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The first precise measurement of the B? — B? oscillation frequency Am, with the CDFII experiment is summa-
rized in this talk. The measurement is performed with 1 fb6' of data collected at the Fermilab Tevatron hadron
collider. We find a signal consistent with flavour oscillations; the probability that such a signal is originated by
random fluctuations is 0.2%. We measure Am;s = 17.3175:33 (stat.) +£0.07(syst.)ps~* [1]. After a brief theoretical
overview, I will describe the experimental technique and show the results of the CDF analysis and the |Viq/Vis|

value we infer from this measurement.

1. Flavour oscillations

Flavour oscillations are a quantum phe-
nomenon in the neutral meson systems. They
occur via AF = 2 flavour changing weak inter-
actions; in the B meson sector (bg, with ¢ = d, s
for BY, BY) the amplitude of such a process is
proportional to the mass difference Am, of the
Hamiltonian eigenstates By 5 and B |

Amg ~mp, f5,Bp,|VigVis|* (1)

where m g, is the meson mass, ff;q Bp, are param-
eters accounting for the hadron matrix elements;
|VigVin| is the product of the CKM matrix ele-
ments accounting for weak coupling of the b and
q quark with the ¢t quark essentially. Thus, the
measurement of the Am, together with the the-
oretical calculation of the non perturbative pa-
rameters produces a constraint on the size of the
unitarity triangle (UT) in the B sector. Further-
more, while in the Standard Model (SM) the only
relevant coupling of the b quark is with the top
quark, other theories beyond the SM, like Super-
symmetry, predict the existence of new particles,
some of which can interact with the b quark in
the mixing phenomenon and contribute to give
a Amg value away from SM predictions. The
mixing frequency Amg in the BY sector is al-
f?;dBBd
fgs Bp,

ready well known [2]. Since the ratio £ =
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from lattice calculations is known with a bet-
ter precision than the single factors, a measure-
ment of the ratio Amy/Amyg is expected, that
would produce a corresponding |Vis/Via| mea-
surement with a ~ 4% error. The SM expec-
tation for the frequency is Am, ~ 20 ps—! (e.g.
Amg = 21.5 £ 2.6 ps~! [3]); that is, the B are
predicted to oscillate ~ 40 times faster than the
B,.

2. Analysis outlook

The probability density Py (P_) for a B) me-
son produced at a proper time ¢ = 0 to decay
with the same (opposite) flavour at a time ¢ is
expressed by

Pa(t) = %e—wu + cos(Amyb)] @)

I'; being the decay width of the two mass eigen-
states. From this Probability Density Function
(PDF) we extract the value of Amg in the B
system using the method of maximum likelihood.
We use 1 fb~! of data collected by the CDF II
detector in p — p collisions at /s = 1.96 TeV at
the Fermilab Tevatron collider.

In order to perform a likelihood based fit in the
proper time domain, we:

e reconstruct the B, final states in hadronic
(B - Drr=,Dfr=m*tn~) and semilep-



tonic (B® — DF™e=w, ¢ = e,p) decay
channels into charged particles only;

e calculate the proper decay time of each B
from the distance of the production and
decay vertices in the transverse plane, the
reconstructed momentum and the meson
mass m(B;) = 5.3696 GeV/c? [2];

e determine whether the meson contained a b
or b quark when it was produced, using both
the correlation of the flavour with the lead-
ing products of the fragmentation that orig-
inated the B, and the flavour of the other
b created.

The hadronic and semileptonic modes are com-
plementary since while the first have a bet-
ter proper-time resolution and thus provide us
with a better sensitivity to rapid oscillations, the
semileptonic sample is & 10 times larger; their
decay-time resolution is worsened due to the un-
measured ¥ momentum.

3. Final state selection

Both hadronic and semileptonic decay modes
are selected using a dedicated 3-level trigger
based on the Silicon Vertex Trigger: this exploits
the kinematics of charm and bottom hadron
decays and their feature to be long-lived par-
ticles. In particular, the main requirements
are to have 2 tracks of opposite electric charge
and an impact parameter 120 pum < |do| <
1000 pm; together with that, both are re-
quired to have p; > 2.0 GeV/c and pi1 +
P2 > 5.5 GeV/c. We reconstruct several D fi-
nal states: D} — ort, K*(892)°K+ ntr 7™,
where the resonances decay as ¢ - KTK~ and
K*(892)° — K*r~ respectively. They are also
required to be compatible with the known mass
and width values [2]. The resulting D, mesons are
then associated with other tracks to form D4,
Dfrn~ and D}n ntm—; a spatial constraint is
introduced for them plus any other tracks asso-
ciated to the B; to originate from the same 3-D
decay vertex. In the semileptonic case, muons
and electrons are identified via a likelihood using
muon chamber and electromagnetic calorimeter
information.
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3.1. Hadronic decays

A final yield of &~ 3600 hadronic signal events is
selected for the mixing analysis. An example dis-
tribution of the B — D (¢n~)n+t is showed in
fig.1. To remove contributions from partially re-
constructed decays we require that the decay can-
didate have M > 5.3 GeV/c?. Candidates with
M > 5.5 GeV/c? are used to build PDF’s for com-
binatorial background. The “shoulder” at lower
mass values is mainly produced by decays of the
kind B? — D+ (D}~)n~ or B — D} p~(m—7°),
where the neutral particles have not been de-
tected. CDF is presently working to include these
modes in the mixing framework.

