,
also keeps track of derivatives up to some specified order
of the map involved in reaching that state.

To some extent, the initial vision was realized. Within a
few years, the code base reached a level of relative matu-
rity and the libraries were used in a number of specialized
applications. Although correct results were produced, it be-
came increasingly clear that the original design had serious

∗Manuscript authored by Universities Research Association, Inc.,̃ un-
der contract No.̃DE-AC02-76CH03000 with the U.S̃.D̃OE.

flaws. In particular, overhead associated with the utilization
of a general n-th order code to perform first order computa-
tions (the basis of beam optics) was simply too high. Fur-
thermore, for all the appeal and convenience of overloaded
operators, performance was not in line with other available
implementations of AD.

In mid-2003, a new development effort was initiated and
CHEF was born. The objectives were to build (1) a conve-
nient, intuitive general purpose optics tool supporting mul-
tiple popular platforms (2) a modern framework with high
level components applicable to design and commisionning
problems relevant to a next generation of machines (ILC,
LHC, high intensity proton driver etc.). A decision was
made to reuse a substantial portion of our existing code
base. However, although the original vision remained as
relevant as ever, a major overhaul –with emphasis on ef-
ficiency – was imperative. Algorithmic changes were in-
troduced and, in the process, advantage was taken of de-
sign idioms and features ofC++ not generally available a
few years ago. The details belong to another publication;
suffice it to say that for first order (optics) computations,
performance is now on par with codes based on conven-
tional matrices. For high order computations, performance
compares favorably to other available AD libraries. Finally,
special attention paid to memory management yielded a
substantially reduced dynamic memory footprint.

LIBRARY HIERARCHY

The CHEF framework is based on libraries and compo-
nents organized in a hierarchical manner as shown in Fig. 1.
Here, “hierarchical” refers to the fact that a library at a
given level only depend on the libraries located below it.
In this section we provide a brief description of each layer.
More details are given in the following sections.

mxyzptlk

We can only provide here a high level overview of au-
tomatic differentiation as implemented by themxyzptlk
library. Many interesting details are, unfortunately, be-
yond the scope of this article. mxyzptlk defines a
few basic types: Jet environment, Jet, Map and
LieOperator. Jet environment encapsulates proper-
ties of the work environment such as dimensionality of the
variable space, the maximum expansion order and the ex-
pansion reference point. In general, everyJet refers to a
specific environment;Jet algebra can involve onlyJets
with compatible environments. A this juncture, it should
be obvious thatJet is the fundamental data type that gen-

FERMILAB-CONF-06-373-AD



Figure 1: Hierarchical relation between CHEF and under-
lying libraries.

eralizes a conventional scalar variable. Loosely speaking,
it can be interpreted as a representation of a variable aug-
mented by the coefficients of a nth-order differential form.
A Map is simply a vector ofJet quantities; each com-
ponent describes the corresponding coordinate transforma-
tion. Through operator overloading,mxzypltlk provides
complete support for all basic operations onJets as well
as trigonometric functions, logarithms, exponential etc. In
addition, the composition operator allowsJets andMaps
to be concatenated, obviously an essential ingredient of ac-
celerator related computations. TheJet representation in
memory is sparse and ordered. Only monomonials with
non-zero coefficients are stored and always ordered by in-
creasingweightor total monomial order. The ordering is
naturally preserved by the fact that basic add and multiply
operations, in terms of which all other operations are ulti-
mately decomposed, are always carried out in ordered “reg-
isters” or “scratchpads” that comprise all possible mono-
mials. Elaborate reference counting and memory manage-
ment strategies are employed to make the computational
cost of instantiation and destruction of temporaries as low
as possible.

beamline

The beamline library supports a wide variety of stan-
dard accelerator components types i.e.sbend, rbend,
quadrupole, etc as well as thebeamline type which
is defined as a recursive to preserve hierarchical relations.
Internally, the library uses true canonical coordinates, not
optical coordinates. As a consequence,computation within
magnetic elements are performed using the true physical
field.