CDF Run Il L=1fb™
—— data
"8 600 — it
> U :
2 B, -~ D,
IS satellites
& 4001~ combi bkg
0 ) 0o
g M i Be-on
= y 4
B 200
3
O
o‘m‘m””m”

5.0 55 6.0
Mass(@(K K)T,i) [GeVic)]

Figure 1. Invariant mass distribution of the B —
D, (¢m )t decay.

3.2. Semileptonic decays

A total of ~ 37000 semileptonic B, events
have been selected. Due to the unmeasured mo-
mentum from neutral particles, no B, mass can
be reconstructed. Nevertheless, we see that the
combined use of the D, mass and the ¢D, mass
(m(£Dy)) is effective in rejecting most of the var-
ious sources of background present, among which
the association of a signal Dy and a fake lepton
coming from the primary vertex and the decays



Measurement of By oscillations at CDF

of the kind B - XD;D(— £vY). The £D; mass
plot is showed in fig.2.
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Figure 2. Mass distribution £ + D;,.

4. Proper time determination

The decay time in the B, rest frame is given
by

t =k x [Lt m(B;)/pr] 3)

where Ly is the proper decay length of the B, me-
son in the transverse plane; the factor £ accounts
for missing momentum in the semileptonic decays
(that is, it is 1 for fully reconstructed events).
The trigger lower cuts on the impact parameter
and other proper decay time cuts introduce a bias
on the proper time distribution. To correct for
this and obtain an unbiased determination of the
proper decay time of our By, a detailed simulation
of the trigger and detector effects is performed.
The parameterization of the trigger efficiency is
then validated by performing a lifetime measure-
ment of the various B mesons accordingly. The
results are reported in tab.l. The associated sys-
tematic uncertainty is found to be negligible for
mixing measurements.

4.1. Proper time resolution

The estimate of the decay-time resolution
o(ct;) is performed for each event starting from
the measured track parameters and the relative
uncertainties. We also calibrate such estimate on
a large DT data sample combined with one or
three prompt tracks to mimic the B°-like decay
topologies.
In the case of the fully reconstructed decays, the
uncertainty on the absolute time scale is domi-
nated by the resolution on the position of the pri-
mary vertex. In order to improve this contribu-
tion, we determine it on an event-by-event basis.
The average decay time resolution obtained as
such is < o(ct) >= 25.9 um, which corresponds
to £ an oscillation period at the lower limit on
Amg (14.5 ps~'). Its distribution is showed in
fig.3. For semileptonic decays, the distribution
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Figure 3. Proper time resolution for the fully re-
constructed hadronic decays.

of the k factor is determined from Monte Carlo
simulation. The fraction of B momentum carried
by undetected particles is a relevant contribution
to the final proper-time resolution and cannot be
neglected with respect to the one coming from



Table 1
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Lifetimes of the B mesons and comparison with the HFAG average values. The HFAG value for the B,

is measured from B, — flavour specific modes only.

HFAG cr, um

Decay mode CDF cr, um
BY - Dt 452.1+£ 5.1 (stat.)
B~ — D%~ 491.1+ 5.1 (stat.)

B - D7 (3)r+ 461 + 12 (stat.)

458.7 + 2.7 (stat.)
491.1 + 3.3 (stat.)
432 + 20 (stat.)

The HFAG values are given in ref. [4].

vertex determination. To reduce this effect and
increase the sensitivity of semileptonic modes to
mixing, we determine the k factor distribution as
a function of m(¢Dy).

5. Flavour tagging

The flavour of the B, at production is de-
termined using both opposite-side and same-side
flavour tags. The tagging effectiveness is given
by the figure-of-merit e D2, where ¢ is the frac-
tion of signal candidates with a tag associated,
and D = 1 — 2w the dilution; w is the probability
that the tag is incorrect.

The Opposite Side Taggers infer the initial
b—flavour of the mixing candidates by looking at
the decay products of the other b produced in the
incoherent b — b pair production at the Tevatron.
We use lepton (¢ = e, u) charge and jet charge,
whose sign is correlated with the flavour of the
away b. The leptons are selected using a likeli-
hood technique that exploits the muon detector
and the electromagnetic calorimeter. The overall
charge of the OS b-jet is calculated by weight-
ing each track in a given cone around the jet
axis for their p;; three different types of jets are
considered, according to the degree of displace-
ment from the primary vertex of the jet tracks.
The Opposite Side Taggers are combined exclu-
sively such that the higher dilution taggers (lep-
ton taggers) are preferred to the jet charge. The
overall Opposite-Side tag dilution is measured on
a mixed B~ and BY sample, using a combined
mass-lifetime fit that also returns a measurement
of Amy. We find e D? = 1.47+0.10 % on hadronic
decays and eD? = 1.44 4+ 0.04 % on semileptonic
modes.

We also make use of Same-Side tags: those tag
the flavour of the candidate B by looking at the
charge of the leading product of the fragmenta-
tion process that produced the reconstructed B.
In particular, a B (B?) is likely to be produced
close to a K~ (KT). The main advantage of such
an algorithm is the large acceptance to the tag-
ging tracks since they are spatially close to the
triggered B. A combined Particle Identification
technique is used to separate kaons from other
particle species; this uses the specific ionization
dE/dx in the COT and the particle’s Time-Of-
Flight. The track with the largest kaon likelihood
is selected to tag the b flavour. Since the dilution
depends specifically on the meson type, we cannot
measure it using BY and BT samples. Thus, we
predict the dilution using a simulated sample gen-
erated with the PYTHIA Monte Carlo [5], after an
extensive data-MC comparison of fragmentation-
related quantities. Such a prediction is checked
on other species and systematic uncertainties on
the agreement are evaluated accordingly. We find
eD? = 35+£05 % (eD? = 404 0.6 %) for
hadronic (semileptonic) decays.

6. Results

The search for B, oscillations is performed us-
ing an unbinned maximum likelihood fit. The
likelihood combines all the above ingredients:
mass, decay-time, decay-time resolution and
flavour tag for each candidate, distinguishing be-
tween the signal and the various types of back-
ground assessed for each decay mode. We per-
form an amplitude scan [6] by introducing a term
A in the mixing part of the signal likelihood:

L~ %e‘t/T(l + A-D - (Amst)) (4)
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and fitting for oscillations while fixing Am; at
a probe value. A is expected to be consistent
with unity at a given Am, if mixing is detected
and with 0 elsewhere. The sensitivity is defined
as the maximum value of Am, where A = 1 is
excluded at 95% C.L. if the measured value of
A were 0. Fig.4 shows the result of the com-
bined hadronic and semileptonic scan we per-
form with the 1 fb—! data sample. CDF has
a sensitivity of 25.8 ps~—! and exceeds the com-
bined sensitivity of all previous experiments [2].
A value A = 1.03 + 0.28 (stat.) is found at
Amg = 17.3 ps~!. The value is 3.7 o away from
0. The significance of such a peak is evaluated
by calculating the quantity A = log(L£LA=0/LA=1)
for each probe frequency Amg,. The likelihood
ratio is shown again in fig.4. The minimum at
Amg, = 17.3 ps—! has a value A = —6.75. Given
this profile, we can evaluate the probability of
null-experiment p = 0.2%, by producing a set of
50000 fits with random tag decision and count-
ing how many times the fit would return a value
< —6.75. The p value corresponds to a signifi-
cance > 30. In order to increase the significance
of our measurement on this same set of data we
are working toward the inclusion of partially re-
constructed hadronic decays and a refinement of
the selections of both hadronic and semileptonic
decays. Finally, also our flavour tagging system is
being enhanced by introducing a Neural Network
to combine Opposite-side taggers and enhance
Same Side Kaon Tagger; and an Opposite Side
Kaon Tagger is now in place, with eD? = 0.23 £+
0.02 %. From the likelihood itself we measure
Amg = 17.317033 (stat.) £0.07(syst.)ps~!, in the
signal hypothesis. The only non-negligible sys-
tematic uncertainty comes from our knowledge of
the absolute decay-time scale. This value agrees
with the SM predictions (e.g.[3]) well within 20.
This can also be translated into an estimate of
the contribution of New Physics to the mixing
hamiltonian, Cp, = 207" = 0.97 +0.27 [3],
which is compatible with unity (SM-only con-
tributions) with an uncertainty already smaller
than for the By system. Finally, using the in-
put values m(B°)/m(B?) = 0.98390 [7], Amg =
0.505 + 0.005 [2] and & = 1.21073:947 [8], we infer
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Figure 4. Upper: amplitude scan; the lighter
band represents the statistical uncertainty, the
darker band the statistical+systematic one.
Lower: likelihood ratio profile with the line in-
dicating a 1% null-experiment probability.

|Via/Vis| = 0.208¥5505(ewp.) L5 506 (theo.).
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