In contrast to many existing codes,no implicit assump-
tion is made about the the reference trajectory in individual
elements. The default propagation physics (based on ei-

ther on symplectic thin kicks or exact integration) through
any element can be overridden by the user. For exam-
ple, to speed up tracking, one could request physics based
on paraxial approximation in arc quadrupoles and a more
exact formulation for low-beta quadrupoles. Elements or
beamlines can be arbitrarily misaligned in three dimen-
sional space. Note that no implicit assumption is made
about the magnitude of the misalignments. Furthermore,
geometric edge focusing effects can be accounted for nat-
urally rather than through the introduction of artificial thin
edge focusing elements.

bmlfactory

Beamlines can be instantiated from a description in an
almost complete subset of the MAD8 language. Full sup-
port is provided for variable expressions. There are very
few limitations; the most significant omission is a lack of
support for macros. The parser islex andyacc based and
has been in use for a few years already. Very large and com-
plex MAD8 descriptions are routinely successfully parsed.
To accommodate the needs of the ILC project, a next gen-
eration parser capable of handling thexsif format (basi-
cally an extended version of the mad8 format suitable for
both linacs and rings) is currently in development. The new
parser will also lift restrictions with macros. Other parsers,
including a parser for the MAD9 sequence format adopted
by MAD-X exist, but are at this point, are not completely
functional.

physics toolkit

Thephysics toolkit library provides a collection of
standard optics and accelerator computations. Lattice func-
tions can be computed for both periodic and non-periodic
lattices. In addition to standard uncoupled lattice functions,
three different methods are provided to deal with coupled
lattice (1) the classical Edward-Teng functions, (2) lattice
functions based on spatial eigenmodes projections or (3)
a general beam envelope moment (σ−matrix) distribution.
Tools for normal form analysis are also available.

python-bindings

A substantial fraction of the libraries’ public interface is
available throughpython, a standard scripting language.
Theboost.python library is used to automatically gener-
ate binding code from a specification – written in pureC++
– in a simple declarative style reminiscent of IDL.

Of all the popular scripting languages available,python
provides one of the best “impedance match” toC++, that is,
object-oriented features such as operator overloading, in-
heritance relations and virtual functions have direct equiv-
alents inpython. A wide variety of existingpython wrap-
pers for linear algebra(e.g. LAPACK), signal processing,
image processing, networking etc, can be leveraged, result-
ing in a powerful facility that can be used to quickly proto-
type or develop accelerator simulation applications without



having to deal with the complexity, time and knowledge
overhead of a full-blown compilation based development
environment.

CHEF, THE APPLICATION

CHEF and its underlying libraries contain virtually no
platform specific code. The graphical user interface is
based on Qt, a popular portable application framework
available under various licenses, including the “free” QPL
and GPL licenses. CHEF currently runs on the Linux,
Sun/Solaris and Windows platforms; a Mac OS-X port
should be available soon.

MAIN INTERFACE COMPONENTS

CHEF is a graphical application with a Multiple Docu-
ment Interface (MDI), that is, all windows reside under a
single parent window. As show in Fig. 2, upon launching
the program, the user is presented with three main child
windows: a Beamline Browser, apython interpreter, and
a Message window. When beamlines are created, usually

Figure 2: CHEF’s default window layout, with the Beam-
line Browser on the left hand side.

as a result of reading in a MAD8 format input file, they
appear in the Beamline Browser window. The beamline is
displayed graphically as a hierarchical tree whose branches
can be expanded or collapsed with mouse clicks, in a man-
ner analogous to the familiar interface used for hierarchical
file directories. This provides a quick and efficient way of
displaying the overall logical organization of a beamline or
to home in on a region of interest. Beamline elements can
be selected according to various criteria: pre-assigned text
labels, element type, field strength, longitudinal position
etc. or even a logical expression involving a combination
of these criteria. Various operations can be performed on
the beamlines themselves (e.g. insert monitors at specific
locations); selected elements can also be used as input to
another function (e.g. group a number of elements together
to define a knob).

Thepython interpreter window provides an embedded
python interpreter that is CHEF aware, that is, all the li-
brary bindings are integrated and available. Generally, the

interactive interpreter is useful to run some quick tests or
get status information about the CHEF application inter-
nals. In general,python input is not entered interactively
but rather provided as separate input text file read either
through a single command issued a the interactive prompt
or an item in the main application menu. An important
fact is that the existence of the embeddedpython inter-
preter enables the invocation of CHEF in pure command
line mode (no GUI). Arbitrarily complex tasks (i.e. any
task that can be described in thepython language) can be
performed.

Finally, the Message window logs all warning and error
messages originating either from the application or from
the underlying libraries.

EDITOR

Lattice files can either be read and parsed directly, or
read into an editor and parsed interactively. In both cases,
the parser identifies all the beamlines defined in the file;
the user is subsequently presented with a dialog that allows
him to select the beamline(s) he wishes to instantiate. At
this point, the user is also allowed to override certain pa-
rameters such as the particle type or the beam energy. In
the event the parser encounters an error, the problematic
line is automatically highlighted in the editor window.

OPTICAL FUNCTIONS

As mentioned earlier, CHEF, the application, is meant to
be a convenient, easy to use, general purpose tool for optics
calculations. As such, it provides extensive capabilities to
compute, display and save either uncoupled or coupled lat-
tice functions for both periodic and non-periodic beamlines
(e.g. transfer lines). Sample output is presented in Figs. 3
and 4.

Figure 3: The standard optical function display. This sam-
ple shows the Tevatron lattice functions around the low-
beta region.

PHASE SPACE TRACKER

The phase space tracker (Fig. 5) allows one to interac-
tively display phase space Poincaré sections. Such a dis-



Figure 4: The optical functions presented in tabular form.

play can be used to visualize the structure of resonances
in a region of interest. Initial conditions of a particle
can be specified either explicitly or interactively. Phase
space coordinates are displayed as a persistent color-coded
point each time the particle returns within the Poincaré sec-
tion plane. Specifying a new initial conditions changes
the point color. Nominally, the tracker provides two two-
dimensional phase space cross-section displays. However,
because OpenGL is used to render the phase space display
window, it is also possible to generate three-dimensional
phase space displays e.g.(x, , y, px) or (x, px, py).

Figure 5: The phase space tracker.

TRACER

The tracer (Fig. 6) allows one to visualize the trajec-
tory(ies) of one or more particles. In the same manner
as the phase space tracker, trajectories are rendered persis-
tently using OpenGL (useful for periodic trajectories). The
use of OpenGL opens up the interesting possibility (unim-
plemented at this point) of visualizing beam envelopes and
apertures in three-dimensions.

SITE VIEWER

The site viewer (Fig. 7) provides a three-dimensional
display of a beamline in space. In addition, it allows one to
generate and save floor coordinates for all elements.

Figure 6: The trajectory tracer.

Figure 7: The site viewer. The display show a portion of the
Tevatron layout. Horizontal monitors have been highlited.

CONCLUSION AND FUTURE PLANS

After much effort, CHEF and its underlying libraries
have reached a point where they can be put to use and
applied to real problems. In particular, the code is being
used at Fermilab to study emittance preservation and beam-
based alignment in the ILC. Agreement with other codes
such as LIAR or Merlin is excellent and we anticipate
integrating recently developed linac-specific functionality.
Planned future improvements include support for physical
apertures (already partially implemented) and particle loss
as well as a basic matching capability.

REFERENCES

[1] L. Michelotti, “MXYZPTLK V 3.1 User’s guide: A C++ Li-
brary for Automatic Differentiation and Differential Algebra.
FERMILAB-FN-0535, Jan 1990.

[2] M. Berz, “Differential Algebraic Description of Beam Dy-
namics to Very High Orders”, Particle Accelerators 24 (1989)
109-124


